1
|
Kaur S, Khullar N, Navik U, Bali A, Bhatti GK, Bhatti JS. Multifaceted role of dynamin-related protein 1 in cardiovascular disease: From mitochondrial fission to therapeutic interventions. Mitochondrion 2024; 78:101904. [PMID: 38763184 DOI: 10.1016/j.mito.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Mitochondria are central to cellular energy production and metabolic regulation, particularly in cardiomyocytes. These organelles constantly undergo cycles of fusion and fission, orchestrated by key proteins like Dynamin-related Protein 1 (Drp-1). This review focuses on the intricate roles of Drp-1 in regulating mitochondrial dynamics, its implications in cardiovascular health, and particularly in myocardial infarction. Drp-1 is not merely a mediator of mitochondrial fission; it also plays pivotal roles in autophagy, mitophagy, apoptosis, and necrosis in cardiac cells. This multifaceted functionality is often modulated through various post-translational alterations, and Drp-1's interaction with intracellular calcium (Ca2 + ) adds another layer of complexity. We also explore the pathological consequences of Drp-1 dysregulation, including increased reactive oxygen species (ROS) production and endothelial dysfunction. Furthermore, this review delves into the potential therapeutic interventions targeting Drp-1 to modulate mitochondrial dynamics and improve cardiovascular outcomes. We highlight recent findings on the interaction between Drp-1 and sirtuin-3 and suggest that understanding this interaction may open new avenues for therapeutically modulating endothelial cells, fibroblasts, and cardiomyocytes. As the cardiovascular system increasingly becomes the focal point of aging and chronic disease research, understanding the nuances of Drp-1's functionality can lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India.
| |
Collapse
|
2
|
Sharma M, Tanwar AK, Purohit PK, Pal P, Kumar D, Vaidya S, Prajapati SK, Kumar A, Dhama N, Kumar S, Gupta SK. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer's disease pathogenesis. Neurosci Biobehav Rev 2024; 161:105685. [PMID: 38670299 DOI: 10.1016/j.neubiorev.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aβ) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aβ, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.
| | - Ankur Kumar Tanwar
- Department of Pharmacy, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | | | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Devendra Kumar
- Department of Pharmaceutical Chemistry, NMIMS School of Pharmacy and Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur Campus, Dhule, Maharashtra, India
| | - Sandeep Vaidya
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | | - Aadesh Kumar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Nidhi Dhama
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sokindra Kumar
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
3
|
Wahid JA, Mingliang X, Ayoub M, Husssain S, Li L, Shi L. A hybrid ResNet-ViT approach to bridge the global and local features for myocardial infarction detection. Sci Rep 2024; 14:4359. [PMID: 38388668 PMCID: PMC10883929 DOI: 10.1038/s41598-024-54846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Myocardial infarction (MI) remains a significant contributor to global mortality and morbidity, necessitating accurate and timely diagnosis. Current diagnostic methods encounter challenges in capturing intricate patterns, urging the need for advanced automated approaches to enhance MI detection. In this study, we strive to advance MI detection by proposing a hybrid approach that combines the strengths of ResNet and Vision Transformer (ViT) models, leveraging global and local features for improved accuracy. We introduce a slim-model ViT design with multibranch networks and channel attention mechanisms to enhance patch embedding extraction, addressing ViT's limitations. By training data through both ResNet and modified ViT models, we incorporate a dual-pathway feature extraction strategy. The fusion of global and local features addresses the challenge of robust feature vector creation. Our approach showcases enhanced learning capabilities through modified ViT architecture and ResNet architecture. The dual-pathway training enriches feature extraction, culminating in a comprehensive feature vector. Preliminary results demonstrate significant potential for accurate detection of MI. Our study introduces a hybrid ResNet-ViT model for advanced MI detection, highlighting the synergy between global and local feature extraction. This approach holds promise for elevating MI classification accuracy, with implications for improved patient care. Further validation and clinical applicability exploration are warranted.
Collapse
Affiliation(s)
- Junaid Abdul Wahid
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xu Mingliang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Muhammad Ayoub
- School of Computer Science and Engineering, Central South University, Changsha, 410017, Hunan, China.
| | - Shabir Husssain
- School of Architecture, Harbin Institute of Technology, Shenzhen, 518055, Guangdong, China
| | - Lifeng Li
- Department of Radiology, The Affiliated Changsha Central Hospital, Hengyang Medical school, University of South China, Changsha, 410017, China
| | - Lei Shi
- School of Cyberspace and Security, Zhengzhou University, Zhengzhou, 450001, Henan, China
| |
Collapse
|
4
|
Rebar RW, Keator CS. The history and future of in vitro fertilization in the United States: the complex interrelationships among basic science, human medicine, and politics. F&S SCIENCE 2023; 4:102-113. [PMID: 36907436 DOI: 10.1016/j.xfss.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Although much of the foundational basic scientific and clinical research was conducted in the United States, the first in vitro fertilization (IVF) birth occurred in the United Kingdom. Why? For centuries, all research surrounding the field of "reproduction" has elicited bipolar passionate responses by the American public, and the issue of "test tube babies" has been no different. The history of conception in the United States is defined by complex interrelationships among scientists, clinicians, and politically charged decisions by various branches of the US government. With a focus on research in the United States, this review summarizes the early scientific and clinical advances important to the development of IVF and then addresses the potential future developments in IVF. We also consider what future advances are possible in the United States given the current regulations, laws, and funding.
Collapse
Affiliation(s)
- Robert W Rebar
- Department of Obstetrics and Gynecology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan.
| | - Christopher S Keator
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| |
Collapse
|