1
|
Daradka MH, Malkawi MA, Ismail ZB, Hammouri HM, Abu-Abeeleh MA, Rihani SA. A novel surgical technique for cranial cruciate ligament repair in dogs using autologous lateral digital extensor muscle tendon graft combined with platelet-rich plasma: A preliminary experimental study. Vet World 2025; 18:210-219. [PMID: 40041521 PMCID: PMC11873380 DOI: 10.14202/vetworld.2025.210-219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/23/2024] [Indexed: 03/06/2025] Open
Abstract
Background and Aim Cranial cruciate ligament (CrCL) injuries are a prevalent orthopedic issue in dogs, typically managed through surgical interventions such as tibial plateau leveling osteotomy and tibial tuberosity advancement. However, these techniques have limitations, including high costs and extended recovery periods. This study introduces an innovative CrCL repair method employing an autologous lateral digital extensor muscle tendon graft and evaluates the effects of platelet-rich plasma (PRP) on tissue healing. Materials and Methods Twenty-four healthy, male, local-breed dogs were divided into two groups. Group A underwent the surgical procedure without PRP, while Group B received intra-articular PRP during surgery. Outcomes were evaluated through clinical assessments of lameness, post-operative complications, and histological analysis over 10, 20, 30, and 40 days. Results The PRP-treated group demonstrated statistically significant improvements in post-operative complication scores (p = 0.0025) and histological outcomes (p = 0.0002). However, graft maturation was unaffected by PRP treatment but improved over time (p = 0.0013). PRP-treated dogs exhibited faster recovery and enhanced tissue regeneration, with reduced inflammation and improved graft-bone attachment. Conclusion This novel surgical approach demonstrates significant potential for improving outcomes in CrCL repair by combining autologous tendon grafting with PRP. The technique offers reduced complications and enhanced healing, providing a promising alternative to traditional methods. Further studies are recommended to validate its efficacy in clinical settings.
Collapse
Affiliation(s)
- Mousa H. Daradka
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Mays A. Malkawi
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Zuhair Banni Ismail
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Hanan M. Hammouri
- Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology. P.O. Box 3030, Irbid, 22110, Jordan
| | - Mahmoud A. Abu-Abeeleh
- Deparment of General Surgery, Faculty of Medicine, The University of Jordan.P.O.Box 13857, Amman, 11942, Jordan
| | - Saba A. Rihani
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Trapana J, Weinerman J, Lee D, Sedani A, Constantinescu D, Best TM, Hornicek FJ, Hare JM. Cell-based therapy in the treatment of musculoskeletal diseases. Stem Cells Transl Med 2024; 13:959-978. [PMID: 39226104 PMCID: PMC11465182 DOI: 10.1093/stcltm/szae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/21/2024] [Indexed: 09/04/2024] Open
Abstract
A limited number of tissues can spontaneously regenerate following injury, and even fewer can regenerate to a state comparable to mature, healthy adult tissue. Mesenchymal stem cells (MSCs) were first described in the 1960s-1970s by Friedenstein et al as a small population of bone marrow cells with osteogenic potential and abilities to differentiate into chondrocytes. In 1991, Arnold Caplan coined the term "mesenchymal cells" after identifying these cells as a theoretical precursor to bone, cartilage, tendon, ligament, marrow stroma, adipocyte, dermis, muscle, and connective tissues. MSCs are derived from periosteum, fat, and muscle. Another attractive property of MSCs is their immunoregulatory and regenerative properties, which result from crosstalk with their microenvironment and components of the innate immune system. Collectively, these properties make MSCs potentially attractive for various therapeutic purposes. MSCs offer potential in sports medicine, aiding in muscle recovery, meniscal tears, and tendon and ligament injuries. In joint disease, MSCs have the potential for chondrogenesis and reversing the effects of osteoarthritis. MSCs have also demonstrated potential application to the treatment of degenerative disc disease of the cervical, thoracic, and lumbar spine.
Collapse
Affiliation(s)
- Justin Trapana
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Jonathan Weinerman
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Danny Lee
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Anil Sedani
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - David Constantinescu
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Thomas M Best
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Francis J Hornicek
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| |
Collapse
|
3
|
Georgiev GP, Yordanov Y, Olewnik Ł, Tubbs RS, LaPrade RF, Ananiev J, Slavchev SA, Dimitrova IN, Gaydarski L, Landzhov B. Do the Differences in the Epiligament of the Proximal and Distal Parts of the Anterior Cruciate Ligament Explain Their Different Healing Capacities? Quantitative and Immunohistochemical Analysis of CD34 and α-SMA Expression in Relation to the Epiligament Theory. Biomedicines 2024; 12:156. [PMID: 38255261 PMCID: PMC10813037 DOI: 10.3390/biomedicines12010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to assess the epiligament theory by determining the normal epiligament morphology of the proximal and distal parts of the anterior cruciate ligament in humans and analyzing the differences between them and the midportion of the ligament in terms of cell numbers and expression of CD34 and α-SMA. Samples were obtained from the anterior cruciate ligaments of 12 fresh knee joints. Monoclonal antibodies against CD34 and α-SMA were used for immunohistochemistry. Photomicrographs were analyzed using ImageJ software, version 1.53f. The cell density was higher in the epiligament than in the ligament connective tissue. Cell counts were higher in the proximal and distal thirds than in the midsubstance of the epiligament. CD34 was expressed similarly in the proximal and distal thirds, although it seemed slightly more pronounced in the distal third. α-SMA expression was more robust in the proximal than the distal part. The results revealed that CD34 and α-SMA are expressed in the human epiligament. The differences between the numbers of cells in the proximal and distal parts of the epiligament and the expression of CD34 and α-SMA enhance epiligament theory. Future investigations into improving the quality of ligament healing should not overlook the epiligament theory.
Collapse
Affiliation(s)
- Georgi P. Georgiev
- Department of Orthopedics and Traumatology, University Hospital Queen Giovanna-ISUL, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Yordan Yordanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Łukasz Olewnik
- Department of Anatomical Dissection and Donation, Chair of Anatomy and Histology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Richard Shane Tubbs
- Department of Anatomical Sciences, St. George’s University, St. George 1473, Grenada;
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Julian Ananiev
- Department of General and Clinical Pathology, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Svetoslav A. Slavchev
- University Hospital of Orthopedics “Prof. B. Boychev”, Medical University of Sofia, 1614 Sofia, Bulgaria;
| | - Iva N. Dimitrova
- Department of Cardiology, University Hospital “St. Ekaterina”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (B.L.)
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (B.L.)
| |
Collapse
|
4
|
Lin YC, Chen YJ, Fan TY, Chou PH, Lu CC. Effect of bone marrow aspiration concentrate and platelet-rich plasma combination in anterior cruciate ligament reconstruction: a randomized, prospective, double-blinded study. J Orthop Surg Res 2024; 19:4. [PMID: 38169406 PMCID: PMC10763110 DOI: 10.1186/s13018-023-04512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The effect of bone marrow aspirate concentrate (BMAC) and platelet-rich plasma (PRP) combination in enhancing graft maturation and tendon-bone tunnel interfacial healing after anterior cruciate ligament (ACL) reconstruction remains unclear. We hypothesised that BMAC and PRP combination could lead to better clinical results and better graft maturation/interface healing than PRP alone or conventional ACL reconstruction without any other biologic augmentation. METHODS In this randomised double-blind prospective study, patients undergoing ACL reconstruction surgery were randomly assigned into three groups: (1) control group (without any biologic augmentation), (2) PRP treatment group, and (3) combined BMAC and PRP (BMAC + PRP) group. Moreover, they were evaluated using the clinical functional score, laxity examination, and magnetic resonance imaging (MRI) analysis. RESULTS No significant difference was observed in the improvement of functional scores among groups. However, laxity improvement at 24 weeks showed a significant difference with the BMAC + PRP group having the lowest laxity. MRI analysis showed no significant change in whole graft maturation among groups. In particular, the BMAC + PRP group showed delayed signal peak and higher graft signal at 24 weeks compared with the other two groups; however, the difference was not significant. With regard to tendon-bone interfacial healing, the BMAC + PRP group showed significantly wider tendon-bone interface in the femoral bone tunnel at 24 weeks compared with the other two groups. Moreover, the BMAC + PRP group showed significantly higher peri-tunnel edema signal in the femoral bone tunnel at 12 weeks compared with the other two groups. CONCLUSION PRP alone and BMAC and PRP combination showed limited enhancing effect in clinical function, graft maturation and tendon-bone interfacial healing compared with control (no additional treatment). When BMAC is used in ACL reconstruction, the possibility of greater inflammation in the early stage to graft maturation and bone tunnel healing should be considered.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Jen Chen
- Department of Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsang-Yu Fan
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Pei-Hsi Chou
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Orthopaedic Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Nelson PA, George T, Bowen E, Sheean AJ, Bedi A. An Update on Orthobiologics: Cautious Optimism. Am J Sports Med 2024; 52:242-257. [PMID: 38164688 DOI: 10.1177/03635465231192473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Orthobiologics are rapidly growing in use given their potential to augment healing for multiple musculoskeletal conditions. Orthobiologics consist of a variety of treatments including platelet-rich plasma and stem cells that provide conceptual appeal in providing local delivery of growth factors and inflammation modulation. The lack of standardization in nomenclature and applications within the literature has led to a paucity of high-quality evidence to support their frequent use. The purpose of this review was to describe the current landscape of orthobiologics and the most recent evidence regarding their use.
Collapse
Affiliation(s)
- Patrick A Nelson
- University of Chicago Department of Orthopedic Surgery, Chicago, Illinois, USA
| | - Tom George
- Northshore University Healthcare System, Evanston, Illinois, USA
| | - Edward Bowen
- Weill Cornell Medicine, New York City, New York, USA
| | - Andrew J Sheean
- San Antonio Military Medical Center, Department of Orthopedic Surgery, San Antonio, Texas, USA
| | - Asheesh Bedi
- Northshore University Healthcare System, Evanston, Illinois, USA
| |
Collapse
|
6
|
Robinson JD, Williamson T, Carson T, Whelan RJ, Abelow SP, Gilmer BB. Primary anterior cruciate ligament repair: Current concepts. J ISAKOS 2023; 8:456-466. [PMID: 37633336 DOI: 10.1016/j.jisako.2023.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
The renewed interest in ACL repair over the last two decades stems from advances in modern arthroscopic techniques and clinical studies that have provided evidence that the ACL can reliably heal, and patients can return to sport at a comparable rate to ACL reconstruction patients. The ability to maintain and utilize native ACL tissue, with proprioceptive capabilities, and the smaller drill tunnels needed to repair an ACL leads to an overall less invasive procedure and improved early rehabilitation. Additionally, repair avoids a variety of comorbidities associated with autograft harvest. This current concept review details modern techniques of ACL repair and their current studies, a review on the use of biologic enhancement in ACL repair, and other considerations to appropriately integrate ACL repair into the sports medicine orthopaedic surgeon's practice.
Collapse
Affiliation(s)
- John D Robinson
- Lake Tahoe Sports Medicine Fellowship, Barton Center for Orthopedics and Wellness, 2170B South Ave., South Lake Tahoe, CA 96150, USA. Correspondence:
| | - Tyler Williamson
- Lake Tahoe Sports Medicine Fellowship, Barton Center for Orthopedics and Wellness, 2170B South Ave., South Lake Tahoe, CA 96150, USA
| | - Taylor Carson
- University of Nevada, Reno School of Medicine, 1664 N Virginia St., Reno, NV 89557, USA
| | - Ryan J Whelan
- University of Nevada, Reno School of Medicine, 1664 N Virginia St., Reno, NV 89557, USA
| | - Stephen P Abelow
- Lake Tahoe Sports Medicine Fellowship, Barton Center for Orthopedics and Wellness, 2170B South Ave., South Lake Tahoe, CA 96150, USA
| | - Brian B Gilmer
- Mammoth Orthopedic Institute, Mammoth Hospital, 85 Sierra Park Rd. Mammoth Lakes, CA 93546, USA
| |
Collapse
|
7
|
Lu CC, Ho CJ, Chen SJ, Liu ZM, Chou PPH, Ho ML, Tien YC. Anterior cruciate ligament remnant preservation attenuates apoptosis and enhances the regeneration of hamstring tendon graft. Bone Joint Res 2023; 12:9-21. [PMID: 36617435 PMCID: PMC9872040 DOI: 10.1302/2046-3758.121.bjr-2021-0434.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIMS The effects of remnant preservation on the anterior cruciate ligament (ACL) and its relationship with the tendon graft remain unclear. We hypothesized that the co-culture of remnant cells and bone marrow stromal cells (BMSCs) decreases apoptosis and enhances the activity of the hamstring tendons and tenocytes, thus aiding ACL reconstruction. METHODS The ACL remnant, bone marrow, and hamstring tendons were surgically harvested from rabbits. The apoptosis rate, cell proliferation, and expression of types I and III collagen, transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and tenogenic genes (scleraxis (SCX), tenascin C (TNC), and tenomodulin (TNMD)) of the hamstring tendons were compared between the co-culture medium (ACL remnant cells (ACLRCs) and BMSCs co-culture) and control medium (BMSCs-only culture). We also evaluated the apoptosis, cell proliferation, migration, and gene expression of hamstring tenocytes with exposure to co-culture and control media. RESULTS Compared to BMSCs-only culture medium, the co-culture medium showed substantially decreased early and late apoptosis rates, attenuation of intrinsic and extrinsic apoptotic pathways, and enhanced proliferation of the hamstring tendons and tenocytes. In addition, the expression of collagen synthesis, TGF-β, VEGF, and tenogenic genes in the hamstring tendons and tenocytes significantly increased in the co-culture medium compared to that in the control medium. CONCLUSION In the presence of ACLRCs and BMSCs, the hamstring tendons and tenocytes significantly attenuated apoptosis and enhanced the expression of collagen synthesis, TGF-β, VEGF, and tenogenic genes. This in vitro study suggests that the ACLRCs mixed with BMSCs could aid regeneration of the hamstring tendon graft during ACL reconstruction.Cite this article: Bone Joint Res 2023;12(1):9-21.
Collapse
Affiliation(s)
- Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Jung Ho
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Jung Chen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Miao Liu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Paul P-H. Chou
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan,Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chun Tien
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Yin-Chun Tien. E-mail:
| |
Collapse
|
8
|
Georgiev GP, Tubbs RS, Olewnik Ł, Zielinska N, Telang M, Ananiev J, Dimitrova IN, Slavchev SA, Yordanov Y, LaPrade RF, Ruzik K, Landzhov B. A comparative study of the epiligament of the medial collateral and anterior cruciate ligaments in the human knee: Immunohistochemical analysis of CD 34, α-smooth muscle actin and vascular endothelial growth factor in relation to epiligament theory. Knee 2022; 39:78-90. [PMID: 36179587 DOI: 10.1016/j.knee.2022.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND This study evaluated and compared the expression of VEGF, CD34, and α-SMA in the anterior cruciate ligaments and medial collateral ligaments in healthy human knees in order to enrich the epiligament theory regarding ligament healing after injury. METHODS Samples from the mid-substance of the anterior cruciate ligament and the medial collateral ligament of 12 fresh knee joints were used. Monoclonal antibodies against CD34, α-SMA, and VEGF were used for immunohistochemical analysis. Photomicrographs were analyzed using the ImageJ software. RESULTS The epiligament of the anterior cruciate ligament showed slightly higher expression of CD34, α-SMA, and VEGF than the epiligament of the medial collateral ligament. Overall, among the tested markers, α-SMA expression was most pronounced in anterior cruciate ligament epiligament images and CD34 dominated in medial collateral ligament epiligament images. The intensity of DAB staining for CD34, α-SMA, and VEGF was higher in vascular areas of the epiligament than in epiligament connective tissue. CONCLUSIONS The results illustrate that CD34, α-SMA, and VEGF are expressed in the human epiligament. The differences between the epiligament of the investigated ligaments and the fact that CD34, α-SMA, and VEGF, which are known to have a definite role in ligament healing, are predominantly expressed in the main vascular part of the ligament-epiligament complex enlarge the existing epiligament theory. Future investigations regarding better ligament healing should not overlook the epiligament tissue.
Collapse
Affiliation(s)
- Georgi P Georgiev
- Department of Orthopedics and Traumatology, University Hospital Queen Giovanna - ISUL, Medical University of Sofia, Sofia, Bulgaria.
| | - Richard Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada; Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA, USA; Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA; Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Łukasz Olewnik
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - Nicol Zielinska
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - Manasi Telang
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Julian Ananiev
- Department of General and Clinical Pathology, Trakia University, Faculty of Medicine, Stara Zagora, Bulgaria
| | - Iva N Dimitrova
- Department of Cardiology, University Hospital 'St. Ekaterina', Medical University of Sofia, Bulgaria
| | - Svetoslav A Slavchev
- University Hospital of Orthopedics 'Prof. B. Boychev', Medical University of Sofia, Sofia, Bulgaria
| | - Yordan Yordanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | | | - Kacper Ruzik
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
9
|
Cardona-Ramirez S, Cook JL, Stoker AM, Ma R. Small laboratory animal models of anterior cruciate ligament reconstruction. J Orthop Res 2022; 40:1967-1980. [PMID: 35689508 DOI: 10.1002/jor.25395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/19/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) injuries are common knee ligament injuries. While generally successful, ACL reconstruction that uses a tendon graft to stabilize the knee is still associated with a notable percentage of failures and long-term morbidities. Preclinical research that uses small laboratory species (i.e., mice, rats, and rabbits) to model ACL reconstruction are important to evaluate factors that can impact graft incorporation or posttraumatic osteoarthritis after ACL reconstruction. Small animal ACL reconstruction models are also used for proof-of-concept studies for the development of emerging biological strategies aimed at improving ACL reconstruction healing. The objective of this review is to provide an overview on the use of common small animal laboratory species to model ACL reconstruction. The review includes a discussion on comparative knee anatomy, technical considerations including types of tendon grafts employed amongst the small laboratory species (i.e., mice, rats, and rabbits), and common laboratory evaluative methods used to study healing and outcomes after ACL reconstruction in small laboratory animals. The review will also highlight common research questions addressed with small animal models of ACL reconstruction.
Collapse
Affiliation(s)
- Sebastian Cardona-Ramirez
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - Richard Ma
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
10
|
Baird JPE, Anz A, Andrews J, Plummer HA, McGowan B, Gonzalez M, Jordan S. Cellular Augmentation of Anterior Cruciate Ligament Surgery Is Not Currently Evidence Based: A Systematic Review of Clinical Studies. Arthroscopy 2022; 38:2047-2061. [PMID: 34921956 DOI: 10.1016/j.arthro.2021.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To perform a systematic review of clinical outcome studies exploring cellular augmentation of anterior cruciate ligament (ACL) surgery, including stem cell techniques. METHODS A systematic search was performed according to the Preferred Reporting Items of Systematic Reviews and Meta-analyses (PRISMA) guidelines using the Cochrane, PubMed, MEDLINE, SPORTDiscus, and CINAHL (Cumulative Index to Nursing and Allied Health Literature) databases from 2000 to 2019. The inclusion criteria were clinical studies that reported on ACL surgery augmented with stem cells or cellular therapy and patient-reported outcome measures or graft healing. Risk of bias was assessed using the Cochrane risk-of-bias tool for randomized clinical trials, and nonrandomized trials were assessed using the Methodological Items for Non-randomized Studies (MINORS) tool. Methodologic assessment was performed according to the Modified Coleman Methodology Score. RESULTS Four studies were found: 2 randomized clinical trials, 1 cohort study with a matched historical control group, and 1 case series. The mean Modified Coleman Methodology Score in these studies was 59, and there was a low risk of bias in 1 study. One study reported outcomes of augmented ACL repair, and 3 studies reported the results of augmented ACL reconstruction. Cellular therapies varied and included concentrated bone marrow aspirate, collagenase/centrifuge processed adipose, and marrow stimulation combined with platelet-rich plasma, as well as cells cultured from allograft bone marrow aspirate. The concentrated bone marrow aspirate and adipose tissue study results did not support their use. The marrow stimulation technique combined with repair led to promising clinical results. The use of allograft cultured cells improved patient-reported outcomes and postoperative radiographic findings. CONCLUSIONS Augmentation of ACL surgery with cellular therapy is not supported by clinical evidence at this time. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Joanne P E Baird
- Bayside Orthopaedics Sports Medicine & Rehab, Fairhope, Alabama, U.S.A
| | - Adam Anz
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A..
| | - James Andrews
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A
| | - Hillary A Plummer
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A
| | - Britt McGowan
- John C. Pace Library, University of West Florida, Pensacola, Florida, U.S.A
| | - Melissa Gonzalez
- John C. Pace Library, University of West Florida, Pensacola, Florida, U.S.A
| | - Steve Jordan
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A
| |
Collapse
|
11
|
Cao Y, Zhang Z, Song G, Ni Q, Zheng T, Li Y. Biological enhancement methods may be a viable option for ACL arthroscopic primary repair - A systematic review. Orthop Traumatol Surg Res 2022; 108:103227. [PMID: 35123035 DOI: 10.1016/j.otsr.2022.103227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Bioactive factors combined with advanced anterior cruciate ligament (ACL) primary repair technology have been used to treat ACL repairs. The current review was conducted to identify whether biological enhancement could enable superior clinical outcome, including side-to-side difference, failure rate, reoperation rate and subjective scores. HYPOTHESIS The implementation of ACL primary repair with biological enhancement will provide better clinical outcomes in terms of side-to-side differences, failure rate, reoperation rate and subjective scores than ACL primary repair alone. MATERIALS AND METHODS A systematic literature review was performed following PRISMA guidelines by searching all studies reporting outcomes of arthroscopic primary repair with or without biological augmentation published until April 19, 2020, in Medline, PubMed, Embase and the Cochrane Library. Primary metrics were side-to-side differences, failure rate and reoperation rate, as well as measurements of patient-reported outcomes at the last follow-up. RESULTS A total of 20 studies were finally included in this work, of which 3 were Grade I (15%), 3 studies were Grade III (15%), and 14 studies were Grade IV (70%) in terms of the level of evidence. There were 729 patients with a mean age of 30 (range: 8-68) years, and the mean follow-up period of which was 38 (range: 3-122) months. At the final follow-up, the postoperative side-to-side differences (the proportion of patients with a side-to-side difference less than 3mm) and patient-report outcomes were significantly better in the biological enhancement group. Nevertheless, there were no significant differences between the two groups in the rate of surgical failure, the rate of revision, or the positive Lachman test or pivot shift test. CONCLUSION Biologically enhanced arthroscopic ACL primary repair was superior to ACL primary repair alone in terms of postoperative side-to-side differences (proportion of patients with a side-to-side difference less than 3mm) and patient-reported outcomes. Thus, biologically enhanced arthroscopic ACL primary repair can be preferentially recommended over ACL arthroscopic primary repair alone. LEVEL OF EVIDENCE IV, systematic review.
Collapse
Affiliation(s)
- Yanwei Cao
- Department of Sports Medicine, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, 10035 Beijing, China
| | - Zhijun Zhang
- Department of Sports Medicine, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, 10035 Beijing, China
| | - Guanyang Song
- Department of Sports Medicine, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, 10035 Beijing, China
| | - Qiankun Ni
- Department of Sports Medicine, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, 10035 Beijing, China
| | - Tong Zheng
- Department of Sports Medicine, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, 10035 Beijing, China
| | - Yue Li
- Department of Sports Medicine, Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, 10035 Beijing, China.
| |
Collapse
|
12
|
Autologous bone marrow-derived mesenchymal stem cells provide complete regeneration in a rabbit model of the Achilles tendon bundle rupture. INTERNATIONAL ORTHOPAEDICS 2021; 45:3263-3276. [PMID: 34510279 DOI: 10.1007/s00264-021-05168-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE To ascertain the role of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in the tendon regeneration. METHODS The study was conducted on 58 Achilles tendons from 29 laboratory Chinchilla adult rabbits. The central bundles of 48 tendons were partially removed and substituted with a tissue-engineered construct consisting of a collagen sponge either loaded with BM-MSCs (n = 24) or cell free (n = 24), placed inside a Vicryl mesh tube. The ends of the resected tendon were inserted in the construct to reach a direct contact with the sponge and sutured to the tube. The animals were sacrificed three and six months post-surgery. Ten intact tendons from five rabbits were used as an untreated control. The tissue samples (n = 30) were stained with haematoxylin and eosin, Picrosirius red, primary antibodies to collagen types I and III and studied by bright-field, phase-contrast, polarized light, and scanning electron microscopies followed by semi-quantitative morphometry. RESULTS Six months results of cell-loaded scaffolds demonstrated parallel collagen fibres, spindle-shaped tenocytes, and neoangiogenesis. In the control cell-free group, the injured areas were filled with a nonspecific fibrotic tissue with minor foci of incomplete regeneration. The biomechanical tests of 28 tendons taken from 14 rabbits showed that the stiffness of the cell-based reconstructed tendons increased to 98% of the value for the intact samples. CONCLUSION The obtained results support the hypothesis that the application of BM-MSCs in a tissue-engineered tendon construct leads to the restitution of the tendon tissue.
Collapse
|
13
|
Liao W, Zhang Q. Arthroscopic Primary Repair for Partial Proximal Anterior Cruciate Ligament Tear in Military Personnel. Clin J Sport Med 2021; 31:e258-e264. [PMID: 32852304 DOI: 10.1097/jsm.0000000000000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/27/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the short-term clinical outcomes of arthroscopic primary repair for partial proximal anterior cruciate ligament (ACL) tear in a young, active duty military population. DESIGN Retrospective cohort study. SETTING A national tertiary-level medical and academic institution. PATIENTS Nineteen active duty military patients with partial proximal ACL tears and excellent tissue quality were included and 18 were finally analyzed. INTERVENTIONS All patients underwent arthroscopic primary repair using a suture anchor technique between March 2014 and June 2016. MAIN OUTCOME MEASURES Clinical outcomes were evaluated using anterior drawer test (ADT), Lachman test, pivot shift test, 3-km run test, 10 m × 5 shuttle run test, physical readiness test (PRT) score, Tegner activity score, Lysholm score, modified Cincinnati score, International Knee Documentation Committee (IKDC) subjective score, and magnetic resonance imaging. RESULTS At final follow-up, 17 patients had negative ADT, Lachman, and pivot shift examination findings, and 1 patient had a 1+ ADT, negative Lachman, and pivot shift result. Mean 3-km run time at final follow-up was not statistically different from that preinjury (12:55 vs 12:39, P = 0.071), nor were the 10 m × 5 shuttle run time (23.4 vs 22.9, P = 0.235), PRT score (82.5 vs 85.1, P = 0.086), and Tegner activity score (7.8 vs 7.9, P = 0.083). Mean Lysholm score at final follow-up was significantly improved compared with that preoperative (93.1 vs 70.7, P < 0.001), so were the modified Cincinnati score (90.4 vs 58.6, P < 0.001) and IKDC subjective score (88.3 vs 67.4, P < 0.001). CONCLUSIONS Arthroscopic primary repair can achieve short-term clinical success in high-demand military patients with partial proximal ACL tears and excellent tissue quality.
Collapse
Affiliation(s)
| | - Qiang Zhang
- Orthopedics, Chinese PLA General Hospital, Haidian District, Beijing, China
| |
Collapse
|
14
|
Application of Stem Cell Therapy for ACL Graft Regeneration. Stem Cells Int 2021; 2021:6641818. [PMID: 34381504 PMCID: PMC8352687 DOI: 10.1155/2021/6641818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Graft regeneration after anterior cruciate ligament (ACL) reconstruction surgery is a complex three-stage process, which usually takes a long duration and often results in fibrous scar tissue formation that exerts a detrimental impact on the patients' prognosis. Hence, as a regeneration technique, stem cell transplantation has attracted increasing attention. Several different stem cell types have been utilized in animal experiments, and almost all of these have shown good capacity in improving tendon-bone regeneration. Various differentiation inducers have been widely applied together with stem cells to enhance specific lineage differentiation, such as recombinant gene transfection, growth factors, and biomaterials. Among the various different types of stem cells, bone marrow-derived mesenchymal stem cells (BMSCs) have been investigated the most, while ligament stem progenitor cells (LDSCs) have demonstrated the best potential in generating tendon/ligament lineage cells. In the clinic, 4 relevant completed trials have been reported, but only one trial with BMSCs showed improved outcomes, while 5 relevant trials are still in progress. This review describes the process of ACL graft regeneration after implantation and summarizes the current application of stem cells from bench to bedside, as well as discusses future perspectives in this field.
Collapse
|
15
|
Knapik DM, Evuarherhe A, Frank RM, Steinwachs M, Rodeo S, Mumme M, Cole BJ. Nonoperative and Operative Soft-Tissue and Cartilage Regeneration and Orthopaedic Biologics of the Knee: An Orthoregeneration Network (ON) Foundation Review. Arthroscopy 2021; 37:2704-2721. [PMID: 34353568 DOI: 10.1016/j.arthro.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/02/2023]
Abstract
Orthoregeneration is defined as a solution for orthopedic conditions that harnesses the benefits of biology to improve healing, reduce pain, improve function, and optimally, provide an environment for tissue regeneration. Options include: drugs, surgical intervention, scaffolds, biologics as a product of cells, and physical and electro-magnetic stimuli. The goal of regenerative medicine is to enhance the healing of tissue after musculoskeletal injuries as both isolated treatment and adjunct to surgical management, using novel therapies to improve recovery and outcomes. Various orthopaedic biologics (orthobiologics) have been investigated for the treatment of pathology involving the knee, including symptomatic osteoarthritis and chondral injuries, as well as injuries to tendon, meniscus, and ligament, including the anterior cruciate ligament. Promising and established treatment modalities include hyaluronic acid (HA) in liquid or scaffold form; platelet-rich plasma (PRP); bone marrow aspirate (BMA) comprising mesenchymal stromal cells (MSCs), hematopoietic stem cells, endothelial progenitor cells, and growth factors; connective tissue progenitor cells (CTPs) including adipose-derived mesenchymal stem cells (AD-MSCs) and tendon-derived stem cells (TDSCs); matrix cell-based therapy including autologous chondrocytes or allograft; vitamin D; and fibrin clot. Future investigations should standardize solution preparations, because inconsistent results reported may be due to heterogeneity of HA, PRP, BMAC, or MSC preparations and regimens, which may inhibit meaningful comparison between studies to determine the true efficacy and safety for each treatment.
Collapse
Affiliation(s)
- Derrick M Knapik
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Aghogho Evuarherhe
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Rachel M Frank
- Department of Orthopaedic Surgery, University of Colorado School of Medicine, Aurora, Colorado, U.S.A
| | | | - Scott Rodeo
- HSS Sports Medicine Institute, Hospital for Special Surgery, New York, New York, U.S.A
| | - Marcus Mumme
- Department of Orthopaedics and Traumatology, University Hospital and University Children's Hospital Basel, and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Brian J Cole
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, U.S.A..
| |
Collapse
|
16
|
Loo SJQ, Wong NK. Advantages and challenges of stem cell therapy for osteoarthritis (Review). Biomed Rep 2021; 15:67. [PMID: 34155451 PMCID: PMC8212446 DOI: 10.3892/br.2021.1443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disorder of the cartilage and is one of the leading causes of disability, particularly amongst the elderly, wherein patients with advanced-stage OA experience chronic pain and functional impairment of the limbs, thus resulting in a significantly reduced quality of life. The currently available treatments primarily revolve around symptom management, and is thus palliative rather than curative. The aim of the present review is to briefly discuss the limitations of some of the currently available treatments for patients with OA, and highlight the value of the potential use of stem cells in cellular therapy, which is widely regarded as the breakthrough that can address the present unmet medical needs for treatment of degenerative diseases, such as OA. The advantages of stem cell therapy, particularly mesenchymal stem cells, and the challenges involved are also discussed in this review.
Collapse
Affiliation(s)
- Stephanie Jyet Quan Loo
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Nyet Kui Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
17
|
Bone Mesenchymal Stem Cells Contribute to Ligament Regeneration and Graft-Bone Healing after Anterior Cruciate Ligament Reconstruction with Silk-Collagen Scaffold. Stem Cells Int 2021; 2021:6697969. [PMID: 33981343 PMCID: PMC8088362 DOI: 10.1155/2021/6697969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/25/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Anterior cruciate ligament (ACL) reconstruction was realized using a combination of bone mesenchymal stem cells (BMSCs) and silk–collagen scaffold, and an in vivo evaluation of this combination was performed. By combining type I collagen and degummed silk fibroin mesh, silk–collagen scaffolds were prepared to simulate ligament components. BMSCs isolated from bone marrow of rabbits were cultured for a homogenous population and seeded on the silk–collagen scaffold. In the scaffold and BMSC (S/C) group, scaffolds were seeded with BMSCs for 72 h and then rolled and used to replace the ACL in 20 rabbits. In the scaffold (S) group, scaffolds immersed only in culture medium for 72 h were used for ACL reconstruction. Specimens were collected at 4 and 16 weeks postoperatively to assess ligament regeneration and bone integration. HE and immunohistochemical staining (IHC) were performed to assess ligament regeneration in the knee cavity. To assess bone integration at the graft–bone interface, HE, Russell–Movat staining, micro-CT, and biomechanical tests were performed. After 4 weeks, vigorous cell proliferation was observed in the core part of the scaffold in the S/C group, and a quantity of fibroblast-like cells and extracellular matrix (ECM) was observed in the center part of the graft at 16 weeks after surgery. At 4 and 16 weeks postoperatively, the tenascin-C expression in the S/C group was considerably higher than that in the S group (4 w, p < 0.01; 16 w, p < 0.01). Furthermore, bone integration was better in the S/C group than in the S group, with histological observation of trabecular bone growth into the graft and more mineralized tissue formation detected by micro-CT (4 w, bone volume fraction (BV/TV), p = 0.0169, bone mineral density (BMD), p = 0.0001; 16 w, BV/TV, p = 0.1233, BMD, p = 0.0494). These results indicate that BMSCs promote ligament regeneration in the knee cavity and bone integration at the graft–bone interface. Silk–collagen scaffolds and BMSCs will likely be combined for clinical practice in the future.
Collapse
|
18
|
Characteristics of MSCs in Synovial Fluid and Mode of Action of Intra-Articular Injections of Synovial MSCs in Knee Osteoarthritis. Int J Mol Sci 2021; 22:ijms22062838. [PMID: 33799588 PMCID: PMC8001624 DOI: 10.3390/ijms22062838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
We have been studying mesenchymal stem cells (MSCs) in synovial fluid and the intra-articular injection of synovial MSCs in osteoarthritis (OA) knees. Here, mainly based on our own findings, we overview the characteristics of endogenous MSCs in the synovial fluid of OA knees and their mode of action when injected exogenously into OA knees. Many MSCs similar to synovial MSCs were detected in the synovial fluid of human OA knees, and their number correlated with the radiological OA grade. Our suspended synovium culture model demonstrated the release of MSCs from the synovium through a medium into a non-contacting culture dish. In OA knees, endogenous MSCs possibly mobilize in a similar manner from the synovium through the synovial fluid and act protectively. However, the number of mobilized MSCs is limited; therefore, OA progresses in its natural course. Synovial MSC injections inhibited the progression of cartilage degeneration in a rat OA model. Injected synovial MSCs migrated into the synovium, maintained their MSC properties, and increased the gene expressions of TSG-6, PRG-4, and BMP-2. Exogenous synovial MSCs can promote anti-inflammation, lubrication, and cartilage matrix synthesis in OA knees. Based on our findings, we have initiated a human clinical study of synovial MSC injections in OA knees.
Collapse
|
19
|
Li Y, Fu SC, Cheuk YC, Ong TY, Feng H, Yung SH. The effect of thermosensitive hydrogel platelet-rich-plasma complex in the treatment of partial tear of anterior cruciate ligament in rat model. J Orthop Translat 2020; 24:183-189. [PMID: 33101969 PMCID: PMC7548349 DOI: 10.1016/j.jot.2019.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background/Objective The treatment of anterior cruciate ligament (ACL) partial tear is controversial. The reconstructive surgery is invasive while the prevalence of subsequent insufficiency after conservative treatment has been reported to range from 11% to 62%. Therefore, a new method that promotes tissue regeneration is needed. The aim of this study was to observe the healing of ACL partial tear biomechanically and histologically after the administration of a thermosensitive hydrogel platelet-rich-plasma (PRP) complex. Methods The complex was prepared according to a previously published protocol. One hundred and fifty 12-week-old male Sprague-Dawley rats were included and they were allocated into 4 groups. Lesion control group (Group 1), treatment group (Group 2), gel-only group (Group 3) and intact group (Group 4). Biomechanical testing, histological analysis (H&E and immunohistochemical staining) and scoring was performed. Results On gross observation, the treatment group showed a continuous ACL with slightly thickened synovium or a partially healed ACL at 6-week follow up. In the biomechanical testing at 6 weeks after surgery, the failure load of the treatment group was significantly superior when compared with the lesion control group (52.7±10.8N vs. 41.6±7.8N, p<0.01), but the failure load was not restored to level of the intact group (52.7±10.8N vs. 61.5±9.1N, p=0.037). The maturity index of wound sites showed no significant inter-group differences at any timepoints. However, an increased expression of vascular endothelial growth factor (VEGF) and pro-collagen I was detected. Conclusion The thermosensitive hydrogel-PRP was shown to be effective in enhancing the healing of ACL partial tear in the rat model, and potentially this complex can be used as a treatment for patients with ACL partial tear. The translational potential of this article The thermosensitive hydrogel-PRP is potentially translated to clinical use to treat patients with ACL partial tear by injection under arthroscopy or ultrasound guiding.
Collapse
Affiliation(s)
- Yue Li
- Sports Medicine Service, Beijing Jishuitan Hospital, Beijing, China
| | - Sai C Fu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yau C Cheuk
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tim-Yun Ong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hua Feng
- Sports Medicine Service, Beijing Jishuitan Hospital, Beijing, China
| | - Shu-Hang Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Biological Augmentation of ACL Repair and Reconstruction: Current Status and Future Perspective. Sports Med Arthrosc Rev 2020; 28:49-55. [PMID: 32345926 DOI: 10.1097/jsa.0000000000000266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Historically, anterior cruciate ligament (ACL) suture repair mostly resulted in failure because of intra-articular hypovascularity and poor intrinsic healing capacity of ACL. ACL reconstruction was therefore deemed the gold standard with a high success rate because of more evolved surgical technique. There are, however, clinical and subclinical disadvantages of reconstruction; low rate in full recovery to sports, donor harvest morbidity, tunnel enlargement, and incomplete microscopic healing of the graft. Recent experimental and clinical studies on biological augmentation of mesenchymal stem cells, platelet-rich plasma, or the other biologic agents with scaffold suggested potential feasibility of positive effects by such bio-therapies for both ACL repair and reconstruction. Biological augmentation of ACL surgery is still in the exploratory stages and more evidence from preclinical and clinical studies is required for implementation in clinical practice.
Collapse
|
21
|
Rationale for the Use of Orthobiologics in Sports Medicine. OPER TECHN SPORT MED 2020. [DOI: 10.1016/j.otsm.2020.150753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Lu CC, Chou SH, Shen PC, Chou PH, Ho ML, Tien YC. Extracorporeal shock wave promotes activation of anterior cruciate ligament remnant cells and their paracrine regulation of bone marrow stromal cells' proliferation, migration, collagen synthesis, and differentiation. Bone Joint Res 2020; 9:458-468. [PMID: 32832074 PMCID: PMC7418778 DOI: 10.1302/2046-3758.98.bjr-2019-0365.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aims Proliferation, migration, and differentiation of anterior cruciate ligament (ACL) remnant and surrounding cells are fundamental processes for ACL reconstruction; however, the interaction between ACL remnant and surrounding cells is unclear. We hypothesized that ACL remnant cells preserve the capability to regulate the surrounding cells' activity, collagen gene expression, and tenogenic differentiation. Moreover, extracorporeal shock wave (ESW) would not only promote activity of ACL remnant cells, but also enhance their paracrine regulation of surrounding cells. Methods Cell viability, proliferation, migration, and expression levels of Collagen-I (COL-I) A1, transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) were compared between ACL remnant cells untreated and treated with ESW (0.15 mJ/mm2, 1,000 impulses, 4 Hz). To evaluate the subsequent effects on the surrounding cells, bone marrow stromal cells (BMSCs)' viability, proliferation, migration, and levels of Type I Collagen, Type III Collagen, and tenogenic gene (Scx, TNC) expression were investigated using coculture system. Results ESW-treated ACL remnant cells presented higher cell viability, proliferation, migration, and increased expression of COL-I A1, TGF-β, and VEGF. BMSC proliferation and migration rate significantly increased after coculture with ACL remnant cells with and without ESW stimulation compared to the BMSCs alone group. Furthermore, ESW significantly enhanced ACL remnant cells' capability to upregulate the collagen gene expression and tenogenic differentiation of BMSCs, without affecting cell viability, TGF-β, and VEGF expression. Conclusion ACL remnant cells modulated activity and differentiation of surrounding cells. The results indicated that ESW enhanced ACL remnant cells viability, proliferation, migration, and expression of collagen, TGF-β, VEGF, and paracrine regulation of BMSC proliferation, migration, collagen expression, and tenogenesis.Cite this article: Bone Joint Res 2020;9(8):458-468.
Collapse
Affiliation(s)
- Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsiang Chou
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chih Shen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Hsi Chou
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chun Tien
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Biomechanical, histologic, and molecular characteristics of graft-tunnel healing in a murine modified ACL reconstruction model. J Orthop Translat 2020; 24:103-111. [PMID: 32775202 PMCID: PMC7390781 DOI: 10.1016/j.jot.2020.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose The purpose of our study was to introduce and validate a metal-free, reproducible and reliable mouse model of anterior cruciate ligament (ACL) reconstruction (ACLR) surgery as an effective tool for a better understanding of molecular mechanisms of graft-tunnel healing after ACLR. Methods A total of 150 C57BL/6 mice were randomly allocated into five Groups: Group 1 (mice with intact ACL), Group 2–4 (mice underwent modified ACLR surgery and sacrificed 1-, 2-, and 4-weeks after surgery), and Group 5 (mice underwent unmodified ACLR surgery and sacrificed 4 weeks after surgery). Micro-computed tomography (CT), biomechanical histological as well as immunohistochemical (IHC) analyses were performed to characterize the modified ACLR. Results Micro-CT analysis demonstrated there is a non-significant increase in BV/TV and BMD of the bone tunnel during the tendon-to-bone healing following ACLR. Biomechanical tests showed that the mean load-to-failure forces of Group 3 and 4 are equal to 31.7% and 46.0% of that in Group 1, while the stiffness was 33.1% and 57.2% of that of Group 1, respectively. And no obvious difference in biomechanical parameters was found between Group 4 and 5. Histological analysis demonstrated that formation of fibrovascular tissue in the tibial tunnel and aperture in Groups 4 and 5 and direct junction appeared between tendon graft and tunnel both in Groups 4 and 5. IHC results showed that there are gradually enhanced expression of Patched1, Smoothened and Gli2 concomitant with decreased Gli3 protein in the tendon-bone interface during the tendon-bone healing process. Conclusion We introduced a metal-free, reproducible and reliable mouse model of ACLR compared to the unmodified ACLR procedure, and characterized the expression pattern of key molecules in Ihh signaling during the graft healing process. The translational potential of this article In the present study we introduced and validated, for the first time, a metal-free, reproducible and reliable ACLR mouse model, which could be used to investigate the detailed molecular mechanisms of graft-tunnel healing after ACLR. We also explored new strategies to promote the healing of tendon-to-bone integration.
Collapse
Key Words
- ACL, Anterior cruciate ligament
- ACLR, ACL reconstruction
- Anterior cruciate ligament
- BMD, Bone mineral density
- BV/TV, Bone volume/total volume
- CI, Confidence interval
- CT, Computed tomography
- Gli1, Glioma-associated oncogene homologue 1
- Gli2, Glioma-associated oncogene homologue 2
- Gli3, Glioma-associated oncogene homologue 3
- H&E, Haematoxylin-eosin
- Hedgehog signaling
- Ihh, Indian hedgehog
- Mouse model
- NS, Non-significant
- Ptch1, Patched1
- Smo, Smoothened
- Tendon-bone healing
Collapse
|
24
|
Apostolakos JM, Lin KM, Carr JB, Bedi A, Camp CL, Dines JS. The Role of Biologic Agents in the Non-operative Management of Elbow Ulnar Collateral Ligament Injuries. Curr Rev Musculoskelet Med 2020; 13:442-448. [PMID: 32388723 DOI: 10.1007/s12178-020-09637-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW Injuries to the elbow ulnar collateral ligament (UCL) are especially common in the overhead throwing athlete. Despite preventative measures, these injuries are occurring at increasing rates in athletes of all levels. UCL reconstruction techniques generally require a prolonged recovery period and introduce the potential for intraoperative complications prompting investigations into more conservative treatment measures based on specific patient and injury characteristics. The purpose of this review is to describe the current literature regarding the use of biologic augmentation in the management of UCL injuries. Specifically, this review will focus on the basic science background and clinical investigations pertaining to biologic augmentation utilizing platelet-rich plasma (PRP) and autologous stem cells. RECENT FINDINGS Despite some evidence supporting the use of PRP therapy in patients with partial UCL tears, there is no current consensus regarding its true efficacy. Similarly, due to a lack of clinical investigations, no consensus exists regarding the utilization of autologous stem cell treatments in the management of UCL injuries. Management of UCL injuries ranges from non-operative treatment with focused physical therapy protocols to operative reconstruction. The use of biologic augmentation in these injuries continues to be investigated in the orthopedic community. Currently, no consensus exists regarding the efficacy of either PRP or autologous stem cells and further research is needed to further define the appropriate role of these treatments in the management of UCL injuries.
Collapse
Affiliation(s)
- John M Apostolakos
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA.
| | - Kenneth M Lin
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - James B Carr
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | | | | | - Joshua S Dines
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
25
|
Leong NL, Kator JL, Clemens TL, James A, Enamoto-Iwamoto M, Jiang J. Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration. J Orthop Res 2020; 38:7-12. [PMID: 31529731 PMCID: PMC7307866 DOI: 10.1002/jor.24475] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
Ligament and tendon injuries are common problems in orthopedics. There is a need for treatments that can expedite nonoperative healing or improve the efficacy of surgical repair or reconstruction of ligaments and tendons. Successful biologically-based attempts at repair and reconstruction would require a thorough understanding of normal tendon and ligament healing. The inflammatory, proliferative, and remodeling phases, and the cells involved in tendon and ligament healing will be reviewed. Then, current research efforts focusing on biologically-based treatments of ligament and tendon injuries will be summarized, with a focus on stem cells endogenous to tendons and ligaments. Statement of clinical significance: This paper details mechanisms of ligament and tendon healing, as well as attempts to apply stem cells to ligament and tendon healing. Understanding of these topics could lead to more efficacious therapies to treat ligament and tendon injuries. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:7-12, 2020.
Collapse
Affiliation(s)
- Natalie L Leong
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Surgery, Baltimore VA Medical Center, Baltimore, Maryland
| | - Jamie L Kator
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Aaron James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Motomi Enamoto-Iwamoto
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Jie Jiang
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| |
Collapse
|
26
|
Hevesi M, LaPrade M, Saris DBF, Krych AJ. Stem Cell Treatment for Ligament Repair and Reconstruction. Curr Rev Musculoskelet Med 2019; 12:446-450. [PMID: 31625113 DOI: 10.1007/s12178-019-09580-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW With the rapid and ongoing evolution of regenerative and sports medicine, the use of stem/stromal cells in ligament repair and reconstruction continues to be investigated and grow. The purpose of this review was to assess available methods and formulations for stem/stromal cell augmentation as well as review early pre-clinical and clinical outcomes for these recently emerging techniques. RECENT FINDINGS Recent literature demonstrates promising outcomes of stem/stromal cell augmentation for ligament repair and reconstruction. Multiple groups have published animal models suggesting improved healing for partially transected ligaments as well as histologic re-approximation of native bone-tendon interfaces with the use of mesenchymal stem/stromal cells in reconstructive models. Human studies also suggest improved outcomes spanning from higher patient-reported outcome scores to magnetic resonance imaging evidence of ligament healing in the setting of anterior cruciate ligament tears. However, clinical studies are only recently available, relatively few in number, and not necessarily accompanied by standard-of-care controls. There is increasing availability and growing animal and clinical evidence demonstrating potential benefit of stem/stromal cell augmentation for tendon healing. However, to date, there is a relative paucity of high-level human evidence for the routine use of stem/stromal cells for ligament repair and reconstruction in the clinical practice. This field contains substantial promise and merits further, ongoing investigation.
Collapse
Affiliation(s)
- Mario Hevesi
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew LaPrade
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Daniel B F Saris
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Youn GM, Remigio Van Gogh AM, Alvarez A, Shin Yin SS, Chakrabarti MO, McGahan PJ, Chen JL. Stem Cell-Infused Anterior Cruciate Ligament Reconstruction. Arthrosc Tech 2019; 8:e1313-e1317. [PMID: 31890501 PMCID: PMC6926314 DOI: 10.1016/j.eats.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023] Open
Abstract
Anterior cruciate ligament (ACL) tears are unfortunate but common injuries in the athletic population. The standard of care for ACL tears is a surgical intervention to reconstruct the ACL to restore knee functionality as well as quality of life. In recent years, bone marrow aspirate concentrate (BMAC) has seen increasing use in various orthopaedic settings. This increase can be attributed to the potential beneficial qualities that mesenchymal stem cells, progenitor cells, and growth factors, all of which are present in BMAC, can provide. In this technical note and accompanying video, we describe an anatomic allograft ACL reconstruction infused with BMAC to utilize BMAC's potential benefits.
Collapse
Affiliation(s)
- Gun Min Youn
- Address correspondence to Gun Min Youn, B.A., Advanced Orthopaedics and Sports Medicine, 450 Sutter St, Ste 400, San Francisco, CA 94108, U.S.A.
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Gobbi A, Whyte GP. Long-term Outcomes of Primary Repair of the Anterior Cruciate Ligament Combined With Biologic Healing Augmentation to Treat Incomplete Tears. Am J Sports Med 2018; 46:3368-3377. [PMID: 30398894 DOI: 10.1177/0363546518805740] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Surgical treatment to repair partial anterior cruciate ligament (ACL) injury without reconstruction has demonstrated inconsistent clinical success. PURPOSE To examine the long-term clinical outcomes of primary ACL repair combined with biologic healing augmentation in patients with symptomatic partial ACL tears. STUDY DESIGN Case series; Level of evidence, 4. METHODS 50 patients (mean age, 29.5 years) with a partial ACL tear and symptomatic knee instability were treated with primary ligament repair in conjunction with marrow stimulation and followed prospectively for a mean duration of 10.2 years (range, 5.3-14.3 years). Comparative analysis of preinjury, preoperative, and postoperative scores using patient-reported assessment instruments was performed to examine clinical outcomes. Correlation of final outcome scores with patient age, type of ACL tear, side-to-side difference in ligamentous laxity, and body mass index (BMI) was performed through use of Spearman rank analysis. RESULTS 44 patients were available for assessment at final follow-up. The median Tegner Activity Scale score of 7 at final follow-up was the same as the preinjury median score of 7 ( P = .128). The mean Marx Activity Scale, International Knee Documentation Committee (IKDC) Subjective, and Lysholm Knee Questionnaire scores were 10.8, 90.4, and 96.2, respectively, at final follow-up. Mean final Knee injury and Osteoarthritis Outcome Score (KOOS) subset assessments of Pain, Symptoms, Activities of Daily Living, Sports, and Quality of Life were 98.6, 97.5, 99.7, 94.3, and 95.6, respectively. Secondary ACL insufficiency occurred in 27% of patients. Clinical outcome scores were similar for all scoring instruments between patients treated for an associated diagnosis of meniscal or articular cartilage injury. No significant correlations of age, BMI, ACL tear type, or laxity and final IKDC Subjective, Lysholm, or KOOS scores were found. Analysis revealed a negative correlation of patient age and Tegner score at preinjury ( rs = -0.333, P = .022) and at final follow-up ( rs = -0.376, P = .013). The mean side-to-side difference in ligamentous laxity of 3.4 mm at short-term follow-up in those patients who developed secondary ACL insufficiency over the duration of follow-up was significantly greater than the mean of 0.9 mm in those who did not ( P = .010). CONCLUSION Primary ACL repair combined with biologic healing augmentation to treat select cases of knee instability secondary to incomplete ACL rupture demonstrated good to excellent long-term outcomes in this cohort for those patients who did not experience secondary ACL insufficiency, with high rates of restoration of knee stability and return to preinjury athletic activities. The rate of secondary treatment for recurrent ACL insufficiency over the course of long-term follow-up was greater than would be expected for primary ACL reconstruction. Greater side-to-side differences in objective findings of ligamentous laxity were identified at shorter term follow-up in the patients who later went on to experience symptomatic secondary ACL insufficiency, compared with those who maintained stability long term.
Collapse
Affiliation(s)
- Alberto Gobbi
- Orthopaedic Arthroscopic Surgery International (OASI) Bioresearch Foundation, Milan, Italy
| | - Graeme P Whyte
- Orthopaedic Arthroscopic Surgery International (OASI) Bioresearch Foundation, Milan, Italy.,Cornell University, Weill Medical College, New York, NY, USA.,New York Presbyterian Hospital/Queens, Queens, New York, NY, USA
| |
Collapse
|
30
|
Mahapatra P, Horriat S, Anand BS. Anterior cruciate ligament repair - past, present and future. J Exp Orthop 2018; 5:20. [PMID: 29904897 PMCID: PMC6002325 DOI: 10.1186/s40634-018-0136-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background This article provides a detailed narrative review on the history and current concepts surrounding ligamentous repair techniques in athletic patients. In particular, we will focus on the anterior cruciate ligament (ACL) as a case study in ligament injury and ligamentous repair techniques. PubMed (MEDLINE), EMBASE and Cochrane Library databases for papers relating to primary anterior cruciate ligament reconstruction were searched by all participating authors. All relevant historical papers were included for analysis. Additional searches of the same databases were made for papers relating to biological enhancement of ligament healing. Current standard The poor capacity of the ACL to heal is one of the main reasons why the current gold standard surgical treatment for an ACL injury in an athletic patient is ACL reconstruction with autograft from either the hamstrings or patella tendon. It is hypothesised that by preserving and repairing native tissues and negating the need for autograft that primary ACL repair may represent a key step change in the treatment of ACL injuries. History of primary ACL repair The history of primary ACL repair will be discussed and the circumstances that led to the near-abandonment of primary ACL repair techniques will be reviewed. New primary repair techniques There has been a recent resurgence in interest with regards to primary ACL repair. Improvements in imaging now allow for identification of tear location, with femoral-sided injuries, being more suitable for repair. We will discuss in details strategies for improving the mechanical and biological environment in order to allow primary healing to occur. In particular, we will explain mechanical supplementation such as Internal Brace Ligament Augmentation and Dynamic Intraligamentary Stabilisation techniques. These are novel techniques that aim to protect the primary repair by providing a stabilising construct that connects the femur and the tibia, thus bridging the repair. Bio enhanced repair In addition, biological supplementation is being investigated as an adjunct and we will review the current literature with regards to bio-enhancement in the form platelet rich plasma, bio-scaffolds and stem cells. On the basis of current evidence, there appears to be a role for bio-enhancement, however, this is not yet translated into clinical practice. Conclusions Several promising avenues of further research now exist in the form of mechanical and biological augmentation techniques. Further work is clearly needed but there is renewed interest and focus for primary ACL repair that may yet prove the new frontier in ligament repair.
Collapse
Affiliation(s)
- Piyush Mahapatra
- Trauma and Orthopaedic Department, Croydon University Hospital, 530 London Road, London, CR7 7YE, UK.
| | - Saman Horriat
- Trauma and Orthopaedic Department, Croydon University Hospital, 530 London Road, London, CR7 7YE, UK
| | - Bobby S Anand
- Trauma and Orthopaedic Department, Croydon University Hospital, 530 London Road, London, CR7 7YE, UK
| |
Collapse
|
31
|
Rahim S, Rahim F, Shirbandi K, Haghighi BB, Arjmand B. Sports Injuries: Diagnosis, Prevention, Stem Cell Therapy, and Medical Sport Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:129-144. [PMID: 30539427 DOI: 10.1007/5584_2018_298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sports injuries diagnosis, prevention, and treatment are the most important issues of sports medicine. Fortunately, sports injuries are often treated effectively, and people with damage recover and return to the sport in a satisfactory condition. Meanwhile, many sports injuries and complications can be prevented. In general, sports injuries include acute or chronic injuries. Given increasing in popularity, sports medicine doctors use stem cells to treat a wide variety of sports injuries, including damage to tendons, ligaments, muscles, and cartilage. Stem cell therapy to an injured area could be done through direct surgical application, stem-cell-bearing sutures, and injection. Stem cell therapy holds potential for repair and functional plasticity following sports injuries compared to traditional methods; however, the mechanism of stem cell therapy for sports injuries remains largely unknown. Medical imaging technologies provide the hope to ample the knowledge concerning basic stem cell biology in real time when transplanted into sport-induced damaged organs. Using stem cell treatment might restore continuity and regeneration and promote growth back the organ targets. Besides, using a noninvasive medical imaging method would have the long-time monitoring advantage to the stem cells transplanting individual. The multimodality imaging technique allows for studying acute pathological events following sports injuries; therefore, the use of imaging techniques in medicine permits the straight examination of dynamic regenerative events of specific stem cells following a sports injury in people.
Collapse
Affiliation(s)
- Sadegh Rahim
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Department of Molecular Medicine, Health research institute, Research Center of Thalassemia & Hemoglobinopathy, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kiarash Shirbandi
- Allied Health Sciences School, Radiology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Guo R, Gao L, Xu B. Current Evidence of Adult Stem Cells to Enhance Anterior Cruciate Ligament Treatment: A Systematic Review of Animal Trials. Arthroscopy 2018; 34:331-340.e2. [PMID: 28967542 DOI: 10.1016/j.arthro.2017.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To systematically review the available preclinical evidence of adult stem cells as a biological augmentation in the treatment of animal anterior cruciate ligament (ACL) injury. STUDY DESIGN Systematic review. METHODS PubMed (MEDLINE) and Embase were searched for the eligible studies. The inclusion criteria were controlled animal trials of adult stem cells used in ACL treatment (repair or reconstruction). Studies of natural ACL healing without intervention, in vitro studies, ex vivo studies, and studies without controls were excluded. Evidence level, methodologic quality, and risk of bias of each included study were identified using previously established tools. RESULTS Thirteen animal studies were included. Six of 7 studies using bone marrow-derived mesenchymal stem (stromal) cells (BMSCs) reported a positive enhancement in histology, biomechanics, and biochemistry within 12 weeks postoperatively. Four studies using ACL-derived vascular stem cells showed a promoting effect in histology, biomechanics, and imaging within 8 weeks postoperatively. Two studies focusing on animal tendon-derived stem cells (TDSCs) and human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) reported promotable effects for the early healing in a small animal ACL model. CONCLUSIONS BMSCs, ACL-derived vascular stem cells, TDSCs, and hUCB-MSCs were shown to enhance the healing of ACL injury during the early phase in small animal models. CLINICAL RELEVANCE Results of clinical trials using adult stem cells in ACL treatment are conflicting, and a systematic review of the current best preclinical evidence is crucial to guide further application.
Collapse
Affiliation(s)
- Ruipeng Guo
- Department of Sports Medicine and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory for Biomechanics and Biomaterials, Hannover Medical School, Hannover, Germany
| | - Liang Gao
- Center for Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Bin Xu
- Department of Sports Medicine and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
33
|
Tatu RF, Hurmuz M, Miu CA. ACL Primary Repair with Bone Marrow Stimulation and Growth Factors. A Review of Literature. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Anterior cruciate ligament (ACL) ruptures represent a common pathology, especially in young and active patients. Spontaneous repair, although reported in some studies, is altered by local conditions, thus emerges the need to perform reconstruction of the ACL. It is reported that 3,430 primary reconstructions and around 267 revisions are performed yearly in Sweden. Some reconstructions result in biological failure, which represents the inability of the graft to incorporate and remodel in order to perform its role as a knee stabilizer. Orthobiology, a new concept that includes growths factors, stem cells, and different scaffolds, could represent a solution to a better outcome of this procedure. This manuscript is a review of different therapeutic strategies used for enabling ACL regeneration, including in vitro ACL-bio-enhanced repair that is currently being developed. Substantial progress is to be expected in the area of ACL surgery.
Collapse
Affiliation(s)
- Romulus Fabian Tatu
- XVth Department , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Mihai Hurmuz
- XVth Department , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Cătălin Adrian Miu
- XVth Department , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| |
Collapse
|
34
|
Ligament-Derived Stem Cells: Identification, Characterisation, and Therapeutic Application. Stem Cells Int 2017; 2017:1919845. [PMID: 28386284 PMCID: PMC5366203 DOI: 10.1155/2017/1919845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/19/2017] [Indexed: 01/09/2023] Open
Abstract
Ligament is prone to injury and degeneration and has poor healing potential and, with currently ineffective treatment strategies, stem cell therapies may provide an exciting new treatment option. Ligament-derived stem cell (LDSC) populations have been isolated from a number of different ligament types with the majority of studies focussing on periodontal ligament. To date, only a few studies have investigated LDSC populations in other types of ligament, for example, intra-articular ligaments; however, this now appears to be a developing field. This literature review aims to summarise the current information on nondental LDSCs including in vitro characteristics of LDSCs and their therapeutic potential. The stem cell niche has been shown to be vital for stem cell survival and function in a number of different physiological systems; therefore, the LDSC niche may have an impact on LDSC phenotype. The role of the LDSC niche on LDSC viability and function will be discussed as well as the therapeutic potential of LDSC niche modulation.
Collapse
|
35
|
Chailakhyan RK, Shekhter AB, Ivannikov SV, Tel'pukhov VI, Suslin DS, Gerasimov YV, Tonenkov AM, Grosheva AG, Panyushkin PV, Moskvina IL, Vorob'eva NN, Bagratashvili VN. Reconstruction of Ligament and Tendon Defects Using Cell Technologies. Bull Exp Biol Med 2017; 162:563-568. [PMID: 28243921 DOI: 10.1007/s10517-017-3660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 12/14/2022]
Abstract
We studied the possibility of restoring the integrity of the Achilles tendon in rabbits using autologous multipotent stromal cells. Collagen or gelatin sponges populated with cells were placed in a resorbable Vicryl mesh tube and this tissue-engineered construct was introduced into a defect of the middle part of the Achilles tendon. In 4 months, histological analysis showed complete regeneration of the tendon with the formation of parallel collagen fibers, spindle-shaped tenocytes, and newly formed vessels.
Collapse
Affiliation(s)
- R K Chailakhyan
- N. F. Gamaleya Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A B Shekhter
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S V Ivannikov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V I Tel'pukhov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - D S Suslin
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu V Gerasimov
- N. F. Gamaleya Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A M Tonenkov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A G Grosheva
- N. F. Gamaleya Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - P V Panyushkin
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I L Moskvina
- N. F. Gamaleya Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N N Vorob'eva
- Institute of Photonics Technologies, Russian Academy of Sciences, Federal Research Center "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | - V N Bagratashvili
- Institute of Photonics Technologies, Russian Academy of Sciences, Federal Research Center "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Dallo I, Chahla J, Mitchell JJ, Pascual-Garrido C, Feagin JA, LaPrade RF. Biologic Approaches for the Treatment of Partial Tears of the Anterior Cruciate Ligament: A Current Concepts Review. Orthop J Sports Med 2017; 5:2325967116681724. [PMID: 28210653 PMCID: PMC5298533 DOI: 10.1177/2325967116681724] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Anterior cruciate ligament reconstruction (ACLR) has been established as the gold standard for treatment of complete ruptures of the anterior cruciate ligament (ACL) in active, symptomatic individuals. In contrast, treatment of partial tears of the ACL remains controversial. Biologically augmented ACL-repair techniques are expanding in an attempt to regenerate and improve healing and outcomes of both the native ACL and the reconstructed graft tissue. PURPOSE To review the biologic treatment options for partial tears of the ACL. STUDY DESIGN Review. METHODS A literature review was performed that included searches of PubMed, Medline, and Cochrane databases using the following keywords: partial tear of the ACL, ACL repair, bone marrow concentrate, growth factors/healing enhancement, platelet-rich plasma (PRP), stem cell therapy. RESULTS The use of novel biologic ACL repair techniques, including growth factors, PRP, stem cells, and bioscaffolds, have been reported to result in promising preclinical and short-term clinical outcomes. CONCLUSION The potential benefits of these biological augmentation approaches for partial ACL tears are improved healing, better proprioception, and a faster return to sport and activities of daily living when compared with standard reconstruction procedures. However, long-term studies with larger cohorts of patients and with technique validation are necessary to assess the real effect of these approaches.
Collapse
Affiliation(s)
| | - Jorge Chahla
- The Steadman Philippon Research Institute, Vail, Colorado, USA
| | | | | | - John A Feagin
- The Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Robert F LaPrade
- The Steadman Philippon Research Institute, Vail, Colorado, USA.; The Steadman Clinic, Vail, CO, USA
| |
Collapse
|
37
|
Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O'Connor MI. A Prospective, Single-Blind, Placebo-Controlled Trial of Bone Marrow Aspirate Concentrate for Knee Osteoarthritis. Am J Sports Med 2017; 45:82-90. [PMID: 27566242 DOI: 10.1177/0363546516662455] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone marrow aspirate concentrate (BMAC) is increasingly used as a regenerative therapy for musculoskeletal pathological conditions despite limited evidence-based support. HYPOTHESIS BMAC will prove feasible, safe, and efficacious for the treatment of pain due to mild to moderate degenerative joint disease of the knee. STUDY DESIGN Randomized controlled trial; Level of evidence, 2. METHODS In this prospective, single-blind, placebo-controlled trial, 25 patients with bilateral knee pain from bilateral osteoarthritis were randomized to receive BMAC into one knee and saline placebo into the other. Fifty-two milliliters of bone marrow was aspirated from the iliac crests and concentrated in an automated centrifuge. The resulting BMAC was combined with platelet-poor plasma for an injection into the arthritic knee and was compared with a saline injection into the contralateral knee, thereby utilizing each patient as his or her own control. Safety outcomes, pain relief, and function as measured by Osteoarthritis Research Society International (OARSI) measures and the visual analog scale (VAS) score were tracked initially at 1 week, 3 months, and 6 months after the procedure. RESULTS There were no serious adverse events from the BMAC procedure. OARSI Intermittent and Constant Osteoarthritis Pain and VAS pain scores in both knees decreased significantly from baseline at 1 week, 3 months, and 6 months ( P ≤ .019 for all). Pain relief, although dramatic, did not differ significantly between treated knees ( P > .09 for all). CONCLUSION Early results show that BMAC is safe to use and is a reliable and viable cellular product. Study patients experienced a similar relief of pain in both BMAC- and saline-treated arthritic knees. Further study is required to determine the mechanisms of action, duration of efficacy, optimal frequency of treatments, and regenerative potential. Registration: ClinicalTrials.gov record 12-004459.
Collapse
Affiliation(s)
- Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Shari E Kazmerchak
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Mary I O'Connor
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Musculoskeletal Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Canapp SO, Leasure CS, Cox C, Ibrahim V, Carr BJ. Partial Cranial Cruciate Ligament Tears Treated with Stem Cell and Platelet-Rich Plasma Combination Therapy in 36 Dogs: A Retrospective Study. Front Vet Sci 2016; 3:112. [PMID: 28018908 PMCID: PMC5155010 DOI: 10.3389/fvets.2016.00112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/28/2016] [Indexed: 12/24/2022] Open
Abstract
Objective To evaluate outcomes in 36 dogs with a partial cranial cruciate ligament (CCL) tear treated with autologous bone marrow aspirate concentrate (BMAC) or adipose-derived progenitor cells (ADPC) with platelet-rich plasma (PRP) combination. Materials and methods Medical records of client-owned dogs diagnosed with an early partial (≤50%) tear of the craniomedial band of the CCL that was treated with BMAC–PRP or ADPC–PRP were reviewed from 2010 to 2015. Signalment, medical history, physical and orthopedic examination, objective temporospatial gait analyses, radiographs, day 0 and day 90 diagnostic arthroscopy findings, treatment, and outcome were among the data collected. A functional owner questionnaire, including the validated Helsinki chronic pain index (HCPI), was sent to owners whose dog was known to not have had a tibial plateau leveling osteotomy (TPLO). Statistical analysis was performed on data, where significance was established at p < 0.05. Results Stifle arthroscopy findings at 90 days posttreatment were available on 13 of the 36 dogs. In nine dogs, a fully intact CCL with marked neovascularization and a normal fiber pattern was found with all previous regions of disruption healed. One dog revealed significant improvement and received an additional injection. The remaining three dogs had a >50% CCL tear, and a TPLO was performed. Four additional dogs were known to have had a TPLO performed elsewhere. Baseline and day 90 posttreatment objective gait analyses were available on 11 of the 36 dogs. A significant difference was found between the treated limb total pressure index percent (TPI%) at day 0 and day 90 (p = 0.0124), and between the treated limb and contralateral limb TPI% at day 0 (p = 0.0003). No significant difference was found between the treated limb and contralateral limb TPI% at day 90 (p = 0.7466). Twelve questionnaires were returned, of which eight were performance/sporting dogs. Seven of the eight had returned to sport; the remaining dog had just begun a return to sport conditioning program 6 months posttreatment. All 12 respondents believed that their dog had an excellent or very good quality of life and rated their dog’s procedural outcome as excellent or good. Conclusion The use of BMAC–PRP and ADPC–PRP shows promise for the treatment of early partial CCL tears in dogs. Further studies are needed and should be randomized, blinded, and controlled.
Collapse
Affiliation(s)
- Sherman O Canapp
- Veterinary Orthopedic & Sports Medicine Group , Annapolis Junction, MD , USA
| | | | - Catherine Cox
- Veterinary Orthopedic & Sports Medicine Group , Annapolis Junction, MD , USA
| | - Victor Ibrahim
- Regenerative Orthopedic & Sports Medicine , Washington, DC , USA
| | - Brittany J Carr
- Veterinary Orthopedic & Sports Medicine Group , Annapolis Junction, MD , USA
| |
Collapse
|
39
|
Farraro KF, Sasaki N, Woo SLY, Kim KE, Tei MM, Speziali A, McMahon PJ. Magnesium ring device to restore function of a transected anterior cruciate ligament in the goat stifle joint. J Orthop Res 2016; 34:2001-2008. [PMID: 26916011 PMCID: PMC9583724 DOI: 10.1002/jor.23210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/18/2016] [Indexed: 02/04/2023]
Abstract
A bioresorbable, mono-crystalline magnesium (Mg) ring device and suture implantation technique were designed to connect the ends of a transected anterior cruciate ligament (ACL) to restabilize the knee and load the ACL to prevent disuse atrophy of its insertion sites and facilitate its healing. To test its application, cadaveric goat stifle joints were evaluated using a robotic/universal force-moment sensor testing system in three states: Intact, ACL-deficient, and after Mg ring repair, at 30°, 60°, and 90° of joint flexion. Under a 67-N anterior tibial load simulating that used in clinical examinations, the corresponding anterior tibial translation (ATT) and in-situ forces in the ACL and medial meniscus for 0 and 100 N of axial compression were obtained and compared with a control group treated with suture repair. In all cases, Mg ring repair reduced the ATT by over 50% compared to the ACL-deficient joint, and in-situ forces in the ACL and medial meniscus were restored to near normal levels, showing significant improvement over suture repair. These findings suggest that Mg ring repair could successfully stabilize the joint and load the ACL immediately after surgery, laying the framework for future in vivo studies to assess its utility for ACL healing. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2001-2008, 2016.
Collapse
Affiliation(s)
- Kathryn F. Farraro
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Norihiro Sasaki
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Savio L-Y. Woo
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Kwang E. Kim
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Matteo M. Tei
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Andrea Speziali
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| | - Patrick J. McMahon
- Department of Bioengineering, Musculoskeletal Research Center; Swanson School of Engineering, University of Pittsburgh; 405 Center for Bioengineering, 300 Technology Drive Pittsburgh Pennsylvania 15219
| |
Collapse
|
40
|
Muir P, Hans EC, Racette M, Volstad N, Sample SJ, Heaton C, Holzman G, Schaefer SL, Bloom DD, Bleedorn JA, Hao Z, Amene E, Suresh M, Hematti P. Autologous Bone Marrow-Derived Mesenchymal Stem Cells Modulate Molecular Markers of Inflammation in Dogs with Cruciate Ligament Rupture. PLoS One 2016; 11:e0159095. [PMID: 27575050 PMCID: PMC5005014 DOI: 10.1371/journal.pone.0159095] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/27/2016] [Indexed: 01/22/2023] Open
Abstract
Mid-substance rupture of the canine cranial cruciate ligament rupture (CR) and associated stifle osteoarthritis (OA) is an important veterinary health problem. CR causes stifle joint instability and contralateral CR often develops. The dog is an important model for human anterior cruciate ligament (ACL) rupture, where rupture of graft repair or the contralateral ACL is also common. This suggests that both genetic and environmental factors may increase ligament rupture risk. We investigated use of bone marrow-derived mesenchymal stem cells (BM-MSCs) to reduce systemic and stifle joint inflammatory responses in dogs with CR. Twelve dogs with unilateral CR and contralateral stable partial CR were enrolled prospectively. BM-MSCs were collected during surgical treatment of the unstable CR stifle and culture-expanded. BM-MSCs were subsequently injected at a dose of 2x106 BM-MSCs/kg intravenously and 5x106 BM-MSCs by intra-articular injection of the partial CR stifle. Blood (entry, 4 and 8 weeks) and stifle synovial fluid (entry and 8 weeks) were obtained after BM-MSC injection. No adverse events after BM-MSC treatment were detected. Circulating CD8+ T lymphocytes were lower after BM-MSC injection. Serum C-reactive protein (CRP) was decreased at 4 weeks and serum CXCL8 was increased at 8 weeks. Synovial CRP in the complete CR stifle was decreased at 8 weeks. Synovial IFNγ was also lower in both stifles after BM-MSC injection. Synovial/serum CRP ratio at diagnosis in the partial CR stifle was significantly correlated with development of a second CR. Systemic and intra-articular injection of autologous BM-MSCs in dogs with partial CR suppresses systemic and stifle joint inflammation, including CRP concentrations. Intra-articular injection of autologous BM-MSCs had profound effects on the correlation and conditional dependencies of cytokines using causal networks. Such treatment effects could ameliorate risk of a second CR by modifying the stifle joint inflammatory response associated with cranial cruciate ligament matrix degeneration or damage.
Collapse
Affiliation(s)
- Peter Muir
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
- * E-mail:
| | - Eric C. Hans
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Molly Racette
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Nicola Volstad
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Susannah J. Sample
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Caitlin Heaton
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Gerianne Holzman
- UW Veterinary Care Hospital, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan L. Schaefer
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Debra D. Bloom
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
| | - Jason A. Bleedorn
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Zhengling Hao
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Ermias Amene
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - M. Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Peiman Hematti
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, 53705, United States of America
| |
Collapse
|
41
|
Brophy RH, Tycksen ED, Sandell LJ, Rai MF. Changes in Transcriptome-Wide Gene Expression of Anterior Cruciate Ligament Tears Based on Time From Injury. Am J Sports Med 2016; 44:2064-75. [PMID: 27159315 DOI: 10.1177/0363546516643810] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tears are a common injury. The healing potential of the injured ACL is poorly understood and is considered limited. Therefore, most ACL tears that are treated surgically undergo reconstruction rather than repair. However, there has been renewed interest recently in repairing ACL tears despite unanswered questions regarding the healing capacity of the ACL. HYPOTHESIS Gene expression in the injured ACL varies with time from injury. STUDY DESIGN Descriptive laboratory study. METHODS Transcriptome-wide expression profiles of 24 human ACL remnants recovered at the time of surgical reconstruction were analyzed using the Agilent human 8x60K microarray platform. Gene ontology was performed on differentially expressed transcripts based on time from injury (acute, <3 months; intermediate, 3-12 months; chronic, >12 months). A subset of transcripts with large fold changes in expression between any 2 categories was validated via microfluidic digital polymerase chain reaction. RESULTS Numerous transcripts representing important biological processes were differentially expressed by time from injury. The most significant changes were noted between the acute and chronic groups. Expression of several extracellular matrix genes- namely, POSTN, COL5A1, COL1A1, and COL12A1-was lower in the chronic tears compared with acute and intermediate tears. In acute tears, processes representing angiogenesis and stem cell differentiation were affected. In intermediate tears, processes representing stem cell proliferation concomitant with cellular component organization/cellular localization were altered. In ACL tears more than 12 months out from injury, processes denoting myosin filament organization, cellular component organization/cell localization, and extracellular matrix organization were affected. CONCLUSION These findings are consistent with initial repair activity in the injured ACL, which declines with time from injury. Individual genes identified in this study, such as periostin, deserve further investigation into their role in tissue repair. CLINICAL RELEVANCE The decreased healing capacity of ACL tears over time is relevant to the development of effective techniques for repairing ACL tears and may have some significance for ACL reconstruction techniques as well. The potential for healing appears to be greatest in acute ACL tears, suggesting this window should be the focus of research for ACL repair.
Collapse
Affiliation(s)
- Robert H Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA
| | - Eric D Tycksen
- Genome Technology Access Center, Washington University in St Louis, St Louis, Missouri, USA
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA Department of Biomedical Engineering, Washington University in St Louis at Engineering and Applied Sciences, St Louis, Missouri, USA Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA
| |
Collapse
|
42
|
Yang X, Zhu TY, Wen LC, Cao YP, Liu C, Cui YP, Meng ZC, Liu H. Intraarticular Injection of Allogenic Mesenchymal Stem Cells has a Protective Role for the Osteoarthritis. Chin Med J (Engl) 2016; 128:2516-23. [PMID: 26365972 PMCID: PMC4725555 DOI: 10.4103/0366-6999.164981] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Researchers initially proposed the substitution of apoptotic chondrocytes in the superficial cartilage by injecting mesenchymal stem cells (MSCs) intraarticularly. This effect was termed as bio-resurfacing. Little evidence supporting the treatment of osteoarthritis (OA) by the delivery of a MSC suspension exists. The aim of this study was to investigate the effects of injecting allogenic MSCs intraarticularly in a rat OA model and to evaluate the influence of immobility on the effects of this treatment. Methods: We established a rat knee OA model after 4 and 6 weeks and cultured primary bone marrow MSCs. A MSC suspension was injected into the articular space once per week for 3 weeks. A subgroup of knee joints was immobilized for 3 days after each injection, while the remaining joints were nonimmobilized. We used toluidine blue staining, Mankin scores, and TdT-mediated dUTP-biotin nick end labeling staining to evaluate the therapeutic effect of the injections. Comparisons between the therapy side and the control side of the knee joint were made using paired t-test, and comparisons between the immobilized and nonimmobilized subgroups were made using the unpaired t-test. A P value < 0.05 was considered significant. Results: The three investigative approaches revealed less degeneration on the therapy sides of the knee joints than the control sides in both the 4- and 6-week groups (P < 0.05), regardless of immobilization. No significant differences were observed between the immobilized and nonimmobilized subgroups (P > 0.05). Conclusions: Therapy involving the intraarticular injection of allogenic MSCs promoted cartilage repair in a rat arthritis model, and 3-day immobility after injection had little effect on this therapy.
Collapse
Affiliation(s)
| | | | | | - Yong-Ping Cao
- Department of Orthopedics, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | |
Collapse
|
43
|
Sakti M, Nakasa T, Shoji T, Usman MA, Kawanishi Y, Hamanishi M, Yusuf I, Ochi M. Acceleration of healing of the medial collateral ligament of the knee by local administration of synthetic microRNA-210 in a rat model. ASIA-PACIFIC JOURNAL OF SPORT MEDICINE ARTHROSCOPY REHABILITATION AND TECHNOLOGY 2015; 2:129-136. [PMID: 29264252 PMCID: PMC5730664 DOI: 10.1016/j.asmart.2015.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 11/29/2022]
Abstract
Background Injury to the medial collateral ligament (MCL) of the knee joint is the most common ligament injury of the knee. Ligament healing generally takes a long time. Micro-ribonucleic acid (miRNA) is one of the noncoding RNAs and plays a crucial role in physiological function; miRNA (miR)-210 is known as a potent factor of angiogenesis, which is an important initiator of ligament healing. The purpose of this study is to examine the effect of local injection of double-stranded (ds) miR-210 on the healing of the MCL of rat knee joint. Methods MCLs of Sprague-Dawley rats were cut transversely. After the fascia and skin were sutured, dsmiR-210 or control dsRNA was injected into the injured site of MCL. At 2 weeks and 4 weeks, histological analysis and immunofluorescence staining of vascular endothelial growth factor, isolectin B4, collagen type 1, and Ki67 as well as a mechanical test were performed. Analysis of complementary deoxyribonucleic acid (cDNA) microarray data was performed at 1 week. Results Histological analysis showed that parallel fibres in the injured site were organised at 2 weeks and became thicker at 4 weeks in the miR-210-treated group, whereas the injured site in controls was filled with loose fibrous tissues and was thinner than that in the miR-210-treated group. The number of blood vessels in the miR-210-treated group was significantly higher than that in controls (p < 0.05), and vascular endothelial growth factor, Ki67, and collagen type 1 in the miR-210-treated group were intensely expressed in the repaired site as compared to the control group. The mechanical test indicated that the ultimate failure load in the miR-210-treated group was significantly higher than that in the control group at 2 weeks. The cDNA microarray analysis showed significant upregulation of genes related to cell proliferation and cell differentiation, and genes involved in negative regulation of apoptosis. Conclusion This study showed that local injection of dsmiR-210 could accelerate MCL healing in rat, which is likely due to stimulation of angiogenesis at the healing site.
Collapse
Affiliation(s)
- Muhammad Sakti
- University of Hasanuddin, Makassar, South Sulawesi, Indonesia
- Corresponding author. Faculty of Medicine, University of Hasanuddin, Makassar. Jln. Perintis Kemerdekaan, Tamalanrea, 90000, South Sulawesi, Indonesia.
| | | | | | | | | | | | - Irawan Yusuf
- University of Hasanuddin, Makassar, South Sulawesi, Indonesia
| | | |
Collapse
|
44
|
Differentiation Effects of Platelet-Rich Plasma Concentrations on Synovial Fluid Mesenchymal Stem Cells from Pigs Cultivated in Alginate Complex Hydrogel. Int J Mol Sci 2015; 16:18507-21. [PMID: 26262616 PMCID: PMC4581257 DOI: 10.3390/ijms160818507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/21/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023] Open
Abstract
This article studied the effects of platelet-rich plasma (PRP) on the potential of synovial fluid mesenchymal stem cells (SF-MSCs) to differentiate. The PRP and SF-MSCs were obtained from the blood and knees of pigs, respectively. The identification of SF-MSCs and their ability to differentiate were studied by histological and surface epitopes, respectively. The SF-MSCs can undergo trilineage mesenchymal differentiation under osteogenic, chondrogenic, and adipocyte induction. The effects of various PRP concentrations (0%, 20% and 50% PRP) on differentiation were evaluated using the SF-MSCs-alginate system, such as gene expression and DNA proliferation. A 50% PRP concentration yielded better differentiation than the 20% PRP concentration. PRP favored the chondrogenesis of SF-MSCs over their osteogenesis in a manner that depended on the ratios of type II collagen/type I collagen and aggrecan/osteopontin. Eventually, PRP promoted the proliferation of SF-MSCs and induced chondrogenic differentiation of SF-MSCs in vitro. Both PRP and SF-MSCs could be feasibly used in regenerative medicine and orthopedic surgeries.
Collapse
|
45
|
Centeno CJ, Pitts J, Al-Sayegh H, Freeman MD. Anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow nucleated cells: a case series. J Pain Res 2015; 8:437-47. [PMID: 26261424 PMCID: PMC4527573 DOI: 10.2147/jpr.s86244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction This was a prospective case series designed to investigate treatment for anterior cruciate ligament (ACL) tears using an injection of autologous bone marrow concentrate. Methods Consecutive adult patients presenting to a private outpatient interventional musculoskeletal and pain practice with knee pain, ACL laxity on exam, and magnetic resonance imaging (MRI) evidence of a grade 1, 2, or 3 ACL tears with less than 1 cm retraction were eligible for this study. Eligible patients were treated with an intraligamentous injection of autologous bone marrow concentrate, using fluoroscopic guidance. Pre- and postprocedural sagittal MRI images of the ACLs were analyzed using ImageJ software to objectively quantify changes between pre- and posttreatment scans. Five different types of measurement of ACL pixel intensity were examined as a proxy for ligament integrity. In addition pain visual analog scale (VAS) and Lower Extremity Functional Scale (LEFS) values were recorded at baseline and at 1 month, 3 months, 6 months, and annually postinjection. Objective outcomes measured were pre- to post-MRI measurement changes, as analyzed by the ImageJ software. Subjective outcomes measured were changes in the VAS and LEFS, and a self-rated percentage improvement. Results Seven of ten patients showed improvement in at least four of five objective measures of ACL integrity in their postprocedure MRIs. In the entire study group, the mean gray value, median, raw integrated density, and modal gray value all decreased toward low-signal ACLs (P=0.01, P=0.02, P=0.002, and P=0.08), indications of improved ligament integrity. Seven of ten patients responded to the self-rated metrics follow up. The mean VAS change was a decrease of 1.7 (P=0.25), the mean LEFS change was an increase of 23.3 (P=0.03), and mean reported improvement was 86.7%. Conclusion Based on this small case series, autologous bone marrow concentrate shows promise in the treatment of grade 1, 2, and possibly grade 3 ACL tears without retraction. Further investigation using a controlled study design is warranted.
Collapse
Affiliation(s)
- Christopher J Centeno
- Centeno-Schultz Clinic, Broomfield, CO, USA ; Regenerative Sciences, LLC., Broomfield, CO, USA
| | - John Pitts
- Centeno-Schultz Clinic, Broomfield, CO, USA
| | | | - Michael D Freeman
- Public Health Department, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
46
|
Combined effect of ligament stem cells and umbilical-cord-blood-derived CD34+ cells on ligament healing. Cell Tissue Res 2015. [DOI: 10.1007/s00441-015-2250-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Smith J, Hackel JG, Khan U, Pawlina W, Sellon JL. Sonographically Guided Anterior Cruciate Ligament Injection: Technique and Validation. PM R 2015; 7:736-745. [PMID: 25637471 DOI: 10.1016/j.pmrj.2015.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To describe and validate a practical technique for sonographically guided anterior cruciate ligament (ACL) injections. DESIGN Prospective, cadaveric laboratory investigation. SETTING Procedural skills laboratory in a tertiary medical center. SUBJECTS Ten unembalmed, cadaveric mid-thigh-knee-ankle foot specimens (5 left knees and 5 right knees; 5 male and 5 female) from 10 donors aged 76 to 93 years (mean 85.6 years) with body mass indices of 17.6 to 42.2 kg/m(2) (mean 28.8 kg/m(2)). METHODS A single, experienced operator used a 22-gauge, 63.5-mm stainless steel needle and a 12-3-MHz linear transducer to inject 1.5 mL of diluted colored latex into the ACLs of 10 unembalmed cadaveric specimens via an in-plane, caudad-to-cephalad approach, long axis to the ACL. At a minimum of 24 hours postinjection, specimens were dissected, and the presence and distribution of latex within the ACL assessed by a study co-investigator. MAIN OUTCOME Presence and distribution of latex within the ACL. RESULTS All 10 injections accurately delivered latex into the proximal (femoral), midsubstance, and distal (tibial) portions of the ACL. No specimens exhibited evidence of needle injury or latex infiltration with respect to the menisci, hyaline cartilage, or posterior cruciate ligament. CONCLUSIONS Sonographically guided intra-ligamentous ACL injections are technically feasible and can be performed with a high degree of accuracy. Sonographically guided ACL injections could be considered for research and clinical purposes to directly deliver injectable agents into the healing ACL postinjury or postreconstruction.
Collapse
Affiliation(s)
- Jay Smith
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, W14, Mayo Building, 200 1st St, SW, Rochester, MN 55905; and Departments of Radiology and Anatomy, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | | | - Umar Khan
- Regenerative Orthopedic and Sports Medicine Institute, Bowling Green, KY
| | - Wojciech Pawlina
- Department of Anatomy, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Jacob L Sellon
- Department of Physical Medicine & Rehabilitation, Mayo Clinic Sports Medicine Center, Mayo Clinic, Rochester, MN
| |
Collapse
|
48
|
Saether EE, Chamberlain CS, Leiferman EM, Kondratko-Mittnacht JR, Li WJ, Brickson SL, Vanderby R. Enhanced medial collateral ligament healing using mesenchymal stem cells: dosage effects on cellular response and cytokine profile. Stem Cell Rev Rep 2015; 10:86-96. [PMID: 24174129 DOI: 10.1007/s12015-013-9479-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have potential therapeutic applications for musculoskeletal injuries due to their ability to differentiate into several tissue cell types and modulate immune and inflammatory responses. These immune-modulatory properties were examined in vivo during early stage rat medial collateral ligament healing. Two different cell doses (low dose 1 × 10(6) or high dose 4 × 10(6) MSCs) were administered at the time of injury and compared with normal ligament healing at days 5 and 14 post-injury. At both times, the high dose MSC group demonstrated a significant decrease in M2 macrophages compared to controls. At day 14, fewer M1 macrophages were detected in the low dose group compared to the high dose group. These results, along with significant changes in procollagen I, proliferating cells, and endothelialization suggest that MSCs can alter the cellular response during healing in a dose-dependent manner. The higher dose ligaments also had increased expression of several pro-inflammatory cytokines at day 5 (IL-1β, IFNγ, IL-2) and increased expression of IL-12 at day 14. Mechanical testing at day 14 revealed increased failure strength and stiffness in low dose ligaments compared to controls. Based on these improved mechanical properties, MSCs enhanced functional healing when applied at a lower dose. Different doses of MSCs uniquely affected the cellular response and cytokine expression in healing ligaments. Interestingly, the lower dose of cells proved to be most effective in improving functional properties.
Collapse
Affiliation(s)
- Erin E Saether
- Department of Orthopedics and Rehabilitation, University of Wisconsin, 1111 Highland Ave., 5th Floor WIMR, Madison, WI, 53705, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Engraftment of autologous bone marrow cells into the injured cranial cruciate ligament in dogs. Vet J 2014; 202:448-54. [DOI: 10.1016/j.tvjl.2014.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022]
|
50
|
Abstract
Tears of the anterior cruciate ligament (ACL) are very frequent injuries, particularly in young and active people. Arthroscopic reconstruction using tendon auto- or allograft represents the gold-standard for the management of ACL tears. Interestingly, the ACL has the potential to heal upon intensive non-surgical rehabilitation procedures. Several biological factors influence this healing process as local intraligamentous cytokines and mainly cell repair mechanisms controlled by stem cells or progenitor cells. Understanding the mechanisms of this regeneration process and the cells involved may pave the way for novel, less invasive and biology-based strategies for ACL repair. This review aims to focus on the current knowledge on the mechanisms of ACL healing, the nature and potential of ligament derived stem/progenitor cells as well as on the potential and the limitations of using mesenchymal stem cells (MSCs) for treating injured ACL.
Collapse
|