1
|
Nabizadeh F, Zafari R. Progranulin and neuropathological features of Alzheimer's disease: longitudinal study. Aging Clin Exp Res 2024; 36:55. [PMID: 38441695 PMCID: PMC10914850 DOI: 10.1007/s40520-024-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Progranulin is an anti-inflammatory protein that plays an essential role in the synapse function and the maintenance of neurons in the central nervous system (CNS). It has been shown that the CSF level of progranulin increases in Alzheimer's disease (AD) patients and is associated with the deposition of amyloid-beta (Aβ) and tau in the brain tissue. In this study, we aimed to assess the longitudinal changes in cerebrospinal fluid (CSF) progranulin levels during different pathophysiological stages of AD and investigate associated AD pathologic features. METHODS We obtained the CSF and neuroimaging data of 1001 subjects from the ADNI database. The participants were classified into four groups based on the A/T/N framework: A + /TN + , A + /TN-, A-/TN + , and A-/TN-. RESULTS Based on our analysis there was a significant difference in CSF progranulin (P = 0.001) between ATN groups. Further ANOVA analysis revealed that there was no significant difference in the rate of change of CSF-progranulin ATN groups. We found that the rate of change of CSF progranulin was associated with baseline Aβ-PET only in the A-/TN + group. A significant association was found between the rate of change of CSF progranulin and the Aβ-PET rate of change only in A-/TN + CONCLUSION: Our findings revealed that an increase in CSF progranulin over time is associated with faster formation of Aβ plaques in patients with only tau pathology based on the A/T/N classification (suspected non-Alzheimer's pathology). Together, our findings showed that the role of progranulin-related microglial activity on AD pathology can be stage-dependent, complicated, and more prominent in non-AD pathologic changes. Thus, there is a need for further studies to consider progranulin-based therapies for AD treatment.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Leng F, Hinz R, Gentleman S, Dani M, Brooks DJ, Edison P. Combined Neuroinflammation and Amyloid PET Markers in Predicting Disease Progression in Cognitively Impaired Subjects. J Alzheimers Dis 2024; 100:973-986. [PMID: 39031352 DOI: 10.3233/jad-230442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Neuroinflammation in Alzheimer's disease is known as an important process in the disease, yet how microglial activation affects disease progression remains unclear. Objective The current study aims to interrogate the predictive value of neuroinflammation biomarker (11C-PBR28 PET), together with A/T/N imaging markers on disease deterioration in a cognitively impaired patient cohort. Methods The study included 6 AD and 27 MCI patients, who had MRI, 11C-PBR28, 18F-flutemetamol (amyloid marker), 18F-AV1451 (tau marker) PET scans, and were followed up with multiple neuropsychological assessments for at least one year (1.6 and 2.8 years on average for AD and MCI). The predictive values of imaging biomarkers on baseline and longitudinal cognition were interrogated using linear regression to identify the biomarkers that could explain disease progression. Results Linear mixed models found the average intercepts (baseline) MMSE were 23.5 for AD and 28.2 for MCI patients, and the slope of MMSE (annual change) were -0.74 for AD and -0.52 for MCI patients. White matter microstructural integrity was predictive of baseline cognition, while PET markers of amyloid, tau and neuroinflammation were predictive of longitudinal cognitive decline. Both amyloid and neuroinflammation PET markers were predictors independent of each other. And a sub-group analysis showed the predictive effect of neuroinflammation on cognitive decline is independent of amyloid and tau. Conclusions Our study highlights the prognostic value of disease specific markers (amyloid, tau and neuroinflammation) in clinically diagnosed AD and MCI patients and suggests that the effects of these molecular markers are mediated by structural damage to the brain.
Collapse
Affiliation(s)
- Fangda Leng
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Oxford, UK
| | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, London, UK
| | - Melanie Dani
- Department of Brain Sciences, Imperial College London, London, UK
| | - David J Brooks
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Neuroscience, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Nemes S, Logan PE, Manchella MK, Mundada NS, Joie RL, Polsinelli AJ, Hammers DB, Koeppe RA, Foroud TM, Nudelman KN, Eloyan A, Iaccarino L, Dorsant-Ardón V, Taurone A, Maryanne Thangarajah, Dage JL, Aisen P, Grinberg LT, Jack CR, Kramer J, Kukull WA, Murray ME, Rumbaugh M, Soleimani-Meigooni DN, Toga A, Touroutoglou A, Vemuri P, Atri A, Day GS, Duara R, Graff-Radford NR, Honig LS, Jones DT, Masdeu J, Mendez MF, Musiek E, Onyike CU, Riddle M, Rogalski E, Salloway S, Sha SJ, Turner RS, Wingo TS, Womack KB, Wolk DA, Rabinovici GD, Carrillo MC, Dickerson BC, Apostolova LG. Sex and APOE ε4 carrier effects on atrophy, amyloid PET, and tau PET burden in early-onset Alzheimer's disease. Alzheimers Dement 2023; 19 Suppl 9:S49-S63. [PMID: 37496307 PMCID: PMC10811272 DOI: 10.1002/alz.13403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION We used sex and apolipoprotein E ε4 (APOE ε4) carrier status as predictors of pathologic burden in early-onset Alzheimer's disease (EOAD). METHODS We included baseline data from 77 cognitively normal (CN), 230 EOAD, and 70 EO non-Alzheimer's disease (EOnonAD) participants from the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS). We stratified each diagnostic group by males and females, then further subdivided each sex by APOE ε4 carrier status and compared imaging biomarkers in each stratification. Voxel-wise multiple linear regressions yielded statistical brain maps of gray matter density, amyloid, and tau PET burden. RESULTS EOAD females had greater amyloid and tau PET burdens than males. EOAD female APOE ε4 non-carriers had greater amyloid PET burdens and greater gray matter atrophy than female ε4 carriers. EOnonAD female ε4 non-carriers also had greater gray matter atrophy than female ε4 carriers. DISCUSSION The effects of sex and APOE ε4 must be considered when studying these populations. HIGHLIGHTS Novel analysis examining the effects of biological sex and apolipoprotein E ε4 (APOE ε4) carrier status on neuroimaging biomarkers among early-onset Alzheimer's disease (EOAD), early-onset non-AD (EOnonAD), and cognitively normal (CN) participants. Female sex is associated with greater pathology burden in the EOAD cohort compared to male sex. The effect of APOE ε4 carrier status on pathology burden was the most impactful in females across all cohorts.
Collapse
Affiliation(s)
- Sára Nemes
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Paige E. Logan
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Mohit K. Manchella
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
- Department of Chemistry, University of Southern Indiana, Evansville, Indiana, 47712, USA
| | - Nidhi S. Mundada
- Department of Neurology, University of California, San Francisco, California, 94158, USA
| | - Renaud La Joie
- Department of Neurology, University of California, San Francisco, California, 94158, USA
| | - Angelina J. Polsinelli
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, Indiana, 46202 USA
| | - Dustin B. Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Kelly N. Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Ani Eloyan
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - Leonardo Iaccarino
- Department of Neurology, University of California, San Francisco, California, 94158, USA
| | - Valérie Dorsant-Ardón
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Alexander Taurone
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - Maryanne Thangarajah
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - Jeffery L. Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Paul Aisen
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego, CA, 92121, USA
| | - Lea T. Grinberg
- Department of Neurology, University of California, San Francisco, California, 94158, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Joel Kramer
- Department of Neurology, University of California, San Francisco, California, 94158, USA
| | - Walter A. Kukull
- Department of Epidemiology, University of Washington, Seattle, Washington, USA, 98195, USA
| | - Melissa E. Murray
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Malia Rumbaugh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | | | - Arthur Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, California, 90033, USA
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, Arizona, 85315, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Ranjan Duara
- Department of Neurology, Center for Mind/Brain Medicine, Brigham & Women’s Hospital & Harvard Medical School, Boston, Massachusetts, 02115, USA
- Wein Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, 33140, USA
| | | | - Lawrence S. Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - David T. Jones
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, 559095, USA
| | - Joseph Masdeu
- Nantz National Alzheimer Center, Houston Methodist and Weill Cornell Medicine, Houston, Texas, 77030, USA
| | - Mario F. Mendez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Erik Musiek
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Chiadi U. Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Meghan Riddle
- Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island, 02906, USA
| | - Emily Rogalski
- Department of Psychiatry and Behavioral Sciences, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island, 02906, USA
| | - Sharon J. Sha
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, 94304, USA
| | - Raymond S. Turner
- Department of Neurology, Georgetown Universit, Washington, DC, 20007, USA
| | - Thomas S. Wingo
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kyle B. Womack
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - David A. Wolk
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,19104, USA
| | - Gil D. Rabinovici
- Department of Neurology, University of California, San Francisco, California, 94158, USA
| | - Maria C. Carrillo
- Medical & Scientific Relations Division, Alzheimer’s Association, Chicago, Illinois, 60603, USA
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, Indiana, 46202 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | | |
Collapse
|
4
|
Delvenne A, Gobom J, Tijms B, Bos I, Reus LM, Dobricic V, Kate MT, Verhey F, Ramakers I, Scheltens P, Teunissen CE, Vandenberghe R, Schaeverbeke J, Gabel S, Popp J, Peyratout G, Martinez-Lage P, Tainta M, Tsolaki M, Freund-Levi Y, Lovestone S, Streffer J, Barkhof F, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vos SJB. Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected non-Alzheimer's disease pathophysiology. Alzheimers Dement 2023; 19:807-820. [PMID: 35698882 DOI: 10.1002/alz.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. METHODS Individuals were classified based on CSF amyloid beta (Aβ)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. RESULTS A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. CONCLUSION The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.
Collapse
Affiliation(s)
- Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Betty Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Mara Ten Kate
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (AUMC), Amsterdam Neuroscience, the Netherlands
| | - Rik Vandenberghe
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jolien Schaeverbeke
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Silvy Gabel
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Julius Popp
- Old Age Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
- Department of Geriatric Psychiatry, Psychiatry University Hospital Zürich, Zürich, Switzerland
| | | | | | - Mikel Tainta
- Fundación CITA-Alzhéimer Fundazioa, San Sebastian, Spain
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Thessaloniki, Greece
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry in Region Örebro County and School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Simon Lovestone
- University of Oxford, Oxford, United Kingdom (currently at Johnson and Johnson Medical Ltd.), London, UK
| | - Johannes Streffer
- Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Belgium
- UCB Biopharma SPRL, Brain-l'Alleud, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Institutes of Neurology & Healthcare Engineering, UCL London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Baldeiras I, Silva-Spínola A, Lima M, Leitão MJ, Durães J, Vieira D, Tbuas-Pereira M, Cruz VT, Rocha R, Alves L, Machado Á, Milheiro M, Santiago B, Santana I. Alzheimer’s Disease Diagnosis Based on the Amyloid, Tau, and Neurodegeneration Scheme (ATN) in a Real-Life Multicenter Cohort of General Neurological Centers. J Alzheimers Dis 2022; 90:419-432. [DOI: 10.3233/jad-220587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The ATN scheme was proposed as an unbiased biological characterization of the Alzheimer’s disease (AD) spectrum, grouping biomarkers into three categories: brain Amyloidosis-A, Tauopathy-T, Neurodegeneration-N. Although this scheme was mainly recommended for research, it is relevant for diagnosis. Objective: To evaluate the ATN scheme performance in real-life cohorts reflecting the inflow of patients with cognitive complaints and different underlying disorders in general neurological centers. Methods: We included patients (n = 1,128) from six centers with their core cerebrospinal fluid-AD biomarkers analyzed centrally. A was assessed through Aβ 42/Aβ 40, T through pTau-181, and N through tTau. Association between demographic features, clinical diagnosis at baseline/follow-up and ATN profiles was assessed. Results: The prevalence of ATN categories was: A-T-N-: 28.3% ; AD continuum (A + T-/+N-/+): 47.8% ; non-AD (A- plus T or/and N+): 23.9% . ATN profiles prevalence was strongly influenced by age, showing differences according to gender, APOE genotype, and cognitive status. At baseline, 74.6% of patients classified as AD fell in the AD continuum, decreasing to 47.4% in mild cognitive impairment and 42.3% in other neurodegenerative conditions. At follow-up, 41% of patients changed diagnosis, and 92% of patients that changed to AD were classified within the AD continuum. A + was the best individual marker for predicting a final AD diagnosis, and the combinations A + T+(irrespective of N) and A + T+N+had the highest overall accuracy (83%). Conclusion: The ATN scheme is useful to guide AD diagnosis real-life neurological centers settings. However, it shows a lack of accuracy for patients with other types of dementia. In such cases, the inclusion of other markers specific for non-AD proteinopathies could be an important aid to the differential diagnosis.
Collapse
Affiliation(s)
- Inês Baldeiras
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Anuschka Silva-Spínola
- Center for Neuroscience and Cell Biology; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Marisa Lima
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria João Leitão
- Center for Neuroscience and Cell Biology; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - João Durães
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Daniela Vieira
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Miguel Tbuas-Pereira
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | | | - Raquel Rocha
- ULSM Unidade Local de Sáude de Matosinhos, Matosinhos, Portugal
| | - Luisa Alves
- Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | | | | | | | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Rane Levendovszky S. Cross-Sectional and Longitudinal Hippocampal Atrophy, Not Cortical Thinning, Occurs in Amyloid-Negative, p-Tau-Positive, Older Adults With Non-Amyloid Pathology and Mild Cognitive Impairment. FRONTIERS IN NEUROIMAGING 2022; 1:828767. [PMID: 37555137 PMCID: PMC10406207 DOI: 10.3389/fnimg.2022.828767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 08/10/2023]
Abstract
Introduction Alzheimer's disease (AD) is a degenerative disease characterized by pathological accumulation of amyloid and phosphorylated tau. Typically, the early stage of AD, also called mild cognitive impairment (MCI), shows amyloid pathology. A small but significant number of individuals with MCI do not exhibit amyloid pathology but have elevated phosphorylated tau levels (A-T+ MCI). We used CSF amyloid and phosphorylated tau to identify the individuals with A+T+ and A-T+ MCI as well as cognitively normal (A-T-) controls. To increase the sample size, we leveraged the Global Alzheimer's Association Interactive Network and identified 137 MCI+ and 61 A-T+ MCI participants. We compared baseline and longitudinal, hippocampal, and cortical atrophy between groups. Methods We applied ComBat harmonization to minimize site-related variability and used FreeSurfer for all measurements. Results Harmonization reduced unwanted variability in cortical thickness by 3.4% and in hippocampal volume measurement by 10.3%. Cross-sectionally, widespread cortical thinning with age was seen in the A+T+ and A-T+ MCI groups (p < 0.0005). A decrease in the hippocampal volume with age was faster in both groups (p < 0.05) than in the controls. Longitudinally also, hippocampal atrophy rates were significant (p < 0.05) when compared with the controls. No longitudinal cortical thinning was observed in A-T+ MCI group. Discussion A-T+ MCI participants showed similar baseline cortical thickness patterns with aging and longitudinal hippocampal atrophy rates as participants with A+T+ MCI, but did not show longitudinal cortical atrophy signature.
Collapse
Affiliation(s)
- Swati Rane Levendovszky
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Saridin FN, Chew KA, Reilhac A, Giyanwali B, Villaraza SG, Tanaka T, Scheltens P, van der Flier WM, Chen CLH, Hilal S. Cerebrovascular disease in Suspected Non-Alzheimer's Pathophysiology and cognitive decline over time. Eur J Neurol 2022; 29:1922-1929. [PMID: 35340085 DOI: 10.1111/ene.15337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The underlying cause of cognitive decline in individuals who are positive for biomarkers of neurodegeneration (N) but negative for biomarkers of amyloid-beta (A), designated as Suspected Non-Alzheimer's Pathophysiology (SNAP), remains unclear. We evaluate whether cerebrovascular disease (CeVD) is more prevalent in those with SNAP compared to A-N- and A+N+ individuals and whether CeVD is associated with cognitive decline over time in SNAP patients. METHODS A total of 216 individuals from a prospective memory clinic cohort [mean (SD) age, 72.7(7.3) years, 100 women (56.5%)] were included and were diagnosed as no cognitive impairment (NCI), cognitive impairment no dementia (CIND), Alzheimer's dementia (AD) or Vascular dementia (VaD). All individuals underwent clinical evaluation and neuropsychological assessment annually for up to 5 years. [11 C]-PiB or [18 F]-Flutafuranol-PET imaging was performed to ascertain amyloid-beta status. MRI was performed to assess neurodegeneration as measured by medial temporal atrophy≥2, as well as significant CeVD (sCeVD) burden, defined by cortical infarct count≥1, Fazekas-score≥2, lacune count≥2 or cerebral microbleed count≥2. RESULTS Of the 216 individuals, 50(23.1%) A-N+ were (SNAP), 93(43.1%) A-N-, 36(16.7%) A+N- and 37(17.1%) A+N+. A+N+ individuals were significantly older, while A+N+ and SNAP individuals were more likely to have dementia. The SNAP group had a higher prevalence of sCeVD (90.0%) compared to A-N-. Moreover, SNAP individuals with sCeVD had significantly steeper decline in global cognition compared to A-N- over 5 years (P=0.042). CONCLUSIONS These findings suggest that CeVD is a contributing factor to cognitive decline in SNAP. Therefore, SNAP-individuals should be carefully assessed and treated for CeVD.
Collapse
Affiliation(s)
- Francis Nicole Saridin
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Memory Aging & Cognition Centre, National University Health System, Singapore
| | - Kimberly Ann Chew
- Memory Aging & Cognition Centre, National University Health System, Singapore
| | - Anthonin Reilhac
- Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - Bibek Giyanwali
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Tomotaka Tanaka
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Phillip Scheltens
- Department of Neurology & Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, Netherlands
| | - Christopher Li Hsian Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Memory Aging & Cognition Centre, National University Health System, Singapore.,Department of Psychological Medicine, National University Hospital, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Memory Aging & Cognition Centre, National University Health System, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
8
|
Rizzi L, Balthazar MLF. Mini-review: The suspected non-Alzheimer's disease pathophysiology. Neurosci Lett 2021; 764:136208. [PMID: 34478819 DOI: 10.1016/j.neulet.2021.136208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker-based concept that underlying etiology has not been completely understood. Refers to a group of individuals that are negative for amyloid biomarkers and positive for p-Tau and/or neurodegeneration. SNAP causes great research interest because it is not clear if they have a different biological basis from Alzheimer's disease (AD), or are in an early stage of AD itself. The pathological processes behind SNAP need to be clarified. This mini-review aims to summarize the main characteristics of SNAP, besides reporting challenges and promising biomarkers related to the concept.
Collapse
Affiliation(s)
- Liara Rizzi
- Department of Neurology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | | |
Collapse
|
9
|
Kim HJ, Cheong EN, Jo S, Lee S, Shim WH, Kang DW, Kwon M, Kim JS, Lee JH. Early Impairment in the Ventral Visual Pathway Can Predict Conversion to Dementia in Patients With Amyloid-negative Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 2021; 35:298-305. [PMID: 34132669 DOI: 10.1097/wad.0000000000000457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Around 15% to 20% of patients with clinically probable Alzheimer disease have been found to have no significant Alzheimer pathology on amyloid positron emission tomography. A previous study showed that conversion to dementia from amyloid-negative mild cognitive impairment (MCI) was observed in up to 11% of patients, drawing attention to this condition. OBJECT We gathered the detailed neuropsychological and neuroimaging data of this population to elucidate factors for conversion to dementia from amyloid-negative amnestic MCI. METHODS This study was a single-institutional, retrospective cohort study of amyloid-negative MCI patients over age 50 with at least 36 months of follow-up. All subjects underwent detailed neuropsychological testing, 3 tesla brain magnetic resonance imaging), and fluorine-18(18F)-florbetaben amyloid positron emission tomography scans. RESULTS During the follow-up period, 39 of 107 (36.4%) patients converted to dementia from amnestic MCI. The converter group had more severe impairment in all visual memory tasks. The volumetric analysis revealed that the converter group had significantly reduced total hippocampal volume on the right side, gray matter volume in the right lateral temporal, lingual gyri, and occipital pole. CONCLUSION Our study showed that reduced gray matter volume related to visual memory processing may predict clinical progression in this amyloid-negative MCI population.
Collapse
Affiliation(s)
| | - E-Nae Cheong
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology
| | | | | | - Woo-Hyun Shim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine
- Health Innovation Big Data Center, Asan Institute for Life Sciences
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | | | | | | | | |
Collapse
|
10
|
Distinct amyloid and tau PET signatures are associated with diverging clinical and imaging trajectories in patients with amnestic syndrome of the hippocampal type. Transl Psychiatry 2021; 11:498. [PMID: 34588422 PMCID: PMC8481505 DOI: 10.1038/s41398-021-01628-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
We aimed to investigate the amyloid and tau PET imaging signatures of patients with amnestic syndrome of the hippocampal type (ASHT) and study their clinical and imaging progression according to their initial PET imaging status. Thirty-six patients with a progressive ASHT and 30 controls underwent a complete neuropsychological assessment, 3 T brain MRI, [11C]-PiB and [18F]-Flortaucipir PET imaging. Subjects were clinically followed-up annually over 2 years, with a second 3 T MRI (n = 27 ASHT patients, n = 28 controls) and tau-PET (n = 20 ASHT patients) at the last visit. At baseline, in accordance with the recent biological definition of Alzheimer's disease (AD), the AD PET signature was defined as the combination of (i) positive cortical amyloid load, and (ii) increased tau tracer binding in the entorhinal cortices and at least one of the following regions: amygdala, parahippocampal gyri, fusiform gyri. Patients who did not meet these criteria were considered to have a non-AD pathology (SNAP). Twenty-one patients were classified as AD and 15 as SNAP. We found a circumscribed tau tracer retention in the entorhinal cortices and/or amygdala in 5 amyloid-negative SNAP patients. At baseline, the SNAP patients were older and had lower ApoE ε4 allele frequency than the AD patients, but both groups did not differ regarding the neuropsychological testing and medial temporal lobe atrophy. During the 2-year follow-up, the episodic memory and language decline, as well as the temporo-parietal atrophy progression, were more pronounced in the AD sub-group, while the SNAP patients had a more pronounced progression of atrophy in the frontal lobes. Longitudinal tau tracer binding increased in AD patients but remained stable in SNAP patients. At baseline, distinct amyloid and tau PET signatures differentiated early AD and SNAP patients despite identical cognitive profiles characterized by an isolated ASHT and a similar degree of medial temporal atrophy. During the longitudinal follow-up, AD and SNAP patients diverged regarding clinical and imaging progression. Among SNAP patients, tau PET imaging could detect a tauopathy restricted to the medial temporal lobes, which was possibly explained by primary age-related tauopathy.
Collapse
|
11
|
Alongi P, Chiaravalloti A, Berti V, Vellani C, Trifirò G, Puccini G, Carli G, Chincarini A, Morbelli S, Perani D, Sestini S. Amyloid PET in the diagnostic workup of neurodegenerative disease. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00428-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Wisse LEM, de Flores R, Xie L, Das SR, McMillan CT, Trojanowski JQ, Grossman M, Lee EB, Irwin D, Yushkevich PA, Wolk DA. Pathological drivers of neurodegeneration in suspected non-Alzheimer's disease pathophysiology. ALZHEIMERS RESEARCH & THERAPY 2021; 13:100. [PMID: 33990226 PMCID: PMC8122549 DOI: 10.1186/s13195-021-00835-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
Background Little is known about the heterogeneous etiology of suspected non-Alzheimer’s pathophysiology (SNAP), a group of subjects with neurodegeneration in the absence of β-amyloid. Using antemortem MRI and pathological data, we investigated the etiology of SNAP and the association of neurodegenerative pathologies with structural medial temporal lobe (MTL) measures in β-amyloid-negative subjects. Methods Subjects with antemortem MRI and autopsy data were selected from ADNI (n=63) and the University of Pennsylvania (n=156). Pathological diagnoses and semi-quantitative scores of MTL tau, neuritic plaques, α-synuclein, and TDP-43 pathology and MTL structural MRI measures from antemortem T1-weighted MRI scans were obtained. β-amyloid status (A+/A−) was determined by CERAD score and neurodegeneration status (N+/N−) by hippocampal volume. Results SNAP reflects a heterogeneous group of pathological diagnoses. In ADNI, SNAP (A−N+) had significantly more neuropathological diagnoses than A+N+. In the A− group, tau pathology was associated with hippocampal, entorhinal cortex, and Brodmann area 35 volume/thickness and TDP-43 pathology with hippocampal volume. Conclusion SNAP had a heterogeneous profile with more mixed pathologies than A+N+. Moreover, a role for TDP-43 and tau pathology in driving MTL neurodegeneration in the absence of β-amyloid was supported. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00835-2.
Collapse
Affiliation(s)
- L E M Wisse
- Department of Diagnostic Radiology, Lund University, Remissgatan 4, Room 14-520, 222 42, Lund, Sweden. .,Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, USA. .,Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, USA.
| | - R de Flores
- Université Normandie, Inserm, Université de Caen-Normandie, Inserm UMR-S U1237, GIP Cyceron, Caen, France
| | - L Xie
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, USA.,Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - S R Das
- Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - C T McMillan
- Penn FTD Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - J Q Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - M Grossman
- Penn FTD Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - E B Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - D Irwin
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - P A Yushkevich
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - D A Wolk
- Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
13
|
Babulal GM, Roe CM, Stout SH, Rajasekar G, Wisch JK, Benzinger TLS, Morris JC, Ances BM. Depression is Associated with Tau and Not Amyloid Positron Emission Tomography in Cognitively Normal Adults. J Alzheimers Dis 2021; 74:1045-1055. [PMID: 32144985 DOI: 10.3233/jad-191078] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Depression is also common with older age. Alzheimer's disease (AD) studies suggest that both cerebrospinal fluid and positron emission tomography (PET) amyloid biomarkers are associated with more depressive symptoms in cognitively normal older adults. The recent availability of tau radiotracers offers the ability to examine in vivo tauopathy. It is unclear if the tau biomarker is associated with depression diagnosis. OBJECTIVE We examined if tau and amyloid imaging were associated with a depression diagnosis among cognitively normal adults (Clinical Dementia Rating = 0) and whether antidepressants modified this relationship. METHODS Among 301 participants, logistic regression models evaluated whether in vivo PET tau was associated with depression, while another model tested the interaction between PET tau and antidepressant use. A second set of models substituted PET amyloid for PET tau. A diagnosis of depression (yes/no) was made during an annual clinical assessment by a clinician. Antidepressant use (yes/no) was determined by comparing medications the participants used to a list of 30 commonly used antidepressants. All models adjusted for age, sex, education, race, and apolipoprotein ɛ4. Similar models explored the association between the biomarkers and depressive symptoms. RESULTS Participants with elevated tau were twice as likely to be depressed. Antidepressant use modified this relationship where participants with elevated tau who were taking antidepressants had greater odds of being depressed. Relatedly, elevated amyloid was not associated with depression. CONCLUSIONS Our results demonstrate that tau, not amyloid, was associated with a depression diagnosis. Additionally, antidepressant use interacts with tau to increase the odds of depression among cognitively normal adults.
Collapse
Affiliation(s)
- Ganesh M Babulal
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine M Roe
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah H Stout
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ganesh Rajasekar
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie K Wisch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA.,Department of Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Beau M Ances
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Byun MS, Park SW, Lee JH, Yi D, Jeon SY, Choi HJ, Joung H, Ghim UH, Park UC, Kim YK, Shin SA, Yu HG, Lee DY. Association of Retinal Changes With Alzheimer Disease Neuroimaging Biomarkers in Cognitively Normal Individuals. JAMA Ophthalmol 2021; 139:548-556. [PMID: 33764406 DOI: 10.1001/jamaophthalmol.2021.0320] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Retinal biomarkers reflecting in vivo brain Alzheimer disease (AD) pathologic abnormalities could be a useful tool for screening cognitively normal (CN) individuals at the preclinical stage of AD. Objectives To investigate the association of both functional and structural alterations of the retina with in vivo AD pathologic abnormalities in CN older adults and model a screening tool for detection of preclinical AD. Design, Setting, and Participants This cross-sectional study included a total of 49 CN individuals, and all assessment was done at the Seoul National University Hospital, Seoul, South Korea. All participants underwent complete ophthalmic examination, including swept-source optical coherence tomography (SS-OCT) and multifocal electroretinogram as well as amyloid-β (Aβ) positron emission tomography and magnetic resonance imaging. Data were collected from January 1, 2016, through October 31, 2017, and analyzed from February 1, 2018, through June 30, 2020. Main Outcomes and Measures For structural parameters of the retina, the thickness of the macula and layer-specific thicknesses, including peripapillary retinal nerve fiber layer and ganglion cell-inner plexiform layer measured by SS-OCT, were used for analysis. For functional parameters of the retina, implicit time and amplitude of rings 1 to 6 measured by multifocal electroretinogram were used. Results Of the 49 participants, 25 were women (51.0%); mean (SD) age was 70.6 (9.4) years. Compared with 33 CN individuals without Aβ deposition (Aβ-CN), the 16 participants with Aβ (Aβ+CN) showed reduced inner nasal macular thickness (mean [SD], 308.9 [18.4] vs 286.1 [22.5] μm; P = .007) and retinal nerve fiber layer thickness, particularly in the inferior quadrant (133.8 [17.9] vs 103.8 [43.5] μm; P = .003). In addition, the Aβ+CN group showed prolonged implicit time compared with the Aβ-CN group, particularly in ring 5 (41.3 [4.0] vs 38.2 [1.3] milliseconds; P = .002). AD-related neurodegeneration was correlated with the thickness of the ganglion cell-inner plexiform layer only (r = 0.41, P = .005). The model to differentiate the Aβ+CN vs Aβ-CN groups derived from the results showed 90% accuracy. Conclusions and Relevance The findings of this study showing both functional as well as structural changes of retina measured by multifocal electroretinogram and SS-OCT in preclinical AD suggest the potential use of retinal biomarkers as a tool for early detection of in vivo AD pathologic abnormalities in CN older adults.
Collapse
Affiliation(s)
- Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung Wook Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.,Retinal Degeneration Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Seran Eye Center, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - So Yeon Jeon
- Department of Neuropsychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hyo Jung Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Haejung Joung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Un Hyung Ghim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.,Retinal Degeneration Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Un Chul Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.,Retinal Degeneration Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Seong A Shin
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.,Retinal Degeneration Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
15
|
Eckerström C, Svensson J, Kettunen P, Jonsson M, Eckerström M. Evaluation of the ATN model in a longitudinal memory clinic sample with different underlying disorders. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12031. [PMID: 33816750 PMCID: PMC8015813 DOI: 10.1002/dad2.12031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 11/10/2022]
Abstract
INTRODUCTION To evaluate the usefulness of the 2018 NIA-AA (National Institute on Aging and Alzheimer's Association) research framework in a longitudinal memory clinic study with different clinical outcomes and underlying disorders. METHODS We included 420 patients with mild cognitive impairment or subjective cognitive impairment. During the follow up, 27% of the patients converted to dementia, with the majority converting to Alzheimer's disease (AD) or mixed dementia. Based on the baseline values of the cerebrospinal fluid biomarkers, the patients were classified into one of the eight possible ATN groups (amyloid beta [Aβ] aggregation [A], tau aggregation reflecting neurofibrillary tangles [T], and neurodegeneration [N]). RESULTS The majority of the patients converting to AD and mixed dementia were in ATN groups positive for A (71%). The A+T+N+ group was highly overrepresented among converters to AD and mixed dementia. Patients converting to dementias other than AD or mixed dementia were evenly distributed across the ATN groups. DISCUSSION Our findings provide support for the usefulness of the ATN system to detect incipient AD or mixed dementia.
Collapse
Affiliation(s)
- C. Eckerström
- Department of Psychiatry and NeurochemistrySahlgrenska AcademyInstitute of Neuroscience and PhysiologyUniversity of GothenburgSweden
- Department of Immunology and Transfusion MedicineRegion Västra GötalandSahlgrenska University HospitalSweden
| | - J. Svensson
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgSweden
| | - P. Kettunen
- Department of Psychiatry and NeurochemistrySahlgrenska AcademyInstitute of Neuroscience and PhysiologyUniversity of GothenburgSweden
| | - M. Jonsson
- Department of Psychiatry and NeurochemistrySahlgrenska AcademyInstitute of Neuroscience and PhysiologyUniversity of GothenburgSweden
| | - M. Eckerström
- Department of Psychiatry and NeurochemistrySahlgrenska AcademyInstitute of Neuroscience and PhysiologyUniversity of GothenburgSweden
| |
Collapse
|
16
|
Kim HJ, Lee JH, Cheong EN, Chung SE, Jo S, Shim WH, Hong YJ. Elucidating the Risk Factors for Progression from Amyloid-Negative Amnestic Mild Cognitive Impairment to Dementia. Curr Alzheimer Res 2021; 17:893-903. [PMID: 33256581 DOI: 10.2174/1567205017666201130094259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Amyloid PET allows for the assessment of amyloid β status in the brain, distinguishing true Alzheimer's disease from Alzheimer's disease-mimicking conditions. Around 15-20% of patients with clinically probable Alzheimer's disease have been found to have no significant Alzheimer's pathology on amyloid PET. However, a limited number of studies had been conducted on this subpopulation in terms of clinical progression. OBJECTIVE We investigated the risk factors that could affect the progression to dementia in patients with amyloid-negative amnestic mild cognitive impairment (MCI). METHODS This study was a single-institutional, retrospective cohort study of patients over the age of 50 with amyloid-negative amnestic MCI who visited the memory clinic of Asan Medical Center with a follow-up period of more than 36 months. All participants underwent brain magnetic resonance imaging (MRI), detailed neuropsychological testing, and fluorine-18[F18]-florbetaben amyloid PET. RESULTS During the follow-up period, 39 of 107 patients progressed to dementia from amnestic MCI. In comparison with the stationary group, the progressed group had a more severe impairment in verbal and visual episodic memory function and hippocampal atrophy, which showed an Alzheimer's diseaselike pattern despite the lack of evidence for significant Alzheimer's disease pathology. Voxel-based morphometric MRI analysis revealed that the progressed group had a reduced gray matter volume in the bilateral cerebellar cortices, right temporal cortex, and bilateral insular cortices. CONCLUSION Considering the lack of evidence of amyloid pathology, clinical progression of these subpopulation may be caused by other neuropathologies such as TDP-43, abnormal tau or alpha synuclein that lead to neurodegeneration independent of amyloid-driven pathway. Further prospective studies incorporating biomarkers of Alzheimer's disease-mimicking dementia are warranted.
Collapse
Affiliation(s)
- Hyung-Ji Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - E-Nae Cheong
- Health Innovation Big Data Center, Asan Institute for Life Sciences, Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sung-Eun Chung
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sungyang Jo
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Woo-Hyun Shim
- Health Innovation Big Data Center, Asan Institute for Life Sciences, Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yun J Hong
- Department of Neurology, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Uijeongbu, Korea
| |
Collapse
|
17
|
Tondo G, Carli G, Santangelo R, Mattoli MV, Presotto L, Filippi M, Magnani G, Iannaccone S, Cerami C, Perani D. Biomarker-based stability in limbic-predominant amnestic mild cognitive impairment. Eur J Neurol 2020; 28:1123-1133. [PMID: 33185922 DOI: 10.1111/ene.14639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The amnestic presentation of mild cognitive impairment (aMCI) represents the most common prodromal stage of Alzheimer's disease (AD) dementia. There is, however, some evidence of aMCI with typical amnestic syndrome but showing long-term clinical stability. The ability to predict stability or progression to dementia in the aMCI condition is important, particularly for the selection of candidates in clinical trials. We aimed to establish the role of in vivo biomarkers, as assessed by cerebrospinal fluid (CSF) measures and [18 F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging, in predicting prognosis in a large aMCI cohort. METHODS We conducted a retrospective study, including 142 aMCI subjects who had a long follow-up (4-19 years), baseline CSF data and [18 F]FDG-PET scans individually assessed by validated voxel-based procedures, classifying subjects into either limbic-predominant or AD-like hypometabolism patterns. RESULTS The two aMCI cohorts were clinically comparable at baseline. At follow-up, the aMCI group with a limbic-predominant [18 F]FDG-PET pattern showed clinical stability over a very long follow-up (8.20 ± 3.30 years), no decline in Mini-Mental State Examination score, and only 7% conversion to dementia. Conversely, the aMCI group with an AD-like [18 F]FDG-PET pattern had a high rate of dementia progression (86%) over a shorter follow-up (6.47 ± 2.07 years). Individual [18 F]FDG-PET hypometabolism patterns predicted stability or conversion with high accuracy (area under the curve = 0.89), sensitivity (0.90) and specificity (0.89). In the limbic-predominant aMCI cohort, CSF biomarkers showed large variability and no prognostic value. CONCLUSIONS In a large series of clinically comparable subjects with aMCI at baseline, the specific [18 F]FDG-PET limbic-predominant hypometabolism pattern was associated with clinical stability, making progression to AD very unlikely. The identification of a biomarker-based benign course in aMCI subjects has important implications for prognosis and in planning clinical trials.
Collapse
Affiliation(s)
- Giacomo Tondo
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Carli
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Santangelo
- Department of Neurology and INSPE, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Vittoria Mattoli
- Department of Neuroscience, Imaging and Clinical Science, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luca Presotto
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Massimo Filippi
- Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology and INSPE, San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Magnani
- Department of Neurology and INSPE, San Raffaele Scientific Institute, Milan, Italy
| | - Sandro Iannaccone
- Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | - Chiara Cerami
- Scuola Universitaria Superiore IUSS, Pavia, Italy.,Cognitive Computational Neuroscience Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
18
|
Li Z, Li K, Luo X, Zeng Q, Zhao S, Zhang B, Zhang M, Chen Y. Distinct Brain Functional Impairment Patterns Between Suspected Non-Alzheimer Disease Pathophysiology and Alzheimer's Disease: A Study Combining Static and Dynamic Functional Magnetic Resonance Imaging. Front Aging Neurosci 2020; 12:550664. [PMID: 33328953 PMCID: PMC7719833 DOI: 10.3389/fnagi.2020.550664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Suspected non-Alzheimer disease pathophysiology (SNAP) refers to the subjects who feature negative β-amyloid (Aβ) but positive tau or neurodegeneration biomarkers. It accounts for a quarter of the elderly population and is associated with cognitive decline. However, the underlying pathophysiology is still unclear. Methods: We included 111 non-demented subjects, then classified them into three groups using cerebrospinal fluid (CSF) Aβ 1-42 (A), phosphorylated tau 181 (T), and total tau (N). Specifically, we identified the normal control (NC; subjects with normal biomarkers, A-T-N-), SNAP (subjects with normal amyloid but abnormal tau, A-T+), and predementia Alzheimer's disease (AD; subjects with abnormal amyloid and tau, A+T+). Then, we used the static amplitude of low-frequency fluctuation (sALFF) and dynamic ALFF (dALFF) variance to reflect the intrinsic functional network strength and stability, respectively. Further, we performed a correlation analysis to explore the possible relationship between intrinsic brain activity changes and cognition. Results: SNAP showed decreased sALFF in left superior frontal gyrus (SFG) while increased sALFF in left insula as compared to NC. Regarding the dynamic metric, SNAP showed a similarly decreased dALFF in the left SFG and left paracentral lobule as compared to NC. By contrast, when compared to NC, predementia AD showed decreased sALFF in left inferior parietal gyrus (IPG) and right precuneus, while increased sALFF in the left insula, with more widely distributed decreased dALFF variance across the frontal, parietal and occipital lobe. When directly compared to SNAP, predementia AD showed decreased sALFF in left middle occipital gyrus and IPG, while showing decreased dALFF variance in the left temporal pole. Further correlation analysis showed that increased sALFF in the insula had a negative correlation with the general cognition in the SNAP group. Besides, sALFF and dALFF variance in the right precuneus negatively correlated with attention in the predementia AD group. Conclusion: SNAP and predementia AD show distinct functional impairment patterns. Specifically, SNAP has functional impairments that are confined to the frontal region, which is usually spared in early-stage AD, while predementia AD exhibits widely distributed functional damage involving the frontal, parietal and occipital cortex.
Collapse
Affiliation(s)
- Zheyu Li
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Zhao
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
19
|
Wong BYX, Yong TT, Lim L, Tan JY, Ng ASL, Ting SKS, Hameed S, Ng KP, Zhou JH, Kandiah N. Medial Temporal Atrophy in Amyloid-Negative Amnestic Type Dementia Is Associated with High Cerebral White Matter Hyperintensity. J Alzheimers Dis 2020; 70:99-106. [PMID: 31177215 DOI: 10.3233/jad-181261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Non-amyloid mechanisms behind neurodegeneration and cognition impairment are unclear. Cerebrovascular disease (CVD) may play an important role in suspected non-Alzheimer's pathophysiology (SNAP), especially in Asia. OBJECTIVE To examine the association between CVD and medial temporal lobe atrophy (MTA) in amyloid-β negative patients with mild amnestic type dementia. METHODS Thirty-six mild dementia patients with complete neuropsychological, cerebrospinal fluid (CSF) biomarker, and neuroimaging information were included. Only patients with clinically significant MTA were recruited. Patients were categorized based on their CSF Aβ levels. Neuroimaging and neuropsychological variables were analyzed. RESULTS Despite comparable MTA between Aβ positive and negative patients, Aβ-negative patients had significantly greater white matter hyperintensities (WMH; Total Fazekas Rating) than their Aβ-positive counterparts (6.42 versus 4.19, p = 0.03). A larger proportion of Aβ-negative patients also had severe and confluent WMH. Regression analyses controlling for baseline characteristics yielded consistent results. CONCLUSION Our findings demonstrate that MTA is associated with greater CVD burden among Aβ-negative patients with amnestic type dementia. CVD may be an important mechanism behind hippocampal atrophy. This has implications on clinical management strategies, where measures to reduce CVD may slow neurodegeneration and disease progression.
Collapse
Affiliation(s)
| | - Ting Ting Yong
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Levinia Lim
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jayne Yi Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Adeline Su Lyn Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | | | - Shahul Hameed
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Juan Helen Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
20
|
Di Lorenzo F, Motta C, Casula EP, Bonnì S, Assogna M, Caltagirone C, Martorana A, Koch G. LTP-like cortical plasticity predicts conversion to dementia in patients with memory impairment. Brain Stimul 2020; 13:1175-1182. [PMID: 32485235 DOI: 10.1016/j.brs.2020.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND New diagnostic criteria consider Alzheimer's disease (AD) as a clinico-biological entity identifiable in vivo on the presence of specific patterns of CSF biomarkers. OBJECTIVE Here we used transcranial magnetic stimulation to investigate the mechanisms of cortical plasticity and sensory-motor integration in patients with hippocampal-type memory impairment admitted for the first time in the memory clinic stratified according to CSF biomarkers profile. METHODS Seventy-three patients were recruited and divided in three groups according to the new diagnostic criteria: 1) Mild Cognitive Impaired (MCI) patients (n = 21); Prodromal AD (PROAD) patients (n = 24); AD with manifest dementia (ADD) patients (n = 28). At time of recruitment all patients underwent CSF sampling for diagnostic purposes. Repetitive and paired-pulse transcranial magnetic stimulation protocols were performed to investigate LTP-like and LTD-like cortical plasticity, short intracortical inhibition (SICI) and short afferent inhibition (SAI). Patients were the followed up during three years to monitor the clinical progression or the conversion to dementia. RESULTS MCI patients showed a moderate but significant impairment of LTP-like cortical plasticity, while ADD and PROAD groups showed a more severe loss of LTP-like cortical plasticity. No differences were observed for LTD-like cortical plasticity, SICI and SAI protocols. Kaplan-Meyer analyses showed that PROAD and MCI patients converting to dementia had weaker LTP-like plasticity at time of first evaluation. CONCLUSION LTP-like cortical plasticity could be a novel biomarker to predict the clinical progression to dementia in patients with memory impairment at prodromal stages of AD identifiable with the new diagnostic criteria based on CSF biomarkers.
Collapse
Affiliation(s)
- Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Caterina Motta
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Elias Paolo Casula
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Sonia Bonnì
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Martina Assogna
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Alessandro Martorana
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Section of Human Physiology, ECampus University, Novedrate, Italy.
| |
Collapse
|
21
|
Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Vo VG. Role of Body-Fluid Biomarkers in Alzheimer's Disease Diagnosis. Diagnostics (Basel) 2020; 10:diagnostics10050326. [PMID: 32443860 PMCID: PMC7277970 DOI: 10.3390/diagnostics10050326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disease that requires extremely specific biomarkers for its diagnosis. For current diagnostics capable of identifying AD, the development and validation of early stage biomarkers is a top research priority. Body-fluid biomarkers might closely reflect synaptic dysfunction in the brain and, thereby, could contribute to improving diagnostic accuracy and monitoring disease progression, and serve as markers for assessing the response to disease-modifying therapies at early onset. Here, we highlight current advances in the research on the capabilities of body-fluid biomarkers and their role in AD pathology. Then, we describe and discuss current applications of the potential biomarkers in clinical diagnostics in AD.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Qui Thanh Hoai Ta
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Thi Kim Oanh Nguyen
- Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City 700000, Vietnam;
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
- Correspondence: (T.T.D.N.); (V.G.V.)
| | - Van Giau Vo
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si, Gyeonggi-do 461-701, Korea
- Department of BionanoTechnology, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si, Gyeonggi-do 461-701, Korea
- Correspondence: (T.T.D.N.); (V.G.V.)
| |
Collapse
|
22
|
Jicha GA, Nelson PT. Hippocampal Sclerosis, Argyrophilic Grain Disease, and Primary Age-Related Tauopathy. Continuum (Minneap Minn) 2020; 25:208-233. [PMID: 30707194 DOI: 10.1212/con.0000000000000697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy are common Alzheimer disease mimics that currently lack clinical diagnostic criteria. Increased understanding of these pathologic entities is important for the neurologist who may encounter patients with an unusually slowly progressive degenerative dementia that may appear to meet criteria for Alzheimer disease but who progress to develop symptoms that are unusual for classic Alzheimer disease RECENT FINDINGS: Hippocampal sclerosis has traditionally been associated with hypoxic/ischemic injury and poorly controlled epilepsy, but it is now recognized that hippocampal sclerosis may also be associated with a unique degenerative disease of aging or may be an associated pathologic finding in many cases of frontotemporal lobar degeneration. Argyrophilic grain disease has been recognized as an enigma in the field of pathology for over 30 years, but recent discoveries suggest that it may overlap with other tau-related disorders within the spectrum of frontotemporal lobar degeneration. Primary age-related tauopathy has long been recognized as a distinct clinical entity that lies on the Alzheimer pathologic spectrum, with the presence of neurofibrillary tangles that lack the coexistent Alzheimer plaque development; thus, it is thought to represent a distinct pathologic entity. SUMMARY Despite advances in dementia diagnosis that suggest that we have identified and unlocked the mysteries of the major degenerative disease states responsible for cognitive decline and dementia in the elderly, diseases such as hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy demonstrate that we remain on the frontier of discovery and that our diagnostic repertoire of diseases responsible for such clinical symptoms remains in its infancy. Understanding such diagnostic confounds is important for the neurologist in assigning appropriate diagnoses and selecting appropriate therapeutic management strategies for patients with mild cognitive impairment and dementia.
Collapse
|
23
|
Luo X, Li K, Zeng Q, Huang P, Jiaerken Y, Wang S, Shen Z, Xu X, Xu J, Wang C, Kong L, Zhou J, Zhang M. Application of T1-/T2-Weighted Ratio Mapping to Elucidate Intracortical Demyelination Process in the Alzheimer's Disease Continuum. Front Neurosci 2019; 13:904. [PMID: 31551678 PMCID: PMC6748350 DOI: 10.3389/fnins.2019.00904] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background The biological diagnosis criteria of the Alzheimer’s disease (AD) suggests that previous work may misclassify the cognitive impairment caused by other factors into AD. Consequently, re-assessing the imaging profile of AD continuum is needed. Considering the high vulnerability of cortical association fibers, we aimed to elucidate the cortical demyelination process in the AD continuum biologically defined. Methods According to the biological diagnosis criteria, we determined the positive amyloid status (A+) as cerebrospinal fluid (CSF) amyloid1–42 < 192 pg/ml, Florbetapir Positron emission tomography (PET) composite standardized uptake value ratio (SUVR) >1.11. Also, the positive Tau status (T+) was determined as p-Tau181 > 23 pg/ml. Based on the cognitive characterization, we further categorized 252 subjects into 27 cognitively unimpaired with normal AD biomarkers (A−T−, controls), 49 preclinical AD (A+T+), 113 AD with mild cognitive impairment (MCI) (A+T+), and 63 AD dementia (A+T+). We estimated the intracortical myelin content used the T1- and T2-weighted (T1W/T2W) ratio mapping. To investigate the sensitivity of the ratio mapping, we also utilized well-validated AD imaging biomarkers as the reference, including gray matter volume and Fludeoxyglucose PET (FDG-PET). Based on the general linear model, we conducted the voxel-wise two-sample T-tests between the controls and each group in the AD continuum. Results Compared to the controls, the results showed that the preclinical AD patients exhibited decreased T1W/T2W ratio value in the right inferior parietal lobule (IPL); as the disease progresses, the prodromal AD patients demonstrated lower ratio value in bilateral IPL, with hippocampus (HP) atrophy. Lastly, the AD dementia patients exhibited decreased ratio value in bilateral IPL and hippocampus; also, we observed the bilateral temporal cortices atrophy and widespread decreased metabolism in the AD dementia patients. After corrected with gray volume, the results remained mostly unchanged. Conclusion Our study implied the decreased right IPL T1W/T2W ratio might represent early AD-related demyelination in disease continuum. Additionally, we demonstrated that the T1W/T2W ratio mapping is an easy-to-implement and sensitive metric to assess the intracortical myelin content in AD, particularly in the early stage.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linlin Kong
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiong Zhou
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Takeuchi J, Kikukawa T, Saito H, Hasegawa I, Takeda A, Hatsuta H, Kawabe J, Wada Y, Mawatari A, Igesaka A, Doi H, Watanabe Y, Shimada H, Kitamura S, Higuchi M, Suhara T, Itoh Y. Amyloid-Negative Dementia in the Elderly is Associated with High Accumulation of Tau in the Temporal Lobes. Open Biomed Eng J 2019. [DOI: 10.2174/1874120701913010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background:
We previously reported that among cases clinically diagnosed with Alzheimer’s disease, the proportion of amyloid beta (Aβ) -negative case increases in the elderly population. Tauopathy including Argyrophilic Grain Disease (AGD) and Neurofibrillary Tangle-Predominant Dementia (NFTPD), may be the leading causes of such dementia.
Objective:
To evaluate the involvement of tau, we studied tau accumulation in Amyloid-Negative Dementia Cases in the Elderly (ANDE) with Positron Emission Tomography (PET).
Methods:
Seven cases with slowly progressive dementia who were older than 80 years and were negative for Aβ were studied. In one case, autopsy obtained 2 years after the PET examination revealed neurofibrillary tangles limited around the parahippocampal gyrus. Four cases showed strong laterality in magnetic resonance imaging atrophy (clinical AGD), while the other three cases had no significant laterality in atrophy (clinical NFTPD). Age-corrected PET data of healthy controls (HC; n = 12) were used as control. Tau accumulation was evaluated with [11C]PBB3-PET.
Results:
High accumulation was found in the lateral temporal cortex in ANDE. In autopsy case, scattered neurofibrillary tangles were found in the parahippocampal gyrus. In addition, there was a very high accumulation of PBB3 in the large area of bilateral parietal lobes, although no corresponding tau component was found in the autopsied case.
Conclusion:
Relatively high burden of tau deposition was commonly observed in the lateral temporal cortex and parietal cortex of ANDE, part of which may explain dementia in these subjects. [11C]PBB3 may be useful in detecting tauopathy in ANDE.
Collapse
|
25
|
Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G, Schlepckow K, Araque Caballero MÁ, Franzmeier N, Capell A, Fellerer K, Nuscher B, Eren E, Levin J, Deming Y, Piccio L, Karch CM, Cruchaga C, Shaw LM, Trojanowski JQ, Weiner M, Ewers M, Haass C. Early increase of CSF sTREM2 in Alzheimer's disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Mol Neurodegener 2019; 14:1. [PMID: 30630532 PMCID: PMC6327425 DOI: 10.1186/s13024-018-0301-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND TREM2 is a transmembrane receptor that is predominantly expressed by microglia in the central nervous system. Rare variants in the TREM2 gene increase the risk for late-onset Alzheimer's disease (AD). Soluble TREM2 (sTREM2) resulting from shedding of the TREM2 ectodomain can be detected in the cerebrospinal fluid (CSF) and is a surrogate measure of TREM2-mediated microglia function. CSF sTREM2 has been previously reported to increase at different clinical stages of AD, however, alterations in relation to Amyloid β-peptide (Aβ) deposition or additional pathological processes in the amyloid cascade (such as tau pathology or neurodegeneration) remain unclear. In the current cross-sectional study, we employed the biomarker-based classification framework recently proposed by the NIA-AA consensus guidelines, in combination with clinical staging, in order to examine the CSF sTREM2 alterations at early asymptomatic and symptomatic stages of AD. METHODS A cross-sectional study of 1027 participants of the Alzheimer's Disease Imaging Initiative (ADNI) cohort, including 43 subjects carrying TREM2 rare genetic variants, was conducted to measure CSF sTREM2 using a previously validated enzyme-linked immunosorbent assay (ELISA). ADNI participants were classified following the A/T/N framework, which we implemented based on the CSF levels of Aβ1-42 (A), phosphorylated tau (T) and total tau as a marker of neurodegeneration (N), at different clinical stages defined by the clinical dementia rating (CDR) score. RESULTS CSF sTREM2 differed between TREM2 variants, whereas the p.R47H variant had higher CSF sTREM2, p.L211P had lower CSF sTREM2 than non-carriers. We found that CSF sTREM2 increased in early symptomatic stages of late-onset AD but, unexpectedly, we observed decreased CSF sTREM2 levels at the earliest asymptomatic phase when only abnormal Aβ pathology (A+) but no tau pathology or neurodegeneration (TN-), is present. CONCLUSIONS Aβ pathology (A) and tau pathology/neurodegeneration (TN) have differing associations with CSF sTREM2. While tau-related neurodegeneration is associated with an increase in CSF sTREM2, Aβ pathology in the absence of downstream tau-related neurodegeneration is associated with a decrease in CSF sTREM2.
Collapse
Affiliation(s)
- Marc Suárez-Calvet
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany. .,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia, Spain.
| | - Estrella Morenas-Rodríguez
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Department of Neurology, Institut d'Investigacions Biomèdiques, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Gernot Kleinberger
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Miguel Ángel Araque Caballero
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Capell
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Fellerer
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brigitte Nuscher
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erden Eren
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.,Izmir International Biomedicine and Genome Institute Dokuz Eylul University, Izmir, Turkey.,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Weiner
- University of California at San Francisco, San Francisco, CA, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | | |
Collapse
|
26
|
Nanowired delivery of cerebrolysin with neprilysin and p-Tau antibodies induces superior neuroprotection in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:145-200. [DOI: 10.1016/bs.pbr.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Suárez-Calvet M, Capell A, Araque Caballero MÁ, Morenas-Rodríguez E, Fellerer K, Franzmeier N, Kleinberger G, Eren E, Deming Y, Piccio L, Karch CM, Cruchaga C, Paumier K, Bateman RJ, Fagan AM, Morris JC, Levin J, Danek A, Jucker M, Masters CL, Rossor MN, Ringman JM, Shaw LM, Trojanowski JQ, Weiner M, Ewers M, Haass C. CSF progranulin increases in the course of Alzheimer's disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol Med 2018; 10:e9712. [PMID: 30482868 PMCID: PMC6284390 DOI: 10.15252/emmm.201809712] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022] Open
Abstract
Progranulin (PGRN) is predominantly expressed by microglia in the brain, and genetic and experimental evidence suggests a critical role in Alzheimer's disease (AD). We asked whether PGRN expression is changed in a disease severity-specific manner in AD We measured PGRN in cerebrospinal fluid (CSF) in two of the best-characterized AD patient cohorts, namely the Dominant Inherited Alzheimer's Disease Network (DIAN) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). In carriers of AD causing dominant mutations, cross-sectionally assessed CSF PGRN increased over the course of the disease and significantly differed from non-carriers 10 years before the expected symptom onset. In late-onset AD, higher CSF PGRN was associated with more advanced disease stages and cognitive impairment. Higher CSF PGRN was associated with higher CSF soluble TREM2 (triggering receptor expressed on myeloid cells 2) only when there was underlying pathology, but not in controls. In conclusion, we demonstrate that, although CSF PGRN is not a diagnostic biomarker for AD, it may together with sTREM2 reflect microglial activation during the disease.
Collapse
Affiliation(s)
- Marc Suárez-Calvet
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Anja Capell
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Miguel Ángel Araque Caballero
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Estrella Morenas-Rodríguez
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Neurology, Institut d'Investigacions Biomèdiques, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Katrin Fellerer
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gernot Kleinberger
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Erden Eren
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Izmir International Biomedicine and Genome Institute Dokuz, Eylul University, Izmir, Turkey
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Katrina Paumier
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic., Australia
| | - Martin N Rossor
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Weiner
- University of California at San Francisco, San Francisco, CA, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
28
|
Sancesario GM, Bernardini S. Diagnosis of neurodegenerative dementia: where do we stand, now? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:340. [PMID: 30306079 DOI: 10.21037/atm.2018.08.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
After many years of large efforts made for understanding the pathogenesis of dementias, the early diagnosis of these degenerative diseases remains an open challenge. Alzheimer's disease (AD) represents the most common form of dementia, followed by Lewy body disease and frontotemporal degeneration. Actually, different pathological processes can determine similar and overlapping clinical syndrome. To detect in vivo the pathological process underlying progressive cognitive and behavior impairment, the Internationals guidelines recommend the use of biological and topographical markers, which can reflect neuropathological modifications in brain. In cerebrospinal fluid (CSF), decrease of amyloid beta 1-42 (Aβ42) and a low ratio of Aβ42 with amyloid beta 1-40 (Aβ42/Aβ40), together with the increase of both total tau protein (t-tau) and phosphorylated tau (p-tau), contribute to define the "Alzheimer's signature". This review points out on the evolution of the concept for early diagnosis of AD, and on the current use of CSF proteins for research purposes and in clinical setting. Then, we discuss the limitations and drawbacks in wide application of CSF biomarkers for diagnosing degenerative dementias, and on the role of laboratory medicine to convey these biomarkers from "research" toward "clinical practice".
Collapse
Affiliation(s)
- Giulia M Sancesario
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, Tor Vergata University General Hospital, Rome, Italy
| |
Collapse
|
29
|
Roe CM, Babulal GM, Stout SH, Carr DB, Williams MM, Benzinger TLS, Fagan AM, Holtzman DM, Ances BM, Morris JC. Using the A/T/N Framework to Examine Driving in Preclinical AD. Geriatrics (Basel) 2018; 3:23. [PMID: 29805967 PMCID: PMC5964600 DOI: 10.3390/geriatrics3020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
The A/T/N classification system is the foundation of the 2018 NIA-AA Research Framework and is intended to guide the Alzheimer disease (AD) research agenda for the next 5–10 years. Driving is a widespread functional activity that may be particularly useful in investigation of functional changes in pathological AD before onset of cognitive symptoms. We examined driving in preclinical AD using the A/T/N framework and found that the onset of driving difficulties is most associated with abnormality of both amyloid and tau pathology, rather than amyloid alone. These results have implications for participant selection into clinical trials and for the application time of interventions aimed at prolonging the time of safe driving among older adults with preclinical AD.
Collapse
Affiliation(s)
- Catherine M. Roe
- Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; (G.M.B.); (S.H.S.); (B.M.A.)
| | - Ganesh M. Babulal
- Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; (G.M.B.); (S.H.S.); (B.M.A.)
| | - Sarah H. Stout
- Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; (G.M.B.); (S.H.S.); (B.M.A.)
| | - David B. Carr
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | | | - Tammie L. S. Benzinger
- Knight Alzheimer Disease Research Center, Departments of Radiology and Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Anne M. Fagan
- Knight Alzheimer Disease Research Center, Department of Neurology, the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.M.F.); (D.M.H.)
| | - David M. Holtzman
- Knight Alzheimer Disease Research Center, Department of Neurology, the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.M.F.); (D.M.H.)
| | - Beau M. Ances
- Knight Alzheimer Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; (G.M.B.); (S.H.S.); (B.M.A.)
| | - John C. Morris
- Knight Alzheimer Disease Research Center, Departments of Neurology, Neurosurgery, Occupational Therapy, Pathology and Immunology, Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
30
|
Lombardi G, Polito C, Berti V, Ferrari C, Lucidi G, Bagnoli S, Piaceri I, Nacmias B, Pupi A, Sorbi S. Biomarkers study in atypical dementia: proof of a diagnostic work-up. Neurol Sci 2018; 39:1203-1210. [PMID: 29651720 DOI: 10.1007/s10072-018-3400-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND An early differentiation between Alzheimer's Disease (AD) and other dementias is crucial for an adequate patients' management, albeit it may result difficult for the occurrence of "atypical presentations." Current diagnostic criteria recognize the importance of biomarkers for AD diagnosis, but still an optimal diagnostic work-up isn't available. OBJECTIVE Evaluate the utility and reproducibility of biomarkers and propose an "optimal" diagnostic work-up in atypical dementia. METHODS (1) a retrospective selection of "atypical dementia cases"; (2) a repetition of diagnostic assessment by two neurologists following two different diagnostic work-ups, each consisting of multiple steps; (3) a comparison between diagnostic accuracy and confidence reached at each step by both neurologists and evaluation of the inter-rater agreement. RESULTS In AD, regardless of the undertaken diagnostic work-up, a significant gain in accuracy was reached by both neurologists after the second step, whereas in frontotemporal dementia (FTD), adding subsequent steps was not always sufficient to increase significantly the baseline accuracy. A relevant increment in diagnostic confidence was detectable after studying pathophysiological markers in AD, and after assessing brain metabolism in FTD. The inter-rater agreement was higher at the second step for the AD group when the pathophysiological markers were available and for the FTD group when the results of FDG-PET were accessible. CONCLUSIONS In atypical cases of dementia, biomarkers significantly raise diagnostic accuracy, confidence, and agreement. This study introduces a proof of diagnostic work-up that combines imaging and CSF biomarkers and suggests distinct ways to proceed on the basis of a greater diagnostic likelihood.
Collapse
Affiliation(s)
- Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy.
| | - Cristina Polito
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," Nuclear Medicine Unit, University of Florence, viale Morgagni 50, 50134, Florence, Italy
| | - Valentina Berti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," Nuclear Medicine Unit, University of Florence, viale Morgagni 50, 50134, Florence, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Giulia Lucidi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy.,IRCCS Don Gnocchi, via di Scandicci 269, 50143, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Alberto Pupi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," Nuclear Medicine Unit, University of Florence, viale Morgagni 50, 50134, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy.,IRCCS Don Gnocchi, via di Scandicci 269, 50143, Florence, Italy
| |
Collapse
|
31
|
Berté TE, Dalmagro AP, Zimath PL, Gonçalves AE, Meyre-Silva C, Bürger C, Weber CJ, Dos Santos DA, Cechinel-Filho V, de Souza MM. Taraxerol as a possible therapeutic agent on memory impairments and Alzheimer's disease: Effects against scopolamine and streptozotocin-induced cognitive dysfunctions. Steroids 2018; 132:5-11. [PMID: 29355563 DOI: 10.1016/j.steroids.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/19/2017] [Accepted: 01/11/2018] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive impairment and cholinergic neuronal death, characteristic of the effect of time on biochemical neuronal function. The use of medicinal plants as an alternative form of prevention, or even as a possible treatment of AD, is therefore interesting areas of research, since the standard drugs have many side effects. Taraxerol (TRX) is a triterpene that has been isolated from several plant species, and its various pharmacological properties have already been identified, such the acetylcholinesterase (AChE) inhibition activity in vitro. There is a lack of information in literature that confirms the effect of TRX in an animal AD-like model. Seeking to fill this gap in the literature, in the present work we assessed the effect of TRX on AChE activity in the animals' encephalon and hippocampus. We also investigated the effect of TRX (1.77 µM/side, 0.5 μL) isolated from leaves of Eugenia umbelliflora Berg. on aversive memory impairments induced by scopolamine (2 µg/side, 0.5 µL) infused into rat hippocampus, and the effect of TRX (0.89 and 1.77 µM/side, 0.5 μL) on aversive memory impairments induced by streptozotocin (STZ) (2.5 mg/mL, 2.0 µL) infused i.c.v. into mice, using the step-down inhibitory avoidance task. We found that TRX significantly inhibited AChE activity in the animal's hippocampus. Furthermore, TRX significantly improved scopolamine and STZ-induced memory impairment. Taking together, these results confirms its AChE activity inhibition in animals and indicate that TRX has anti-amnesic activity that may hold significant therapeutic value in alleviating certain memory impairments observed in AD.
Collapse
Affiliation(s)
- Talita Elisa Berté
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Ana Paula Dalmagro
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil.
| | - Priscila Laiz Zimath
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Ana Elisa Gonçalves
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Christiane Meyre-Silva
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Cristiani Bürger
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Carla J Weber
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Diogo Adolfo Dos Santos
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Valdir Cechinel-Filho
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Márcia M de Souza
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| |
Collapse
|
32
|
Chung JK, Plitman E, Nakajima S, Caravaggio F, Shinagawa S, Iwata Y, Gerretsen P, Kim J, Takeuchi H, Patel R, Chakravarty MM, Strafella A, Graff-Guerrero A. The Effects of Cortical Hypometabolism and Hippocampal Atrophy on Clinical Trajectories in Mild Cognitive Impairment with Suspected Non-Alzheimer's Pathology: A Brief Report. J Alzheimers Dis 2017; 60:341-347. [PMID: 28826178 DOI: 10.3233/jad-170098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The clinical and structural trajectories of suspected non-Alzheimer' pathology (SNAP) remain elusive due to its heterogeneous etiology. Baseline and longitudinal clinical (global cognition, daily functioning, symptoms of dementia, and learning memory) and hippocampal volume trajectories over two years were compared between patients with amnestic mild cognitive impairment (aMCI) with SNAP with reduced hippocampal volumes (SNAP+HIPPO) and aMCI patients with SNAP without reduced hippocampal volumes. SNAP+HIPPO showed overall worse baseline cognitive functions. Longitudinally, SNAP+HIPPO showed faster deterioration of clinical symptoms of dementia. Having both hippocampal atrophy and cortical hypometabolism without amyloid pathology may exacerbate symptoms of dementia in aMCI.
Collapse
Affiliation(s)
- Jun Ku Chung
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Eric Plitman
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Yusuke Iwata
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Philip Gerretsen
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Julia Kim
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Hiroyoshi Takeuchi
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Antonio Strafella
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON, Canada.,Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | |
Collapse
|