1
|
Cowie RM, Jennings LM. Third body damage and wear in arthroplasty bearing materials: A review of laboratory methods. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100028. [PMID: 36824573 PMCID: PMC9934499 DOI: 10.1016/j.bbiosy.2021.100028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022] Open
Abstract
Third body wear of arthroplasty bearing materials can occur when hard particles such as bone, bone cement or metal particles become trapped between the articulating surfaces. This can accelerate overall implant wear, potentially leading to early failure. With the development of novel bearing materials and coatings, there is a need to develop and standardise test methods which reflect third body damage seen on retrieved implants. Many different protocols and approaches have been developed to replicate third body wear in the laboratory but there is currently no consensus as to the optimal method for simulating this wear mode, hence the need to better understand existing methods. The aim of this study was to review published methods for experimental simulation of third body wear of arthroplasty bearing materials, to discuss the advantages and limitations of different approaches, the variables to be considered when designing a method and to highlight gaps in the current literature. The methods were divided into those which introduced abrasive particles into the articulating surfaces of the joint and those whereby third body damage is created directly to the articulating surfaces. However, it was found that there are a number of parameters, for example the influence of particle size on wear, which are not yet fully understood. The study concluded that the chosen method or combination of methods used should primarily be informed by the research question to be answered and risk analysis of the device.
Collapse
Affiliation(s)
- Raelene M Cowie
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Louise M Jennings
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Kurcz B, Lyons J, Sayeed Z, Anoushiravani AA, Iorio R. Osteolysis as it Pertains to Total Hip Arthroplasty. Orthop Clin North Am 2018; 49:419-435. [PMID: 30224004 DOI: 10.1016/j.ocl.2018.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Osteolysis is a long-term complication of total hip arthroplasty (THA). As the projected number of THAs performed annually increases, osteolysis will likely continue to occur. However, because of advancements in prosthesis design, metallurgy, and enhanced bearing surfaces, fewer revision THAs will be linked to osteolysis and aseptic loosening. Despite these improvements, no preventative therapies are currently available for the management of osteolysis other than removing and replacing the source of bearing wear.
Collapse
Affiliation(s)
- Brian Kurcz
- Division of Orthopaedic Surgery, Southern Illinois University, 701 North 1st Street, Springfield, IL 62781, USA
| | - Joseph Lyons
- Department of Surgery, Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Zain Sayeed
- Department of Orthopaedic Surgery, Detroit Medical Center, 4201 Saint Antoine, Detroit, MI 48201, USA
| | - Afshin A Anoushiravani
- Division of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland, Albany, NY, USA
| | - Richard Iorio
- Division of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland, Albany, NY, USA.
| |
Collapse
|
3
|
Lee JM. The Current Concepts of Total Hip Arthroplasty. Hip Pelvis 2016; 28:191-200. [PMID: 28097108 PMCID: PMC5240313 DOI: 10.5371/hp.2016.28.4.191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Joong-Myung Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
4
|
Surface and Subsurface Analyses of Metal-on-Polyethylene Total Hip Replacement Retrievals. Ann Biomed Eng 2015; 44:1685-97. [DOI: 10.1007/s10439-015-1462-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
5
|
Dion NT, Bragdon C, Muratoglu O, Freiberg AA. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty. Orthop Clin North Am 2015; 46:321-7, ix. [PMID: 26043046 DOI: 10.1016/j.ocl.2015.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up.
Collapse
Affiliation(s)
- Neil T Dion
- Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, Suite 3700, Boston, MA 02114, USA.
| | - Charles Bragdon
- Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, Suite 3700, Boston, MA 02114, USA
| | - Orhun Muratoglu
- Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, Suite 3700, Boston, MA 02114, USA
| | - Andrew A Freiberg
- Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, Suite 3700, Boston, MA 02114, USA
| |
Collapse
|
6
|
Zietz C, Fabry C, Reinders J, Dammer R, Kretzer JP, Bader R, Sonntag R. Wear testing of total hip replacements under severe conditions. Expert Rev Med Devices 2015; 12:393-410. [PMID: 26048088 DOI: 10.1586/17434440.2015.1050378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Controlled wear testing of total hip replacements in hip joint simulators is a well-established and powerful method, giving an extensive prediction of the long-term clinical performance. To understand the wear behavior of a bearing and its limits under in vivo conditions, testing scenarios should be designed as physiologically as possible. Currently, the ISO standard protocol 14242 is the most common preclinical testing procedure for total hip replacements, based on a simplified gait cycle for normal walking conditions. However, in recent years, wear patterns have increasingly been observed on retrievals that cannot be replicated by the current standard. The purpose of this study is to review the severe testing conditions that enable the generation of clinically relevant wear rates and phenomena. These conditions include changes in loading and activity, third-body wear, surface topography, edge wear and the role of aging of the bearing materials.
Collapse
Affiliation(s)
- Carmen Zietz
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medicine Rostock, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Nine MJ, Choudhury D, Hee AC, Mootanah R, Osman NAA. Wear Debris Characterization and Corresponding Biological Response: Artificial Hip and Knee Joints. MATERIALS (BASEL, SWITZERLAND) 2014; 7:980-1016. [PMID: 28788496 PMCID: PMC5453097 DOI: 10.3390/ma7020980] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022]
Abstract
Wear debris, of deferent sizes, shapes and quantities, generated in artificial hip and knees is largely confined to the bone and joint interface. This debris interacts with periprosthetic tissue and may cause aseptic loosening. The purpose of this review is to summarize and collate findings of the recent demonstrations on debris characterization and their biological response that influences the occurrence in implant migration. A systematic review of peer-reviewed literature is performed, based on inclusion and exclusion criteria addressing mainly debris isolation, characterization, and biologic responses. Results show that debris characterization largely depends on their appropriate and accurate isolation protocol. The particles are found to be non-uniform in size and non-homogeneously distributed into the periprosthetic tissues. In addition, the sizes, shapes, and volumes of the particles are influenced by the types of joints, bearing geometry, material combination, and lubricant. Phagocytosis of wear debris is size dependent; high doses of submicron-sized particles induce significant level of secretion of bone resorbing factors. However, articles on wear debris from engineered surfaces (patterned and coated) are lacking. The findings suggest considering debris morphology as an important parameter to evaluate joint simulator and newly developed implant materials.
Collapse
Affiliation(s)
- Md J Nine
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Dipankar Choudhury
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno 61669, Czech Republic.
| | - Ay Ching Hee
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Rajshree Mootanah
- Medical Engineering Research Group, Department of Engineering and the Built Environment, Faculty of Science and Technology, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK.
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
8
|
Abstract
We reviewed the literature on the currently available choices of bearing surface in total hip replacement (THR). We present a detailed description of the properties of articulating surfaces review the understanding of the advantages and disadvantages of existing bearing couples. Recent technological developments in the field of polyethylene and ceramics have altered the risk of fracture and the rate of wear, although the use of metal-on-metal bearings has largely fallen out of favour, owing to concerns about reactions to metal debris. As expected, all bearing surface combinations have advantages and disadvantages. A patient-based approach is recommended, balancing the risks of different options against an individual’s functional demands. Cite this article: Bone Joint J 2014;96-B:147–56.
Collapse
Affiliation(s)
- A. Rajpura
- Wrightington Hospital, The Centre
for Hip Surgery, Appley Bridge, Wigan
WN6 9EP, UK
| | - D. Kendoff
- Helios ENDO Klinik, Holstenstr. 2, 22767
Hamburg, Germany
| | - T. N. Board
- Wrightington Hospital, The Centre
for Hip Surgery, Appley Bridge, Wigan
WN6 9EP, UK
| |
Collapse
|