1
|
Park KB, Kim MS, Yoon DK, Jeon YD. Clinical validation of a deep learning-based approach for preoperative decision-making in implant size for total knee arthroplasty. J Orthop Surg Res 2024; 19:637. [PMID: 39380122 PMCID: PMC11463000 DOI: 10.1186/s13018-024-05128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Orthopedic surgeons use manual measurements, acetate templating, and dedicated software to determine the appropriate implant size for total knee arthroplasty (TKA). This study aimed to use deep learning (DL) to assist in deciding the femoral and tibial implant sizes without manual manipulation and to evaluate the clinical validity of the DL decision by comparing it with conventional manual procedures. METHODS Two types of DL were used to detect the femoral and tibial regions using the You Only Look Once algorithm model and to determine the implant size from the detected regions using convolutional neural network. An experienced surgeon predicted the implant size for 234 patient cases using manual procedures, and the DL model also predicted the implant sizes for the same cases. RESULTS The exact accuracies of the surgeon's template were 61.54% and 68.38% for predicting femoral and tibial implant sizes, respectively. Meanwhile, the proposed DL model reported exact accuracies of 89.32% and 90.60% for femoral and tibial implant sizes, respectively. The accuracy ± 1 levels of the surgeon and proposed DL model were 97.44% and 97.86%, respectively, for the femoral implant size and 98.72% for both the surgeon and proposed DL model for the tibial implant size. CONCLUSION The observed differences and higher agreement levels achieved by the proposed DL model demonstrate its potential as a valuable tool in preoperative decision-making for TKA. By providing accurate predictions of implant size, the proposed DL model has the potential to optimize implant selection, leading to improved surgical outcomes.
Collapse
Affiliation(s)
- Ki-Bong Park
- Department of Orthopaedic Surgery, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, South Korea
| | - Moo-Sub Kim
- Industrial R&D Center, Kavilab Co., Ltd, Seoul, South Korea
| | - Do-Kun Yoon
- Industrial R&D Center, Kavilab Co., Ltd, Seoul, South Korea
- Department of Integrative Medicine, College of Medicine, Yonsei University, Seoul, South Korea
| | - Young Dae Jeon
- Department of Orthopaedic Surgery, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, South Korea.
| |
Collapse
|
2
|
Vahabi A, Er E, Biçer EK, Şahin F, Kavakli K, Aydoğdu S. Accuracy and clinical role of digital templating for total knee arthroplasty performed on haemophilic knees. Haemophilia 2024; 30:1043-1049. [PMID: 39014891 DOI: 10.1111/hae.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION In total knee arthroplasty (TKA), choosing the correct implant size is important. There is lack of data on accuracy of templating on haemophilic knees. Our aim was to test the accuracy of 2D digital templating for TKA on haemophilic arthropathy (HA) of knee. MATERIALS AND METHODS TKAs performed on HA between January 2011 and January 2022 were screened. Osteoarthritis (OA) group was created as control group by a one-to-one matching regarding type of implant used. Intra- and interobserver correlations were measured in HA, then correlation between templated and implanted sizes was investigated in four assessments (femur AP, femur lateral, tibia AP, tibia lateral), then compared with OA group. Fifty-eight knees in each group included. RESULTS Regarding intraobserver correlation in HA, there was excellent correlation for femur AP [.93 (.73-.98)], femur lateral [.98 (.91-.99)], and tibia AP (1.0) templating. Regarding interobserver correlation in HA, excellent correlation was observed for femur lateral [.93 (.74-.98)] and tibia AP templating [.90 (.65-.97)]. Regarding correlation of templated and applied sizes in HA; tibia AP, tibia lateral and femur lateral templating showed good correlation [.81 (.70-.89), .86 (.77-.91), .79 (.67-.87) while femur AP templating showed moderate correlation [.67 (.50-.79)]. Comparing HA and OA, there was no difference in correlation levels regarding femur AP, femur lateral, tibia AP and tibia lateral templating (p = .056, p = .781, p = .761, p = .083, respectively). CONCLUSION Although 2D digital templating shows comparable correlation in HA and OA, clinical applicability of templating on HA appears to be limited in its current state.
Collapse
Affiliation(s)
- Arman Vahabi
- Department of Orthopedics and Traumatology, Ege University School of Medicine, Izmir, Turkey
| | - Erdem Er
- Department of Orthopaedics and Traumatology, Kars Harakani State Hospital, Kars, Turkey
| | - Elcil Kaya Biçer
- Department of Orthopedics and Traumatology, Ege University School of Medicine, Izmir, Turkey
| | - Fahri Şahin
- Department of Internal Medicine Division of Hematology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Kaan Kavakli
- Department of Pediatrics Division of Hemato-Oncology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Semih Aydoğdu
- Department of Orthopedics and Traumatology, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
3
|
Buddhiraju A, Shimizu MR, Subih MA, Chen TLW, Seo HH, Kwon YM. Validation of Machine Learning Model Performance in Predicting Blood Transfusion After Primary and Revision Total Hip Arthroplasty. J Arthroplasty 2023; 38:1959-1966. [PMID: 37315632 DOI: 10.1016/j.arth.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The rates of blood transfusion following primary and revision total hip arthroplasty (THA) remain as high as 9% and 18%, respectively, contributing to patient morbidity and healthcare costs. Existing predictive tools are limited to specific populations, thereby diminishing their clinical applicability. This study aimed to externally validate our previous institutionally developed machine learning (ML) algorithms to predict the risk of postoperative blood transfusion following primary and revision THA using national inpatient data. METHODS Five ML algorithms were trained and validated using data from 101,266 primary THA and 8,594 revision THA patients from a large national database to predict postoperative transfusion risk after primary and revision THA. Models were assessed and compared based on discrimination, calibration, and decision curve analysis. RESULTS The most important predictors of transfusion following primary and revision THA were preoperative hematocrit (<39.4%) and operation time (>157 minutes), respectively. All ML models demonstrated excellent discrimination (area under the curve (AUC) >0.8) in primary and revision THA patients, with artificial neural network (AUC = 0.84, slope = 1.11, intercept = -0.04, Brier score = 0.04), and elastic-net-penalized logistic regression (AUC = 0.85, slope = 1.08, intercept = -0.01, and Brier score = 0.12) performing best, respectively. On decision curve analysis, all 5 models demonstrated a higher net benefit than the conventional strategy of intervening for all or no patients in both patient cohorts. CONCLUSIONS This study successfully validated our previous institutionally developed ML algorithms for the prediction of blood transfusion following primary and revision THA. Our findings highlight the potential generalizability of predictive ML tools developed using nationally representative data in THA patients.
Collapse
Affiliation(s)
- Anirudh Buddhiraju
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michelle Riyo Shimizu
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Murad A Subih
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tony Lin-Wei Chen
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Henry Hojoon Seo
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Young-Min Kwon
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Karnuta JM, Shaikh HJF, Murphy MP, Brown NM, Pearle AD, Nawabi DH, Chen AF, Ramkumar PN. Artificial Intelligence for Automated Implant Identification in Knee Arthroplasty: A Multicenter External Validation Study Exceeding 3.5 Million Plain Radiographs. J Arthroplasty 2023; 38:2004-2008. [PMID: 36940755 DOI: 10.1016/j.arth.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Surgical management of complications following knee arthroplasty demands accurate and timely identification of implant manufacturer and model. Automated image processing using deep machine learning has been previously developed and internally validated; however, external validation is essential prior to scaling clinical implementation for generalizability. METHODS We trained, validated, and externally tested a deep learning system to classify knee arthroplasty systems as one of the 9 models from 4 manufacturers derived from 4,724 original, retrospectively collected anteroposterior plain knee radiographs across 3 academic referral centers. From these radiographs, 3,568 were used for training, 412 for validation, and 744 for external testing. Augmentation was applied to the training set (n = 3,568,000) to increase model robustness. Performance was determined by the area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy. Implant identification processing speed was calculated. The training and testing sets were drawn from statistically different populations of implants (P < .001). RESULTS After 1,000 training epochs by the deep learning system, the system discriminated 9 implant models with a mean area under the receiver operating characteristic curve of 0.989, accuracy of 97.4%, sensitivity of 89.2%, and specificity of 99.0% in the external testing dataset of 744 anteroposterior radiographs. The software classified implants at a mean speed of 0.02 seconds per image. CONCLUSION An artificial intelligence-based software for identifying knee arthroplasty implants demonstrated excellent internal and external validation. Although continued surveillance is necessary with implant library expansion, this software represents a responsible and meaningful clinical application of artificial intelligence with immediate potential to globally scale and assist in preoperative planning prior to revision knee arthroplasty.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Prem N Ramkumar
- Hospital for Special Surgery, New York, New York; Long Beach Orthopaedic Institute, Long Beach, California
| |
Collapse
|
5
|
Karnuta JM, Murphy MP, Luu BC, Ryan MJ, Haeberle HS, Brown NM, Iorio R, Chen AF, Ramkumar PN. Artificial Intelligence for Automated Implant Identification in Total Hip Arthroplasty: A Multicenter External Validation Study Exceeding Two Million Plain Radiographs. J Arthroplasty 2023; 38:1998-2003.e1. [PMID: 35271974 DOI: 10.1016/j.arth.2022.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The surgical management of complications after total hip arthroplasty (THA) necessitates accurate identification of the femoral implant manufacturer and model. Automated image processing using deep learning has been previously developed and internally validated; however, external validation is necessary prior to responsible application of artificial intelligence (AI)-based technologies. METHODS We trained, validated, and externally tested a deep learning system to classify femoral-sided THA implants as one of the 8 models from 2 manufacturers derived from 2,954 original, deidentified, retrospectively collected anteroposterior plain radiographs across 3 academic referral centers and 13 surgeons. From these radiographs, 2,117 were used for training, 249 for validation, and 588 for external testing. Augmentation was applied to the training set (n = 2,117,000) to increase model robustness. Performance was evaluated by area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy. Implant identification processing speed was calculated. RESULTS The training and testing sets were drawn from statistically different populations of implants (P < .001). After 1,000 training epochs by the deep learning system, the system discriminated 8 implant models with a mean area under the receiver operating characteristic curve of 0.991, accuracy of 97.9%, sensitivity of 88.6%, and specificity of 98.9% in the external testing dataset of 588 anteroposterior radiographs. The software classified implants at a mean speed of 0.02 seconds per image. CONCLUSION An AI-based software demonstrated excellent internal and external validation. Although continued surveillance is necessary with implant library expansion, this software represents responsible and meaningful clinical application of AI with immediate potential to globally scale and assist in preoperative planning prior to revision THA.
Collapse
Affiliation(s)
- Jaret M Karnuta
- Orthopaedic Machine Learning Laboratory, Orthopaedic Intelligence LLC, Cleveland Heights, OH; Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
| | - Michael P Murphy
- Department of Orthopaedic Surgery & Rehabilitation, Loyola University Medical Center, Chicago, IL
| | - Bryan C Luu
- Orthopaedic Machine Learning Laboratory, Orthopaedic Intelligence LLC, Cleveland Heights, OH; Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, TX
| | - Michael J Ryan
- Orthopaedic Machine Learning Laboratory, Orthopaedic Intelligence LLC, Cleveland Heights, OH
| | - Heather S Haeberle
- Orthopaedic Machine Learning Laboratory, Orthopaedic Intelligence LLC, Cleveland Heights, OH; Sports Medicine Institute, Hospital for Special Surgery, New York, NY
| | - Nicholas M Brown
- Department of Orthopaedic Surgery & Rehabilitation, Loyola University Medical Center, Chicago, IL
| | - Richard Iorio
- Department of Orthopaedic Surgery, Brigham & Women's Hospital, Boston, MA
| | - Antonia F Chen
- Department of Orthopaedic Surgery, Brigham & Women's Hospital, Boston, MA
| | - Prem N Ramkumar
- Orthopaedic Machine Learning Laboratory, Orthopaedic Intelligence LLC, Cleveland Heights, OH; Sports Medicine Institute, Hospital for Special Surgery, New York, NY; Department of Orthopaedic Surgery, Brigham & Women's Hospital, Boston, MA
| |
Collapse
|
6
|
Polisetty TS, Jain S, Pang M, Karnuta JM, Vigdorchik JM, Nawabi DH, Wyles CC, Ramkumar PN. Concerns surrounding application of artificial intelligence in hip and knee arthroplasty. Bone Joint J 2022; 104-B:1292-1303. [DOI: 10.1302/0301-620x.104b12.bjj-2022-0922.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article: Bone Joint J 2022;104-B(12):1292–1303.
Collapse
Affiliation(s)
- Teja S. Polisetty
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Samagra Jain
- Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Michael Pang
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jaret M. Karnuta
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Danyal H. Nawabi
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Cody C. Wyles
- Department of Orthopaedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Prem N. Ramkumar
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
7
|
Alsoof D, McDonald CL, Kuris EO, Daniels AH. Machine Learning for the Orthopaedic Surgeon: Uses and Limitations. J Bone Joint Surg Am 2022; 104:1586-1594. [PMID: 35383655 DOI: 10.2106/jbjs.21.01305] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
➤ Machine learning is a subset of artificial intelligence in which computer algorithms are trained to make classifications and predictions based on patterns in data. The utilization of these techniques is rapidly expanding in the field of orthopaedic research. ➤ There are several domains in which machine learning has application to orthopaedics, including radiographic diagnosis, gait analysis, implant identification, and patient outcome prediction. ➤ Several limitations prevent the widespread use of machine learning in the daily clinical environment. However, future work can overcome these issues and enable machine learning tools to be a useful adjunct for orthopaedic surgeons in their clinical decision-making.
Collapse
Affiliation(s)
- Daniel Alsoof
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | | | | | |
Collapse
|
8
|
Ramkumar PN, Pang M, Polisetty T, Helm JM, Karnuta JM. Meaningless Applications and Misguided Methodologies in Artificial Intelligence-Related Orthopaedic Research Propagates Hype Over Hope. Arthroscopy 2022; 38:2761-2766. [PMID: 35550419 DOI: 10.1016/j.arthro.2022.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/02/2023]
Abstract
There exists great hope and hype in the literature surrounding applications of artificial intelligence (AI) to orthopaedic surgery. Between 2018 and 2021, a total of 178 AI-related articles were published in orthopaedics. However, for every 2 original research papers that apply AI to orthopaedics, a commentary or review is published (30.3%). AI-related research in orthopaedics frequently fails to provide use cases that offer the uninitiated an opportunity to appraise the importance of AI by studying meaningful questions, evaluating unknown hypotheses, or analyzing quality data. The hype perpetuates a feed-forward cycle that relegates AI to a meaningless buzzword by rewarding those with nascent understanding and rudimentary technical knowhow into committing several basic errors: (1) inappropriately conflating vernacular ("AI/machine learning"), (2) repackaging registry data, (3) prematurely releasing internally validated algorithms, (4) overstating the "black box phenomenon" by failing to provide weighted analysis, (5) claiming to evaluate AI rather than the data itself, and (6) withholding full model architecture code. Relevant AI-specific guidelines are forthcoming, but forced application of the original Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis guidelines designed for regression analyses is irrelevant and misleading. To safeguard meaningful use, AI-related research efforts in orthopaedics should be (1) directed toward administrative support over clinical evaluation and management, (2) require the use of the advanced model, and (3) answer a question that was previously unknown, unanswered, or unquantifiable.
Collapse
Affiliation(s)
- Prem N Ramkumar
- Orthopaedic Machine Learning Laboratory, Brigham & Women's Hospital, Boston, Massachusetts, U.S.A; Sports Medicine Service, Hospital for Special Surgery, New York, New York, U.S.A; Department of Orthopaedic Surgery, UTHealth McGovern Medical School, Houston, Texas, U.S.A.
| | - Michael Pang
- Orthopaedic Machine Learning Laboratory, Brigham & Women's Hospital, Boston, Massachusetts, U.S.A
| | - Teja Polisetty
- Orthopaedic Machine Learning Laboratory, Brigham & Women's Hospital, Boston, Massachusetts, U.S.A
| | - J Matthew Helm
- Orthopaedic Machine Learning Laboratory, Brigham & Women's Hospital, Boston, Massachusetts, U.S.A
| | - Jaret M Karnuta
- Orthopaedic Machine Learning Laboratory, Brigham & Women's Hospital, Boston, Massachusetts, U.S.A; Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
9
|
Kunze KN, Polce EM, Patel A, Courtney PM, Sporer SM, Levine BR. Machine learning algorithms predict within one size of the final implant ultimately used in total knee arthroplasty with good-to-excellent accuracy. Knee Surg Sports Traumatol Arthrosc 2022; 30:2565-2572. [PMID: 35024899 DOI: 10.1007/s00167-022-06866-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a novel machine learning algorithm capable of predicting TKA implant sizes using a large, multicenter database. METHODS A consecutive series of primary TKA patients from two independent large academic and three community medical centers between 2012 and 2020 was identified. The primary outcomes were final tibial and femoral implant sizes obtained from an automated inventory system. Five machine learning algorithms were trained using six routinely collected preoperative features (age, sex, height, weight, and body mass index). Algorithms were validated on an independent set of patients and evaluated through accuracy, mean absolute error (MAE), and root mean-squared error (RMSE). RESULTS A total of 11,777 patients were included. The support vector machine (SVM) algorithm had the best performance for femoral component size(MAE = 0.73, RMSE = 1.06) with accuracies of 42.2%, 88.3%, and 97.6% for predicting exact size, ± one size, and ± two sizes, respectively. The elastic-net penalized linear regression (ENPLR) algorithm had the best performance for tibial component size (MAE 0.70, RMSE = 1.03) with accuracies of 43.8%, 90.0%, and 97.7% for predicting exact size, ± one size, and ± two sizes, respectively. CONCLUSION Machine learning algorithms demonstrated good-to-excellent accuracy for predicting within one size of the final tibial and femoral components used for TKA. Patient height and sex were the most important factors for predicting femoral and tibial component size, respectively. External validation of these algorithms is imperative prior to use in clinical settings. LEVEL OF EVIDENCE Case-control, III.
Collapse
Affiliation(s)
- Kyle N Kunze
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 535 E. 70th Street, New York, NY, USA.
| | - Evan M Polce
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Arpan Patel
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - P Maxwell Courtney
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott M Sporer
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Brett R Levine
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
10
|
Validation and performance of a machine-learning derived prediction guide for total knee arthroplasty component sizing. Arch Orthop Trauma Surg 2021; 141:2235-2244. [PMID: 34255175 DOI: 10.1007/s00402-021-04041-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Anticipation of patient-specific component sizes prior to total knee arthroplasty (TKA) is essential to avoid excessive cost associated with additional surgical trays and morbidity associated with imperfect sizing. Current methods of size prediction, including templating, are inconsistent and time-consuming. Machine learning (ML) algorithms may allow for accurate TKA component size prediction with the ability to make predictions in real-time. METHODS Consecutive patients receiving primary TKA between 2012 and 2020 from two large tertiary academic and six community hospitals were identified. The primary outcomes were the final femoral and tibial component sizes extracted from automated inventory systems. Five ML algorithms were trained with routinely corrected demographic variables (age, height, weight, body mass index, and sex) using 80% of the study population and internally validated on an independent set of the remaining 20% of patients. Algorithm performance was evaluated through accuracy, mean absolute error (MAE), and root mean-squared error (RMSE). RESULTS A total of 17,283 patients that received one of 9 TKA implants from independent manufacturers were included. The SGB model accuracy for predicting ± 4-mm of the true femoral anteroposterior diameter was 83.6% and for ± 1 size of the true femoral component size was 95.0%. The SGB model accuracy for predicting ± 4-mm of the true tibial medial/lateral diameter was 83.0% and for ± 1 size of the true tibial component size was 97.8%. Patient sex was the most influential feature in terms of informing the SGB model predictions for both femoral and tibial component sizing. A TKA implant sizing application was subsequently created. CONCLUSION Novel machine learning algorithms demonstrated good to excellent performance for predicting TKA component size. Patient sex appears to contribute an important role in predicting TKA size. A web-based real-time prediction application was created capable of integrating patient specific data to predict TKA size, which will require external validation prior to clinical use.
Collapse
|