1
|
Barzilai DA. Mikhail 'Misha' Blagosklonny's enduring legacy in geroscience: the hyperfunction theory and the therapeutic potential of rapamycin. Aging (Albany NY) 2025; null:206189. [PMID: 39808121 DOI: 10.18632/aging.206189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The untimely passing of Dr. Mikhail "Misha" Blagosklonny has left a lasting void in geroscience and oncology. This review examines his profound contributions, focusing on his pioneering the Hyperfunction Theory and his advocacy for rapamycin, an mTOR inhibitor, as a therapeutic agent for lifespan extension. Contrary to traditional damage-centric models, the Hyperfunction Theory rejects damage accumulation as the primary driver of aging. Instead, it redefines aging as a quasi-programmed process driven by the persistent, excessive activity of growth-promoting pathways beyond their developmental roles, leading to age-related pathologies. We explore how Blagosklonny's insights predict rapamycin's ability to decelerate aging by modulating excessive mTOR signaling, supported by empirical evidence across multiple physiological systems, including immune, cardiovascular, cognitive, and oncologic health. His forward-thinking approach, advocating for the cautious clinical use of rapamycin and suggesting personalized, preventive, and combination therapy strategies, has catalyzed interest in translational geroscience. This review synthesizes Blagosklonny's legacy, presenting rapamycin as a foundational pharmacological intervention with potential in managing age-related decline and extending healthspan, and underlines his impact in shifting aging research from theoretical frameworks to actionable interventions. Blagosklonny's work remains an enduring inspiration, paving the way toward treating aging as a modifiable condition.
Collapse
Affiliation(s)
- David A Barzilai
- Geneva College of Longevity Science, Geneva 1204, Switzerland
- Healthspan Coaching LLC, Barzilai Longevity Consulting, Boston, MA 02111, USA
| |
Collapse
|
2
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
3
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Gems D, Kern CC. Biological constraint, evolutionary spandrels and antagonistic pleiotropy. Ageing Res Rev 2024; 101:102527. [PMID: 39374830 DOI: 10.1016/j.arr.2024.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Maximum lifespan differs greatly between species, indicating that the process of senescence is largely genetically determined. Senescence evolves in part due to antagonistic pleiotropy (AP), where selection favors gene variants that increase fitness earlier in life but promote pathology later. Identifying the biological mechanisms by which AP causes senescence is key to understanding the endogenous causes of aging and its attendant diseases. Here we argue that the frequent occurrence of AP as a property of genes reflects the presence of constraint in the biological systems that they specify. This arises particularly because the functionally interconnected nature of biological systems constrains the simultaneous optimization of coupled traits (interconnection constraints), or because individual traits cannot evolve (impossibility constraints). We present an account of aging that integrates AP and biological constraint with recent programmatic aging concepts, including costly programs, quasi-programs, hyperfunction and hypofunction. We argue that AP mechanisms of costly programs and triggered quasi-programs are consequences of constraint, in which costs resulting from hyperfunction or hypofunction cause senescent pathology. Impossibility constraint can also cause hypofunction independently of AP. We also describe how AP corresponds to Stephen Jay Gould's constraint-based concept of evolutionary spandrels, and argue that pathologies arising from AP are bad spandrels. Biological constraint is a conceptual missing link between ultimate and proximate causes of senescence, including diseases of aging.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom.
| | - Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Bitencourt TC, Vargas JE, Silva AO, Fraga LR, Filippi‐Chiela E. Subcellular structure, heterogeneity, and plasticity of senescent cells. Aging Cell 2024; 23:e14154. [PMID: 38553952 PMCID: PMC11019148 DOI: 10.1111/acel.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024] Open
Abstract
Cellular senescence is a state of permanent growth arrest. It can be triggered by telomere shortening (replicative senescence) or prematurely induced by stresses such as DNA damage, oncogene overactivation, loss of tumor suppressor genes, oxidative stress, tissue factors, and others. Advances in techniques and experimental designs have provided new evidence about the biology of senescent cells (SnCs) and their importance in human health and disease. This review aims to describe the main aspects of SnCs phenotype focusing on alterations in subcellular compartments like plasma membrane, cytoskeleton, organelles, and nuclei. We also discuss the heterogeneity, dynamics, and plasticity of SnCs' phenotype, including the SASP, and pro-survival mechanisms. We advance on the multiple layers of phenotypic heterogeneity of SnCs, such as the heterogeneity between inducers, tissues and within a population of SnCs, discussing the relevance of these aspects to human health and disease. We also raise the main challenges as well alternatives to overcome them. Ultimately, we present open questions and perspectives in understanding the phenotype of SnCs from the perspective of basic and applied questions.
Collapse
Affiliation(s)
- Thais Cardoso Bitencourt
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | | | - Andrew Oliveira Silva
- Faculdade Estácio RSPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
| | - Lucas Rosa Fraga
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Programa de Pós‐Graduação Em Medicina: Ciências MédicasUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
| | - Eduardo Filippi‐Chiela
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
- Centro de BiotecnologiaUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| |
Collapse
|
6
|
Chapman H, Hsiung KC, Rawlinson I, Galimov ER, Gems D. Colony level fitness analysis identifies a trade-off between population growth rate and dauer yield in Caenorhabditis elegans. BMC Ecol Evol 2024; 24:13. [PMID: 38267842 PMCID: PMC10809635 DOI: 10.1186/s12862-024-02199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In the evolution from unicellular to multicellular life forms, natural selection favored reduced cell proliferation and even programmed cell death if this increased organismal fitness. Could reduced individual fertility or even programmed organismal death similarly increase the fitness of colonies of closely-related metazoan organisms? This possibility is at least consistent with evolutionary theory, and has been supported by computer modelling. Caenorhabditis elegans has a boom and bust life history, where populations of nematodes that are sometimes near clonal subsist on and consume food patches, and then generate dauer larva dispersal propagules. A recent study of an in silico model of C. elegans predicted that one determinant of colony fitness (measured as dauer yield) is minimization of futile food consumption (i.e. that which does not contribute to dauer yield). One way to achieve this is to optimize colony population structure by adjustment of individual fertility. RESULTS Here we describe development of a C. elegans colony fitness assay, and its use to investigate the effect of altering population structure on colony fitness after population bust. Fitness metrics measured were speed of dauer production, and dauer yield, an indirect measure of efficiency of resource utilization (i.e. conversion of food into dauers). We find that with increasing founder number, speed of dauer production increases (due to earlier bust) but dauer yield rises and falls. In addition, some dauer recovery was detected soon after the post-colony bust peak of dauer yield, suggesting possible bet hedging among dauers. CONCLUSIONS These results suggest the presence of a fitness trade-off at colony level between speed and efficiency of resource utilization in C. elegans. They also provide indirect evidence that population structure is a determinant of colony level fitness, potentially by affecting level of futile food consumption.
Collapse
Affiliation(s)
- Hannah Chapman
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Isadora Rawlinson
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Evgeniy R Galimov
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Szilágyi A, Czárán T, Santos M, Szathmáry E. Directional selection coupled with kin selection favors the establishment of senescence. BMC Biol 2023; 21:230. [PMID: 37867189 PMCID: PMC10591417 DOI: 10.1186/s12915-023-01716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Conventional wisdom in evolutionary theory considers aging as a non-selected byproduct of natural selection. Based on this, conviction aging was regarded as an inevitable phenomenon. It was also thought that in the wild organisms tend to die from diseases, predation and other accidents before they could reach the time when senescence takes its course. Evidence has accumulated, however, that aging is not inevitable and there are organisms that show negative aging even. Furthermore, old age does play a role in the deaths of many different organisms in the wild also. The hypothesis of programmed aging posits that a limited lifespan can evolve as an adaptation (i.e., positively selected for) in its own right, partly because it can enhance evolvability by eliminating "outdated" genotypes. A major shortcoming of this idea is that non-aging sexual individuals that fail to pay the demographic cost of aging would be able to steal good genes by recombination from aging ones. RESULTS Here, we show by a spatially explicit, individual-based simulation model that aging can positively be selected for if a sufficient degree of kin selection complements directional selection. Under such conditions, senescence enhances evolvability because the rate of aging and the rate of recombination play complementary roles. The selected aging rate is highest at zero recombination (clonal reproduction). In our model, increasing extrinsic mortality favors evolved aging by making up free space, thereby decreasing competition and increasing drift, even when selection is stabilizing and the level of aging is set by mutation-selection balance. Importantly, higher extrinsic mortality is not a substitute for evolved aging under directional selection either. Reduction of relatedness decreases the evolved level of aging; chance relatedness favors non-aging genotypes. The applicability of our results depends on empirical values of directional and kin selection in the wild. CONCLUSIONS We found that aging can positively be selected for in a spatially explicit population model when sufficiently strong directional and kin selection prevail, even if reproduction is sexual. The view that there is a conceptual link between giving up clonal reproduction and evolving an aging genotype is supported by computational results.
Collapse
Affiliation(s)
- András Szilágyi
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Tamás Czárán
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Barcelona, Spain
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisbon, Portugal
| | - Eörs Szathmáry
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pöcking, Germany.
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary.
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.
| |
Collapse
|
8
|
Kern CC, Srivastava S, Ezcurra M, Hsiung KC, Hui N, Townsend S, Maczik D, Zhang B, Tse V, Konstantellos V, Bähler J, Gems D. C. elegans ageing is accelerated by a self-destructive reproductive programme. Nat Commun 2023; 14:4381. [PMID: 37474586 PMCID: PMC10359416 DOI: 10.1038/s41467-023-40088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
In post-reproductive C. elegans, destructive somatic biomass repurposing supports production of yolk which, it was recently shown, is vented and can serve as a foodstuff for larval progeny. This is reminiscent of the suicidal reproductive effort (reproductive death) typical of semelparous organisms such as Pacific salmon. To explore the possibility that C. elegans exhibits reproductive death, we have compared sibling species pairs of the genera Caenorhabditis and Pristionchus with hermaphrodites and females. We report that yolk venting and constitutive, early pathology involving major anatomical changes occur only in hermaphrodites, which are also shorter lived. Moreover, only in hermaphrodites does germline removal suppress senescent pathology and markedly increase lifespan. This is consistent with the hypothesis that C. elegans exhibit reproductive death that is suppressed by germline ablation. If correct, this would imply a major difference in the ageing process between C. elegans and most higher organisms, and potentially explain the exceptional plasticity in C. elegans ageing.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Shivangi Srivastava
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Marina Ezcurra
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Nancy Hui
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - StJohn Townsend
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Dominik Maczik
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Victoria Tse
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Viktoras Konstantellos
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Kern CC, Gems D. Semelparous Death as one Element of Iteroparous Aging Gone Large. Front Genet 2022; 13:880343. [PMID: 35754809 PMCID: PMC9218716 DOI: 10.3389/fgene.2022.880343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The aging process in semelparous and iteroparous species is different, but how different? Death in semelparous organisms (e.g., Pacific salmon) results from suicidal reproductive effort (reproductive death). Aging (senescence) in iteroparous organisms such as humans is often viewed as a quite different process. Recent findings suggest that the nematode Caenorhabditis elegans, widely used to study aging, undergoes reproductive death. In post-reproductive C. elegans hermaphrodites, intestinal biomass is repurposed to produce yolk which when vented serves as a milk to support larval growth. This apparent benefit of lactation comes at the cost of intestinal atrophy in the mother. Germline removal and inhibition of insulin/IGF-1 signaling (IIS) suppress C. elegans reproductive pathology and greatly increase lifespan. Blocking sexual maturity, e.g., by gonadectomy, suppresses reproductive death thereby strongly increasing lifespan in semelparous organisms, but typically has little effect on lifespan in iteroparous ones. Similarly, reduced IIS causes relatively modest increases in lifespan in iteroparous organisms. We argue that the more regulated and plastic mechanisms of senescence in semelparous organisms, involving costly resource reallocation under endocrine control, exist as one extreme of an etiological continuum with mechanisms operative in iteroparous organisms. We suggest that reproductive death evolved by exaggeration of mechanisms operative in iteroparous species, where other mechanisms also promote senescence. Thus, knowledge of C. elegans senescence can guide understanding of mechanisms contributing to human aging.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
10
|
Ohtani N. The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis? Inflamm Regen 2022; 42:11. [PMID: 35365245 PMCID: PMC8976373 DOI: 10.1186/s41232-022-00197-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that can be induced by a variety of potentially oncogenic stimuli, including DNA damage. Hence, senescence has long been considered to suppress tumorigenesis, acting as a guardian of homeostasis. However, recent studies have revealed that senescent cells exhibit the secretion of a series of inflammatory cytokines, chemokines, growth factors, and matrix remodeling factors that alter the local tissue environment and contribute to chronic inflammation and cancer. This senescence phenotype is termed as senescence-associated secretory phenotype (SASP) and is observed not only in cultured cells in vitro but also in vivo. Recently, the physiological and pathological roles of SASP have been increasingly clarified. Notably, several studies have reported that the intrinsic mechanism of SASP factor production is predominantly mediated through the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway by aberrantly accumulated DNA fragments from the nucleus of senescent cells. In contrast, various extrinsic triggers of SASP also exist in vivo, for example, the SASP induction in hepatic stellate cells in the tumor microenvironment of obesity-associated liver cancer by the translocated gut microbial metabolites. Recently, the strategy for the elimination of senescent cells (senolysis) has attracted increasing attention. Thus, the role of SASP and the effects and outcomes of senolysis in vivo will be also discussed in this review.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, 1-4-3, Abeno-ku, Osaka, Japan.
| |
Collapse
|
11
|
Gems D. The hyperfunction theory: An emerging paradigm for the biology of aging. Ageing Res Rev 2022; 74:101557. [PMID: 34990845 PMCID: PMC7612201 DOI: 10.1016/j.arr.2021.101557] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
The process of senescence (aging) is predominantly determined by the action of wild-type genes. For most organisms, this does not reflect any adaptive function that senescence serves, but rather evolutionary effects of declining selection against genes with deleterious effects later in life. To understand aging requires an account of how evolutionary mechanisms give rise to pathogenic gene action and late-life disease, that integrates evolutionary (ultimate) and mechanistic (proximate) causes into a single explanation. A well-supported evolutionary explanation by G.C. Williams argues that senescence can evolve due to pleiotropic effects of alleles with antagonistic effects on fitness and late-life health (antagonistic pleiotropy, AP). What has remained unclear is how gene action gives rise to late-life disease pathophysiology. One ultimate-proximate account is T.B.L. Kirkwood's disposable soma theory. Based on the hypothesis that stochastic molecular damage causes senescence, this reasons that aging is coupled to reproductive fitness due to preferential investment of resources into reproduction, rather than somatic maintenance. An alternative and more recent ultimate-proximate theory argues that aging is largely caused by programmatic, developmental-type mechanisms. Here ideas about AP and programmatic aging are reviewed, particularly those of M.V. Blagosklonny (the hyperfunction theory) and J.P. de Magalhães (the developmental theory), and their capacity to make sense of diverse experimental findings is assessed.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Chernyak BV, Lyamzaev KG, Mulkidjanian AY. Innate Immunity as an Executor of the Programmed Death of Individual Organisms for the Benefit of the Entire Population. Int J Mol Sci 2021; 22:ijms222413480. [PMID: 34948277 PMCID: PMC8704876 DOI: 10.3390/ijms222413480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.
Collapse
Affiliation(s)
- Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: (B.V.C.); (A.Y.M.)
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Armen Y. Mulkidjanian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Correspondence: (B.V.C.); (A.Y.M.)
| |
Collapse
|
13
|
Shilovsky GA, Putyatina TS, Markov AV. Altruism and Phenoptosis as Programs Supported by Evolution. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1540-1552. [PMID: 34937533 PMCID: PMC8678581 DOI: 10.1134/s0006297921120038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Phenoptosis is a programmed death that has emerged in the process of evolution, sometimes taking the form of an altruistic program. In particular, it is believed to be a weapon against the spread of pandemics in the past and an obstacle in fighting pandemics in the present (COVID). However, on the evolutionary scale, deterministic death is not associated with random relationships (for example, bacteria with a particular mutation), but is a product of higher nervous activity or a consequence of established hierarchy that reaches its maximal expression in eusocial communities of Hymenoptera and highly social communities of mammals. Unlike a simple association of individuals, eusociality is characterized by the appearance of non-reproductive individuals as the highest form of altruism. In contrast to primitive programs for unicellular organisms, higher multicellular organisms are characterized by the development of behavior-based phenoptotic programs, especially in the case of reproduction-associated limitation of lifespan. Therefore, we can say that the development of altruism in the course of evolution of sociality leads in its extreme manifestation to phenoptosis. Development of mathematical models for the emergence of altruism and programmed death contributes to our understanding of mechanisms underlying these paradoxical counterproductive (harmful) programs. In theory, this model can be applied not only to insects, but also to other social animals and even to the human society. Adaptive death is an extreme form of altruism. We consider altruism and programmed death as programmed processes in the mechanistic and adaptive sense, respectively. Mechanistically, this is a program existing as a predetermined chain of certain responses, regardless of its adaptive value. As to its adaptive value (regardless of the degree of "phenoptoticity"), this is a characteristic of organisms that demonstrate high levels of kinship, social organization, and physical association typical for higher-order individuals, e.g., unicellular organisms forming colonies with some characteristics of multicellular animals or colonies of multicellular animals displaying features of supraorganisms.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
14
|
Mc Auley MT. DNA methylation in genes associated with the evolution of ageing and disease: A critical review. Ageing Res Rev 2021; 72:101488. [PMID: 34662746 DOI: 10.1016/j.arr.2021.101488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Ageing is characterised by a physical decline in biological functioning which results in a progressive risk of mortality with time. As a biological phenomenon, it is underpinned by the dysregulation of a myriad of complex processes. Recently, however, ever-increasing evidence has associated epigenetic mechanisms, such as DNA methylation (DNAm) with age-onset pathologies, including cancer, cardiovascular disease, and Alzheimer's disease. These diseases compromise healthspan. Consequently, there is a medical imperative to understand the link between epigenetic ageing, and healthspan. Evolutionary theory provides a unique way to gain new insights into epigenetic ageing and health. This review will: (1) provide a brief overview of the main evolutionary theories of ageing; (2) discuss recent genetic evidence which has revealed alleles that have pleiotropic effects on fitness at different ages in humans; (3) consider the effects of DNAm on pleiotropic alleles, which are associated with age related disease; (4) discuss how age related DNAm changes resonate with the mutation accumulation, disposable soma and programmed theories of ageing; (5) discuss how DNAm changes associated with caloric restriction intersect with the evolution of ageing; and (6) conclude by discussing how evolutionary theory can be used to inform investigations which quantify age-related DNAm changes which are linked to age onset pathology.
Collapse
Affiliation(s)
- Mark Tomás Mc Auley
- Faculty of Science and Engineering, University of Chester, Exton Park, Chester CH1 4BJ, UK.
| |
Collapse
|
15
|
An integrated view of innate immune mechanisms in C. elegans. Biochem Soc Trans 2021; 49:2307-2317. [PMID: 34623403 DOI: 10.1042/bst20210399] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
The simple notion 'infection causes an immune response' is being progressively refined as it becomes clear that immune mechanisms cannot be understood in isolation, but need to be considered in a more global context with other cellular and physiological processes. In part, this reflects the deployment by pathogens of virulence factors that target diverse cellular processes, such as translation or mitochondrial respiration, often with great molecular specificity. It also reflects molecular cross-talk between a broad range of host signalling pathways. Studies with the model animal C. elegans have uncovered a range of examples wherein innate immune responses are intimately connected with different homeostatic mechanisms, and can influence reproduction, ageing and neurodegeneration, as well as various other aspects of its biology. Here we provide a short overview of a number of such connections, highlighting recent discoveries that further the construction of a fully integrated view of innate immunity.
Collapse
|
16
|
Grosfeld EV, Bidiuk VA, Mitkevich OV, Ghazy ESMO, Kushnirov VV, Alexandrov AI. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors. J Fungi (Basel) 2021; 7:886. [PMID: 34829175 PMCID: PMC8626022 DOI: 10.3390/jof7110886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell death in response to distinct stimuli can manifest different morphological traits. It also depends on various cell death signaling pathways, extensively characterized in higher eukaryotes but less so in microorganisms. The study of cell death in yeast, and specifically Saccharomyces cerevisiae, can potentially be productive for understanding cell death, since numerous killing stimuli have been characterized for this organism. Here, we systematized the literature on external treatments that kill yeast, and which contains at least minimal data on cell death mechanisms. Data from 707 papers from the 7000 obtained using keyword searches were used to create a reference table for filtering types of cell death according to commonly assayed parameters. This table provides a resource for orientation within the literature; however, it also highlights that the common view of similarity between non-necrotic death in yeast and apoptosis in mammals has not provided sufficient progress to create a clear classification of cell death types. Differences in experimental setups also prevent direct comparison between different stimuli. Thus, side-by-side comparisons of various cell death-inducing stimuli under comparable conditions using existing and novel markers that can differentiate between types of cell death seem like a promising direction for future studies.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, 141700 Moscow, Russia;
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Victoria A. Bidiuk
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Olga V. Mitkevich
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vitaliy V. Kushnirov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| |
Collapse
|
17
|
Travers LM, Carlsson H, Lind MI, Maklakov AA. Beneficial cumulative effects of old parental age on offspring fitness. Proc Biol Sci 2021; 288:20211843. [PMID: 34641727 PMCID: PMC8511764 DOI: 10.1098/rspb.2021.1843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Old parental age is commonly associated with negative effects on offspring life-history traits. Such parental senescence effects are predicted to have a cumulative detrimental effect over successive generations. However, old parents may benefit from producing higher quality offspring when these compete for seasonal resources. Thus, old parents may choose to increase investment in their offspring, thereby producing fewer but larger and more competitive progeny. We show that Caenorhabditis elegans hermaphrodites increase parental investment with advancing age, resulting in fitter offspring who reach their reproductive peak earlier. Remarkably, these effects increased over six successive generations of breeding from old parents and were subsequently reversed following a single generation of breeding from a young parent. Our findings support the hypothesis that offspring of old parents receive more resources and convert them into increasingly faster life histories. These results contradict the theory that old parents transfer a cumulative detrimental 'ageing factor' to their offspring.
Collapse
Affiliation(s)
- Laura M Travers
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Hanne Carlsson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Martin I Lind
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
18
|
Kern CC, Townsend S, Salzmann A, Rendell NB, Taylor GW, Comisel RM, Foukas LC, Bähler J, Gems D. C. elegans feed yolk to their young in a form of primitive lactation. Nat Commun 2021; 12:5801. [PMID: 34611154 PMCID: PMC8492707 DOI: 10.1038/s41467-021-25821-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
The nematode Caenorhabditis elegans exhibits rapid senescence that is promoted by the insulin/IGF-1 signalling (IIS) pathway via regulated processes that are poorly understood. IIS also promotes production of yolk for egg provisioning, which in post-reproductive animals continues in an apparently futile fashion, supported by destructive repurposing of intestinal biomass that contributes to senescence. Here we show that post-reproductive mothers vent yolk which can be consumed by larvae and promotes their growth. This implies that later yolk production is not futile; instead vented yolk functions similarly to milk. Moreover, yolk venting is promoted by IIS. These findings suggest that a self-destructive, lactation-like process effects resource transfer from postreproductive C. elegans mothers to offspring, in a fashion reminiscent of semelparous organisms that reproduce in a single, suicidal burst. That this process is promoted by IIS provides insights into how and why IIS shortens lifespan in C. elegans.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - StJohn Townsend
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Antoine Salzmann
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Nigel B Rendell
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, NW3 2PF, UK
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, NW3 2PF, UK
| | - Ruxandra M Comisel
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Lazaros C Foukas
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
19
|
Gems D, Kern CC, Nour J, Ezcurra M. Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Front Cell Dev Biol 2021; 9:688788. [PMID: 34513830 PMCID: PMC8430333 DOI: 10.3389/fcell.2021.688788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
In some species of salmon, reproductive maturity triggers the development of massive pathology resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive death, which occurs in many semelparous organisms (with a single bout of reproduction), can be prevented by blocking reproductive maturation, and this can increase lifespan dramatically. Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive death occurs in C. elegans and discuss what this means for its use as a model organism to study aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous organisms. We argue that mechanisms of senescence operative in reproductive death exist in a less catastrophic form in iteroparous organisms, particularly those that involve costly resource reallocation, and exhibit endocrine-regulated plasticity. Thus, mechanisms of senescence in semelparous organisms (including plants) and iteroparous ones form an etiological continuum. Therefore understanding mechanisms of reproductive death in C. elegans can teach us about some mechanisms of senescence that are operative in iteroparous organisms.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Carina C. Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Joseph Nour
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
20
|
Protein pile-up plays havoc in ageing nematode worms. Nature 2021; 596:191-192. [PMID: 34321642 DOI: 10.1038/d41586-021-02009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Sokolov AS, Nekrasov PV, Shaposhnikov MV, Moskalev AA. Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Res Rev 2021; 67:101262. [PMID: 33516916 DOI: 10.1016/j.arr.2021.101262] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is one of the biologically active gases (gasotransmitters), which plays an important role in various physiological processes and aging. Its production in the course of methionine and cysteine catabolism and its degradation are finely balanced, and impairment of H2S homeostasis is associated with various pathologies. Despite the strong geroprotective action of exogenous H2S in C. elegans, there are controversial effects of hydrogen sulfide and its donors on longevity in other models, as well as on stress resistance, age-related pathologies and aging processes, including regulation of senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Here we discuss that the translation potential of H2S as a geroprotective compound is influenced by a multiplicity of its molecular targets, pleiotropic biological effects, and the overlapping ranges of toxic and beneficial doses. We also consider the challenges of the targeted delivery of H2S at the required dose. Along with this, the complexity of determining the natural levels of H2S in animal and human organs and their ambiguous correlations with longevity are reviewed.
Collapse
|
22
|
Galimov ER, Gems D. Death happy: adaptive ageing and its evolution by kin selection in organisms with colonial ecology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190730. [PMID: 33678027 DOI: 10.1098/rstb.2019.0730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Standard evolutionary theory, supported by mathematical modelling of outbred, dispersed populations predicts that ageing is not an adaptation. We recently argued that in clonal, viscous populations, programmed organismal death could promote fitness through social benefits and has, in some organisms (e.g. Caenorhabditis elegans), evolved to shorten lifespan. Here, we review previous adaptive death theory, including consumer sacrifice, biomass sacrifice and defensive sacrifice types of altruistic adaptive death. In addition, we discuss possible adaptive death in certain semelparous fish, coevolution of reproductive and adaptive death, and adaptive reproductive senescence in C. elegans. We also describe findings from recent tests for the existence of adaptive death in C. elegans using computer modelling. Such models have provided new insights into how trade-offs between fitness at the individual and colony levels mean that senescent changes can be selected traits. Exploring further the relationship between adaptive death and social interactions, we consider examples where adaptive death results more from action of kin than from self-destructive mechanisms and, to describe this, introduce the term adaptive killing of kin. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Evgeniy R Galimov
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
23
|
Health and longevity studies in C. elegans: the "healthy worm database" reveals strengths, weaknesses and gaps of test compound-based studies. Biogerontology 2021; 22:215-236. [PMID: 33683565 PMCID: PMC7973913 DOI: 10.1007/s10522-021-09913-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Several biogerontology databases exist that focus on genetic or gene expression data linked to health as well as survival, subsequent to compound treatments or genetic manipulations in animal models. However, none of these has yet collected experimental results of compound-related health changes. Since quality of life is often regarded as more valuable than length of life, we aim to fill this gap with the “Healthy Worm Database” (http://healthy-worm-database.eu). Literature describing health-related compound studies in the aging model Caenorhabditis elegans was screened, and data for 440 compounds collected. The database considers 189 publications describing 89 different phenotypes measured in 2995 different conditions. Besides enabling a targeted search for promising compounds for further investigations, this database also offers insights into the research field of studies on healthy aging based on a frequently used model organism. Some weaknesses of C. elegans-based aging studies, like underrepresented phenotypes, especially concerning cognitive functions, as well as the convenience-based use of young worms as the starting point for compound treatment or phenotype measurement are discussed. In conclusion, the database provides an anchor for the search for compounds affecting health, with a link to public databases, and it further highlights some potential shortcomings in current aging research.
Collapse
|
24
|
Cavinato M, Madreiter-Sokolowski CT, Büttner S, Schosserer M, Zwerschke W, Wedel S, Grillari J, Graier WF, Jansen-Dürr P. Targeting cellular senescence based on interorganelle communication, multilevel proteostasis, and metabolic control. FEBS J 2020; 288:3834-3854. [PMID: 33200494 PMCID: PMC7611050 DOI: 10.1111/febs.15631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Cellular senescence, a stable cell division arrest caused by severe damage and stress, is a hallmark of aging in vertebrates including humans. With progressing age, senescent cells accumulate in a variety of mammalian tissues, where they contribute to tissue aging, identifying cellular senescence as a major target to delay or prevent aging. There is an increasing demand for the discovery of new classes of small molecules that would either avoid or postpone cellular senescence by selectively eliminating senescent cells from the body (i.e., ‘senolytics’) or inactivating/switching damage‐inducing properties of senescent cells (i.e., ‘senostatics/senomorphics’), such as the senescence‐associated secretory phenotype. Whereas compounds with senolytic or senostatic activity have already been described, their efficacy and specificity has not been fully established for clinical use yet. Here, we review mechanisms of senescence that are related to mitochondria and their interorganelle communication, and the involvement of proteostasis networks and metabolic control in the senescent phenotype. These cellular functions are associated with cellular senescence in in vitro and in vivo models but have not been fully exploited for the search of new compounds to counteract senescence yet. Therefore, we explore possibilities to target these mechanisms as new opportunities to selectively eliminate and/or disable senescent cells with the aim of tissue rejuvenation. We assume that this research will provide new compounds from the chemical space which act as mimetics of caloric restriction, modulators of calcium signaling and mitochondrial physiology, or as proteostasis optimizers, bearing the potential to counteract cellular senescence, thereby allowing healthy aging.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Corina T Madreiter-Sokolowski
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Austria
| | - Werner Zwerschke
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Sophia Wedel
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria.,BioTechMed Graz, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| |
Collapse
|
25
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Galimov ER, Gems D. Shorter life and reduced fecundity can increase colony fitness in virtual Caenorhabditis elegans. Aging Cell 2020; 19:e13141. [PMID: 32301222 PMCID: PMC7253062 DOI: 10.1111/acel.13141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 01/23/2023] Open
Abstract
In the nematode Caenorhabditis elegans, loss of function of many genes leads to increases in lifespan, sometimes of a very large magnitude. Could this reflect the occurrence of programmed death that, like apoptosis of cells, promotes fitness? The notion that programmed death evolves as a mechanism to remove worn out, old individuals in order to increase food availability for kin is not supported by classic evolutionary theory for most species. However, it may apply in organisms with colonies of closely related individuals such as C. elegans in which largely clonal populations subsist on spatially limited food patches. Here, we ask whether food competition between nonreproductive adults and their clonal progeny could favor programmed death by using an in silico model of C. elegans. Colony fitness was estimated as yield of dauer larva propagules from a limited food patch. Simulations showed that not only shorter lifespan but also shorter reproductive span and reduced adult feeding rate can increase colony fitness, potentially by reducing futile food consumption. Early adult death was particularly beneficial when adult food consumption rate was high. These results imply that programmed, adaptive death could promote colony fitness in C. elegans through a consumer sacrifice mechanism. Thus, C. elegans lifespan may be limited not by aging in the usual sense but rather by apoptosis-like programmed death.
Collapse
Affiliation(s)
- Evgeniy R. Galimov
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
27
|
Goncalves J, Wan Y, Guo X, Rha K, LeBoeuf B, Zhang L, Estler K, Garcia LR. Succinate Dehydrogenase-Regulated Phosphoenolpyruvate Carboxykinase Sustains Copulation Fitness in Aging C. elegans Males. iScience 2020; 23:100990. [PMID: 32240955 PMCID: PMC7115159 DOI: 10.1016/j.isci.2020.100990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/18/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Dysregulated metabolism accelerates reduced decision-making and locomotor ability during aging. To identify mechanisms for delaying behavioral decline, we investigated how C. elegans males sustain their copulatory behavior during early to mid-adulthood. We found that in mid-aged males, gluco-/glyceroneogenesis, promoted by phosphoenolpyruvate carboxykinase (PEPCK), sustains competitive reproductive behavior. C. elegans' PEPCK paralogs, pck-1 and pck-2, increase in expression during the first 2 days of adulthood. Insufficient PEPCK expression correlates with reduced egl-2-encoded ether-a-go-go K+ channel expression and premature hyper-excitability of copulatory circuits. For copulation, pck-1 is required in neurons, whereas pck-2 is required in the epidermis. However, PCK-2 is more essential, because we found that epidermal PCK-2 likely supplements the copulation circuitry with fuel. We identified the subunit A of succinate dehydrogenase SDHA-1 as a potent modulator of PEPCK expression. We postulate that during mid-adulthood, reduction in mitochondrial physiology signals the upregulation of cytosolic PEPCK to sustain the male's energy demands. C. elegans upregulates pck-1- and pck-2-encoded PEPCK during early adulthood Loss of PEPCK causes premature male copulatory behavior decline Epidermal PEPCK is required to sustain the copulatory fitness Subunit A of succinate dehydrogenase antagonizes PEPCK expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoyan Guo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Kyoungsun Rha
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Liusuo Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Kerolayne Estler
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
28
|
Skulachev VP. Phenoptosis as a Phenomenon Widespread among Many Groups of Living Organisms Including Mammals (Commentary to the Paper by E. R. Galimov, J. N. Lohr, and D. Gems (2019) Biochemistry (Moscow), 84, 1433-1437). BIOCHEMISTRY (MOSCOW) 2020; 84:1438-1441. [PMID: 31870247 DOI: 10.1134/s0006297919120022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Author congratulates David Gems and co-authors on a brilliant discovery - direct proof of acute phenoptosis in the nematode - but argues that the authors underappreciate the significance of their work by suggesting that phenoptosis is a rare natural phenomenon not typically observed in mammals.
Collapse
Affiliation(s)
- V P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
29
|
Skulachev VP, Shilovsky GA, Putyatina TS, Popov NA, Markov AV, Skulachev MV, Sadovnichii VA. Perspectives of Homo sapiens lifespan extension: focus on external or internal resources? Aging (Albany NY) 2020; 12:5566-5584. [PMID: 32229707 PMCID: PMC7138562 DOI: 10.18632/aging.102981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
Homo sapiens and naked mole rats (Heterocephalus glaber) are vivid examples of social mammals that differ from their relatives in particular by an increased lifespan and a large number of neotenic features. An important fact for biogerontology is that the mortality rate of H. glaber (a maximal lifespan of more than 32 years, which is very large for such a small rodent) negligibly grows with age. The same is true for modern people in developed countries below the age of 60. It is important that the juvenilization of traits that separate humans from chimpanzees evolved over thousands of generations and millions of years. Rapid advances in technology resulted in a sharp increase in the life expectancy of human beings during the past 100 years. Currently, the human life expectancy has exceeded 80 years in developed countries. It cannot be excluded that the potential for increasing life expectancy by an improvement in living conditions will be exhausted after a certain period of time. New types of geroprotectors should be developed that protect not only from chronic phenoptosis gradual poisoning of the body with reactive oxygen species (ROS) but also from acute phenoptosis, where strong increase in the level of ROS immediately kills an already aged individual. Geroprotectors might be another anti-aging strategy along with neoteny (a natural physiological phenomenon) and technical progress.
Collapse
Affiliation(s)
- Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nikita A Popov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia
| | - Maxim V Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor A Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
30
|
Vélez JL, Morocho P, Montalvo M, Aguayo S, Vélez PA, Velarde G, Jara F, Paz y Miño C. The micro RNAs in human pathology: clinical utility and translational approach. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.01.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In human clinics, pathologies as diverse as cancer, sepsis, autoimmune diseases, among others; of different etiology and a different pathophysiological behavior, converge in a failure of gene repression that allows the phenotypic expression of the disease; The possibility of having a biological marker that shows these events to the clinician is desirable since it would allow early diagnostic and therapeutic strategies. Micro RNAs are small and non-coding RNAs that fulfill that “genetic silencing” role, however, the step from basic research to clinical applicability, that is, their translational utility is still little diffused in specialties other than oncology. The objective of this review is to explain in a more precise way.
Collapse
|
31
|
Galimov ER, Lohr JN, Gems D. When and How Can Death Be an Adaptation? BIOCHEMISTRY (MOSCOW) 2020; 84:1433-1437. [PMID: 31870246 DOI: 10.1134/s0006297919120010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The concept of phenoptosis (or programmed organismal death) is problematic with respect to most species (including humans) since it implies that dying of old age is an adaptation, which contradicts the established evolutionary theory. But can dying ever be a strategy to promote fitness? Given recent developments in our understanding of the evolution of altruism, particularly kin and multilevel selection theories, it is timely to revisit the possible existence of adaptive death. Here, we discuss how programmed death could be an adaptive trait under certain conditions found in organisms capable of clonal colonial existence, such as the budding yeast Saccharomyces cerevisiae and, perhaps, the nematode Caenorhabditis elegans. The concept of phenoptosis is only tenable if consistent with the evolutionary theory; this accepted, phenoptosis may only occur under special conditions that do not apply to most animal groups (including mammals).
Collapse
Affiliation(s)
- E R Galimov
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - J N Lohr
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - D Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|