1
|
Kumar R, Yadav G, Kuddus M, Ashraf GM, Singh R. Unlocking the microbial studies through computational approaches: how far have we reached? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48929-48947. [PMID: 36920617 PMCID: PMC10016191 DOI: 10.1007/s11356-023-26220-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/24/2023] [Indexed: 04/16/2023]
Abstract
The metagenomics approach accelerated the study of genetic information from uncultured microbes and complex microbial communities. In silico research also facilitated an understanding of protein-DNA interactions, protein-protein interactions, docking between proteins and phyto/biochemicals for drug design, and modeling of the 3D structure of proteins. These in silico approaches provided insight into analyzing pathogenic and nonpathogenic strains that helped in the identification of probable genes for vaccines and antimicrobial agents and comparing whole-genome sequences to microbial evolution. Artificial intelligence, more precisely machine learning (ML) and deep learning (DL), has proven to be a promising approach in the field of microbiology to handle, analyze, and utilize large data that are generated through nucleic acid sequencing and proteomics. This enabled the understanding of the functional and taxonomic diversity of microorganisms. ML and DL have been used in the prediction and forecasting of diseases and applied to trace environmental contaminants and environmental quality. This review presents an in-depth analysis of the recent application of silico approaches in microbial genomics, proteomics, functional diversity, vaccine development, and drug design.
Collapse
Affiliation(s)
- Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah , 27272, United Arab Emirates
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Hao Y, Jing XY, Sun Q. Joint learning sample similarity and correlation representation for cancer survival prediction. BMC Bioinformatics 2022; 23:553. [PMID: 36536289 PMCID: PMC9761951 DOI: 10.1186/s12859-022-05110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As a highly aggressive disease, cancer has been becoming the leading death cause around the world. Accurate prediction of the survival expectancy for cancer patients is significant, which can help clinicians make appropriate therapeutic schemes. With the high-throughput sequencing technology becoming more and more cost-effective, integrating multi-type genome-wide data has been a promising method in cancer survival prediction. Based on these genomic data, some data-integration methods for cancer survival prediction have been proposed. However, existing methods fail to simultaneously utilize feature information and structure information of multi-type genome-wide data. RESULTS We propose a Multi-type Data Joint Learning (MDJL) approach based on multi-type genome-wide data, which comprehensively exploits feature information and structure information. Specifically, MDJL exploits correlation representations between any two data types by cross-correlation calculation for learning discriminant features. Moreover, based on the learned multiple correlation representations, MDJL constructs sample similarity matrices for capturing global and local structures across different data types. With the learned discriminant representation matrix and fused similarity matrix, MDJL constructs graph convolutional network with Cox loss for survival prediction. CONCLUSIONS Experimental results demonstrate that our approach substantially outperforms established integrative methods and is effective for cancer survival prediction.
Collapse
Affiliation(s)
- Yaru Hao
- grid.49470.3e0000 0001 2331 6153School of Computer Science, Wuhan University, Wuhan, China
| | - Xiao-Yuan Jing
- grid.49470.3e0000 0001 2331 6153School of Computer Science, Wuhan University, Wuhan, China ,grid.459577.d0000 0004 1757 6559Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis and School of Computer, Guangdong University of Petrochemical Technology, Maoming, China ,grid.41156.370000 0001 2314 964XState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Qixing Sun
- grid.49470.3e0000 0001 2331 6153School of Computer Science, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Gu X, Ding Y, Xiao P, He T. A GHKNN model based on the physicochemical property extraction method to identify SNARE proteins. Front Genet 2022; 13:935717. [PMID: 36506312 PMCID: PMC9727185 DOI: 10.3389/fgene.2022.935717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
There is a great deal of importance to SNARE proteins, and their absence from function can lead to a variety of diseases. The SNARE protein is known as a membrane fusion protein, and it is crucial for mediating vesicle fusion. The identification of SNARE proteins must therefore be conducted with an accurate method. Through extensive experiments, we have developed a model based on graph-regularized k-local hyperplane distance nearest neighbor model (GHKNN) binary classification. In this, the model uses the physicochemical property extraction method to extract protein sequence features and the SMOTE method to upsample protein sequence features. The combination achieves the most accurate performance for identifying all protein sequences. Finally, we compare the model based on GHKNN binary classification with other classifiers and measure them using four different metrics: SN, SP, ACC, and MCC. In experiments, the model performs significantly better than other classifiers.
Collapse
Affiliation(s)
- Xingyue Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Tao He
- Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
4
|
Schuler J, Falls Z, Mangione W, Hudson ML, Bruggemann L, Samudrala R. Evaluating the performance of drug-repurposing technologies. Drug Discov Today 2022; 27:49-64. [PMID: 34400352 PMCID: PMC10014214 DOI: 10.1016/j.drudis.2021.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/20/2021] [Accepted: 08/08/2021] [Indexed: 01/22/2023]
Abstract
Drug-repurposing technologies are growing in number and maturing. However, comparisons to each other and to reality are hindered because of a lack of consensus with respect to performance evaluation. Such comparability is necessary to determine scientific merit and to ensure that only meaningful predictions from repurposing technologies carry through to further validation and eventual patient use. Here, we review and compare performance evaluation measures for these technologies using version 2 of our shotgun repurposing Computational Analysis of Novel Drug Opportunities (CANDO) platform to illustrate their benefits, drawbacks, and limitations. Understanding and using different performance evaluation metrics ensures robust cross-platform comparability, enabling us to continue to strive toward optimal repurposing by decreasing the time and cost of drug discovery and development.
Collapse
Affiliation(s)
- James Schuler
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Matthew L Hudson
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Sun C, Xuan P, Zhang T, Ye Y. Graph Convolutional Autoencoder and Generative Adversarial Network-Based Method for Predicting Drug-Target Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:455-464. [PMID: 32750854 DOI: 10.1109/tcbb.2020.2999084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The computational prediction of novel drug-target interactions (DTIs) may effectively speed up the process of drug repositioning and reduce its costs. Most previous methods integrated multiple kinds of connections about drugs and targets by constructing shallow prediction models. These methods failed to deeply learn the low-dimension feature vectors for drugs and targets and ignored the distribution of these feature vectors. We proposed a graph convolutional autoencoder and generative adversarial network (GAN)-based method, GANDTI, to predict DTIs. We constructed a drug-target heterogeneous network to integrate various connections related to drugs and targets, i.e., the similarities and interactions between drugs or between targets and the interactions between drugs and targets. A graph convolutional autoencoder was established to learn the network embeddings of the drug and target nodes in a low-dimensional feature space, and the autoencoder deeply integrated different kinds of connections within the network. A GAN was introduced to regularize the feature vectors of nodes into a Gaussian distribution. Severe class imbalance exists between known and unknown DTIs. Thus, we constructed a classifier based on an ensemble learning model, LightGBM, to estimate the interaction propensities of drugs and targets. This classifier completely exploited all unknown DTIs and counteracted the negative effect of class imbalance. The experimental results indicated that GANDTI outperforms several state-of-the-art methods for DTI prediction. Additionally, case studies of five drugs demonstrated the ability of GANDTI to discover the potential targets for drugs.
Collapse
|
6
|
Dou L, Zhou W, Zhang L, Xu L, Han K. Accurate identification of RNA D modification using multiple features. RNA Biol 2021; 18:2236-2246. [PMID: 33729104 PMCID: PMC8632091 DOI: 10.1080/15476286.2021.1898160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022] Open
Abstract
As one of the common post-transcriptional modifications in tRNAs, dihydrouridine (D) has prominent effects on regulating the flexibility of tRNA as well as cancerous diseases. Facing with the expensive and time-consuming sequencing techniques to detect D modification, precise computational tools can largely promote the progress of molecular mechanisms and medical developments. We proposed a novel predictor, called iRNAD_XGBoost, to identify potential D sites using multiple RNA sequence representations. In this method, by considering the imbalance problem using hybrid sampling method SMOTEEEN, the XGBoost-selected top 30 features are applied to construct model. The optimized model showed high Sn and Sp values of 97.13% and 97.38% over jackknife test, respectively. For the independent experiment, these two metrics separately achieved 91.67% and 94.74%. Compared with iRNAD method, this model illustrated high generalizability and consistent prediction efficiencies for positive and negative samples, which yielded satisfactory MCC scores of 0.94 and 0.86, respectively. It is inferred that the chemical property and nucleotide density features (CPND), electron-ion interaction pseudopotential (EIIP and PseEIIP) as well as dinucleotide composition (DNC) are crucial to the recognition of D modification. The proposed predictor is a promising tool to help experimental biologists investigate molecular functions.
Collapse
Affiliation(s)
- Lijun Dou
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, GuangdongChina
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, SichuanChina
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, HeilongjiangChina
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, GuangdongChina
| | - Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, HeilongjiangChina
| |
Collapse
|
7
|
Abstract
Background:
Bioluminescence is a unique and significant phenomenon in nature.
Bioluminescence is important for the lifecycle of some organisms and is valuable in biomedical
research, including for gene expression analysis and bioluminescence imaging technology. In recent
years, researchers have identified a number of methods for predicting bioluminescent proteins
(BLPs), which have increased in accuracy, but could be further improved.
Method:
In this study, a new bioluminescent proteins prediction method, based on a voting
algorithm, is proposed. Four methods of feature extraction based on the amino acid sequence were
used. 314 dimensional features in total were extracted from amino acid composition,
physicochemical properties and k-spacer amino acid pair composition. In order to obtain the highest
MCC value to establish the optimal prediction model, a voting algorithm was then used to build the
model. To create the best performing model, the selection of base classifiers and vote counting rules
are discussed.
Results:
The proposed model achieved 93.4% accuracy, 93.4% sensitivity and
91.7% specificity in the test set, which was better than any other method. A previous prediction of
bioluminescent proteins in three lineages was also improved using the model building method,
resulting in greatly improved accuracy.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba Science City, Japan
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Shuguang Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Xuan P, Zhang Y, Cui H, Zhang T, Guo M, Nakaguchi T. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction. Brief Bioinform 2021; 22:6220173. [PMID: 33839743 DOI: 10.1093/bib/bbab119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023] Open
Abstract
MOTIVATION Identifying the proteins that interact with drugs can reduce the cost and time of drug development. Existing computerized methods focus on integrating drug-related and protein-related data from multiple sources to predict candidate drug-target interactions (DTIs). However, multi-scale neighboring node sequences and various kinds of drug and protein similarities are neither fully explored nor considered in decision making. RESULTS We propose a drug-target interaction prediction method, DTIP, to encode and integrate multi-scale neighbouring topologies, multiple kinds of similarities, associations, interactions related to drugs and proteins. We firstly construct a three-layer heterogeneous network to represent interactions and associations across drug, protein, and disease nodes. Then a learning framework based on fully-connected autoencoder is proposed to learn the nodes' low-dimensional feature representations within the heterogeneous network. Secondly, multi-scale neighbouring sequences of drug and protein nodes are formulated by random walks. A module based on bidirectional gated recurrent unit is designed to learn the neighbouring sequential information and integrate the low-dimensional features of nodes. Finally, we propose attention mechanisms at feature level, neighbouring topological level and similarity level to learn more informative features, topologies and similarities. The prediction results are obtained by integrating neighbouring topologies, similarities and feature attributes using a multiple layer CNN. Comprehensive experimental results over public dataset demonstrated the effectiveness of our innovative features and modules. Comparison with other state-of-the-art methods and case studies of five drugs further validated DTIP's ability in discovering the potential candidate drug-related proteins.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Yu Zhang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| |
Collapse
|
9
|
Screening of Prospective Plant Compounds as H1R and CL1R Inhibitors and Its Antiallergic Efficacy through Molecular Docking Approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021. [DOI: 10.1155/2021/6683407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Allergens have the ability to enter the body and cause illness. Leukotriene is the widespread allergen which could stimulate mast cells to discharge histamine which causes allergy symptoms. An effective strategy for treating leukotriene-induced allergy is to find the inhibitors of leukotriene or histamine activity from phytochemicals. For this purpose, a library of 8,500 phytochemicals was generated using MOE software. The structures of histamine-1 receptor and cysteinyl leukotriene receptor-1 were predicted by the homology modeling method through the SWISS model. The phytochemicals were docked with predicted structures of histamine-1 and cysteinyl leukotriene receptor-1 in MOE software to determine the binding affinity of the phytochemicals against the targets. Moreover, chemoinformatics properties and ADMET of phytochemicals were assessed to find the drug likeness behavior of compounds. Compound ID 10054216 has the lowest
-score value for H-1 receptor that is -18.9186 kcal/mol which is lower than the value of standard -15.167 kcal/mol. The other compounds 393471, 71448939, 10722577, and 442614 also showed good
-score values than the standard. Moreover, compound ID 11843082 has the lowest
-score value for CL1R that is -15.481 kcal/mol which is lower than the value of standard -12.453 kcal/mol. The other compounds 72284, 5282102, 66559251, and 102506430 also showed good
-score values than the standard. In this research article, we performed molecular docking to find the best inhibitors against H1R and CL1R and their antiallergic efficacy. This in silico knowledge will be helpful in near future for the design of novel, safe, and less costing H-1 receptor and CL1R inhibitors with the aim to improve human life quality.
Collapse
|
10
|
Shi W, Chen X, Deng L. A Review of Recent Developments and Progress in Computational Drug Repositioning. Curr Pharm Des 2021; 26:3059-3068. [PMID: 31951162 DOI: 10.2174/1381612826666200116145559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022]
Abstract
Computational drug repositioning is an efficient approach towards discovering new indications for existing drugs. In recent years, with the accumulation of online health-related information and the extensive use of biomedical databases, computational drug repositioning approaches have achieved significant progress in drug discovery. In this review, we summarize recent advancements in drug repositioning. Firstly, we explicitly demonstrated the available data source information which is conducive to identifying novel indications. Furthermore, we provide a summary of the commonly used computing approaches. For each method, we briefly described techniques, case studies, and evaluation criteria. Finally, we discuss the limitations of the existing computing approaches.
Collapse
Affiliation(s)
- Wanwan Shi
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xuegong Chen
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
11
|
Lv Z, Ding H, Wang L, Zou Q. A Convolutional Neural Network Using Dinucleotide One-hot Encoder for identifying DNA N6-Methyladenine Sites in the Rice Genome. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.09.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Dou L, Li X, Zhang L, Xiang H, Xu L. iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier. J Proteome Res 2020; 20:191-201. [PMID: 33090794 DOI: 10.1021/acs.jproteome.0c00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lysine glutarylation is a newly reported post-translational modification (PTM) that plays significant roles in regulating metabolic and mitochondrial processes. Accurate identification of protein glutarylation is the primary task to better investigate molecular functions and various applications. Due to the common disadvantages of the time-consuming and expensive nature of traditional biological sequencing techniques as well as the explosive growth of protein data, building precise computational models to rapidly diagnose glutarylation is a popular and feasible solution. In this work, we proposed a novel AdaBoost-based predictor called iGlu_AdaBoost to distinguish glutarylation and non-glutarylation sequences. Here, the top 37 features were chosen from a total of 1768 combined features using Chi2 following incremental feature selection (IFS) to build the model, including 188D, the composition of k-spaced amino acid pairs (CKSAAP), and enhanced amino acid composition (EAAC). With the help of the hybrid-sampling method SMOTE-Tomek, the AdaBoost algorithm was performed with satisfactory recall, specificity, and AUC values of 87.48%, 72.49%, and 0.89 over 10-fold cross validation as well as 72.73%, 71.92%, and 0.63 over independent test, respectively. Further feature analysis inferred that positively charged amino acids RK play critical roles in glutarylation recognition. Our model presented the well generalization ability and consistency of the prediction results of positive and negative samples, which is comparable to four published tools. The proposed predictor is an efficient tool to find potential glutarylation sites and provides helpful suggestions for further research on glutarylation mechanisms and concerned disease treatments.
Collapse
Affiliation(s)
- Lijun Dou
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen 518055, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaoling Li
- Department of Oncology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin 150000, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Huaikun Xiang
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
13
|
Xu L, Liang G, Chen B, Tan X, Xiang H, Liao C. A Computational Method for the Identification of Endolysins and Autolysins. Protein Pept Lett 2020; 27:329-336. [PMID: 31577192 DOI: 10.2174/0929866526666191002104735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/27/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. OBJECTIVE In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. METHODS We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. RESULTS Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. CONCLUSION The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.
Collapse
Affiliation(s)
- Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Guangmin Liang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Baowen Chen
- School of Software, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Xu Tan
- School of Software, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Huaikun Xiang
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Predicting Preference of Transcription Factors for Methylated DNA Using Sequence Information. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1043-1050. [PMID: 33294291 PMCID: PMC7691157 DOI: 10.1016/j.omtn.2020.07.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors play key roles in cell-fate decisions by regulating 3D genome conformation and gene expression. The traditional view is that methylation of DNA hinders transcription factors binding to them, but recent research has shown that many transcription factors prefer to bind to methylated DNA. Therefore, identifying such transcription factors and understanding their functions is a stepping-stone for studying methylation-mediated biological processes. In this paper, a two-step discriminated method was proposed to recognize transcription factors and their preference for methylated DNA based only on sequences information. In the first step, the proposed model was used to discriminate transcription factors from non-transcription factors. The areas under the curve (AUCs) are 0.9183 and 0.9116, respectively, for the 5-fold cross-validation test and independent dataset test. Subsequently, for the classification of transcription factors that prefer methylated DNA and transcription factors that prefer non-methylated DNA, our model could produce the AUCs of 0.7744 and 0.7356, respectively, for the 5-fold cross-validation test and independent dataset test. Based on the proposed model, a user-friendly web server called TFPred was built, which can be freely accessed at http://lin-group.cn/server/TFPred/.
Collapse
|
15
|
Yu L, Shi Y, Zou Q, Wang S, Zheng L, Gao L. Exploring Drug Treatment Patterns Based on the Action of Drug and Multilayer Network Model. Int J Mol Sci 2020; 21:E5014. [PMID: 32708644 PMCID: PMC7404256 DOI: 10.3390/ijms21145014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023] Open
Abstract
Some drugs can be used to treat multiple diseases, suggesting potential patterns in drug treatment. Determination of drug treatment patterns can improve our understanding of the mechanisms of drug action, enabling drug repurposing. A drug can be associated with a multilayer tissue-specific protein-protein interaction (TSPPI) network for the diseases it is used to treat. Proteins usually interact with other proteins to achieve functions that cause diseases. Hence, studying drug treatment patterns is similar to studying common module structures in multilayer TSPPI networks. Therefore, we propose a network-based model to study the treatment patterns of drugs. The method was designated SDTP (studying drug treatment pattern) and was based on drug effects and a multilayer network model. To demonstrate the application of the SDTP method, we focused on analysis of trichostatin A (TSA) in leukemia, breast cancer, and prostate cancer. We constructed a TSPPI multilayer network and obtained candidate drug-target modules from the network. Gene ontology analysis provided insights into the significance of the drug-target modules and co-expression networks. Finally, two modules were obtained as potential treatment patterns for TSA. Through analysis of the significance, composition, and functions of the selected drug-target modules, we validated the feasibility and rationality of our proposed SDTP method for identifying drug treatment patterns. In summary, our novel approach used a multilayer network model to overcome the shortcomings of single-layer networks and combined the network with information on drug activity. Based on the discovered drug treatment patterns, we can predict the potential diseases that the drug can treat. That is, if a disease-related protein module has a similar structure, then the drug is likely to be a potential drug for the treatment of the disease.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Y.S.); (L.G.)
| | - Yayong Shi
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Y.S.); (L.G.)
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology, Chengdu 650004, China;
| | - Shuhang Wang
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Liping Zheng
- School of Computer Science and Technology, Liaocheng University, Liaocheng 252000, China;
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Y.S.); (L.G.)
| |
Collapse
|
16
|
Wang C, Zhao N, Sun K, Zhang Y. A Cancer Gene Module Mining Method Based on Bio-Network of Multi-Omics Gene Groups. Front Oncol 2020; 10:1159. [PMID: 32637361 PMCID: PMC7317001 DOI: 10.3389/fonc.2020.01159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
The initiation, promotion and progression of cancer are highly associated to the environment a human lives in as well as individual genetic factors. In view of the dangers to life and health caused by this abnormally complex systemic disease, many top scientific research institutions around the world have been actively carrying out research in order to discover the pathogenic mechanisms driving cancer occurrence and development. The emergence of high-throughput sequencing technology has greatly advanced oncology research and given rise to the revelation of important oncogenes and the interrelationship among them. Here, we have studied heterogeneous multi-level data within a context of integrated data, and scientifically introduced lncRNA omics data to construct multi-omics bio-network models, allowing the screening of key cancer-related gene groups. We propose a compactness clustering algorithm based on corrected cumulative rank scores, which uses the functional similarity between groups of genes as a distance measure to excavate key gene modules for abnormal regulation contained in gene groups through clustering. We also conducted a survival analysis using our results and found that our model could divide groups of different levels very well. The results also demonstrate that the integration of multi-omics biological data, key gene modules and their dysregulated gene groups can be discovered, which is crucial for cancer research.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ning Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kai Sun
- Thoracic Surgery Department, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Ying Zhang
- Department of Pharmacy, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| |
Collapse
|
17
|
Yuan L, Guo F, Wang L, Zou Q. Prediction of tumor metastasis from sequencing data in the era of genome sequencing. Brief Funct Genomics 2020; 18:412-418. [PMID: 31204784 DOI: 10.1093/bfgp/elz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/22/2019] [Accepted: 04/26/2019] [Indexed: 02/01/2023] Open
Abstract
Tumor metastasis is the key reason for the high mortality rate of tumor. Growing number of scholars have begun to pay attention to the research on tumor metastasis and have achieved satisfactory results in this field. The advent of the era of sequencing has enabled us to study cancer metastasis at the molecular level, which is essential for understanding the molecular mechanism of metastasis, identifying diagnostic markers and therapeutic targets and guiding clinical decision-making. We reviewed the metastasis-related studies using sequencing data, covering detection of metastasis origin sites, determination of metastasis potential and identification of distal metastasis sites. These findings include the discovery of relevant markers and the presentation of prediction tools. Finally, we discussed the challenge of studying metastasis considering the difficulty of obtaining metastatic cancer data, the complexity of tumor heterogeneity and the uncertainty of sample labels.
Collapse
Affiliation(s)
- Linlin Yuan
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Feng C, Ma Z, Yang D, Li X, Zhang J, Li Y. A Method for Prediction of Thermophilic Protein Based on Reduced Amino Acids and Mixed Features. Front Bioeng Biotechnol 2020; 8:285. [PMID: 32432088 PMCID: PMC7214540 DOI: 10.3389/fbioe.2020.00285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
The thermostability of proteins is a key factor considered during enzyme engineering, and finding a method that can identify thermophilic and non-thermophilic proteins will be helpful for enzyme design. In this study, we established a novel method combining mixed features and machine learning to achieve this recognition task. In this method, an amino acid reduction scheme was adopted to recode the amino acid sequence. Then, the physicochemical characteristics, auto-cross covariance (ACC), and reduced dipeptides were calculated and integrated to form a mixed feature set, which was processed using correlation analysis, feature selection, and principal component analysis (PCA) to remove redundant information. Finally, four machine learning methods and a dataset containing 500 random observations out of 915 thermophilic proteins and 500 random samples out of 793 non-thermophilic proteins were used to train and predict the data. The experimental results showed that 98.2% of thermophilic and non-thermophilic proteins were correctly identified using 10-fold cross-validation. Moreover, our analysis of the final reserved features and removed features yielded information about the crucial, unimportant and insensitive elements, it also provided essential information for enzyme design.
Collapse
Affiliation(s)
- Changli Feng
- College of Information Science and Technology, Taishan University, Tai’an, China
| | - Zhaogui Ma
- College of Information Science and Technology, Taishan University, Tai’an, China
| | - Deyun Yang
- College of Information Science and Technology, Taishan University, Tai’an, China
| | - Xin Li
- College of Information Science and Technology, Taishan University, Tai’an, China
| | - Jun Zhang
- Department of Rehabilitation, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Yanjuan Li
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| |
Collapse
|
19
|
Hou R, Wang L, Wu YJ. Predicting ATP-Binding Cassette Transporters Using the Random Forest Method. Front Genet 2020; 11:156. [PMID: 32269586 PMCID: PMC7109328 DOI: 10.3389/fgene.2020.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) proteins play important roles in a wide variety of species. These proteins are involved in absorbing nutrients, exporting toxic substances, and regulating potassium channels, and they contribute to drug resistance in cancer cells. Therefore, the identification of ABC transporters is an urgent task. The present study used 188D as the feature extraction method, which is based on sequence information and physicochemical properties. We also visualized the feature extracted by t-Distributed Stochastic Neighbor Embedding (t-SNE). The sample based on the features extracted by 188D may be separated. Further, random forest (RF) is an efficient classifier to identify proteins. Under the 10-fold cross-validation of the model proposed here for a training set, the average accuracy rate of 10 training sets was 89.54%. We obtained values of 0.87 for specificity, 0.92 for sensitivity, and 0.79 for MCC. In the testing set, the accuracy achieved was 89%. These results suggest that the model combining 188D with RF is an optimal tool to identify ABC transporters.
Collapse
Affiliation(s)
- Ruiyan Hou
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lida Wang
- Department of Scientific Research, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Meng C, Zhang J, Ye X, Guo F, Zou Q. Review and comparative analysis of machine learning-based phage virion protein identification methods. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140406. [PMID: 32135196 DOI: 10.1016/j.bbapap.2020.140406] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 02/01/2023]
Abstract
Phage virion protein (PVP) identification plays key role in elucidating relationships between phages and hosts. Moreover, PVP identification can facilitate the design of related biochemical entities. Recently, several machine learning approaches have emerged for this purpose and have shown their potential capacities. In this study, the proposed PVP identifiers are systemically reviewed, and the related algorithms and tools are comprehensively analyzed. We summarized the common framework of these PVP identifiers and constructed our own novel identifiers based upon the framework. Furthermore, we focus on a performance comparison of all PVP identifiers by using a training dataset and an independent dataset. Highlighting the pros and cons of these identifiers demonstrates that g-gap DPC (dipeptide composition) features are capable of representing characteristics of PVPs. Moreover, SVM (support vector machine) is proven to be the more effective classifier to distinguish PVPs and non-PVPs.
Collapse
Affiliation(s)
- Chaolu Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, China; College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Science City, Japan
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
21
|
Lv Z, Zhang J, Ding H, Zou Q. RF-PseU: A Random Forest Predictor for RNA Pseudouridine Sites. Front Bioeng Biotechnol 2020; 8:134. [PMID: 32175316 PMCID: PMC7054385 DOI: 10.3389/fbioe.2020.00134] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
One of the ubiquitous chemical modifications in RNA, pseudouridine modification is crucial for various cellular biological and physiological processes. To gain more insight into the functional mechanisms involved, it is of fundamental importance to precisely identify pseudouridine sites in RNA. Several useful machine learning approaches have become available recently, with the increasing progress of next-generation sequencing technology; however, existing methods cannot predict sites with high accuracy. Thus, a more accurate predictor is required. In this study, a random forest-based predictor named RF-PseU is proposed for prediction of pseudouridylation sites. To optimize feature representation and obtain a better model, the light gradient boosting machine algorithm and incremental feature selection strategy were used to select the optimum feature space vector for training the random forest model RF-PseU. Compared with previous state-of-the-art predictors, the results on the same benchmark data sets of three species demonstrate that RF-PseU performs better overall. The integrated average leave-one-out cross-validation and independent testing accuracy scores were 71.4% and 74.7%, respectively, representing increments of 3.63% and 4.77% versus the best existing predictor. Moreover, the final RF-PseU model for prediction was built on leave-one-out cross-validation and provides a reliable and robust tool for identifying pseudouridine sites. A web server with a user-friendly interface is accessible at http://148.70.81.170:10228/rfpseu.
Collapse
Affiliation(s)
- Zhibin Lv
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
22
|
Ru X, Wang L, Li L, Ding H, Ye X, Zou Q. Exploration of the correlation between GPCRs and drugs based on a learning to rank algorithm. Comput Biol Med 2020; 119:103660. [PMID: 32090901 DOI: 10.1016/j.compbiomed.2020.103660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/01/2023]
Abstract
Exploring the protein - drug correlation can not only solve the problem of selecting candidate compounds but also solve related problems such as drug redirection and finding potential drug targets. Therefore, many researchers have proposed different machine learning methods for prediction of protein-drug correlations. However, many existing models simply divide the protein-drug relationship into related or irrelevant categories and do not deeply explore the most relevant target (or drug) for a given drug (or target). In order to solve this problem, this paper applies the ranking concept to the prediction of the GPCR (G Protein-Coupled Receptors)-drug correlation. This study uses two different types of data sets to explore candidate compound and potential target problems, and both sets achieved good results. In addition, this study also found that the family to which a protein belongs is not an inherent factor that affects the ranking of GPCR-drug correlations; however, if the drug affects other family members of the protein, then the protein is likely to be a potential target of the drug. This study showed that the learning to rank algorithm is a good tool for exploring protein-drug correlations.
Collapse
Affiliation(s)
- Xiaoqing Ru
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China; School of Information and Electrical Engineering, Hebei University of Engineering, Handan, China
| | - Lida Wang
- Scientific Research Department, Heilongjiang Agricultural Recalmation General Hospital, Harbin, China.
| | - Lihong Li
- School of Information and Electrical Engineering, Hebei University of Engineering, Handan, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba Science City, Japan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
23
|
Yu L, Xu F, Gao L. Predict New Therapeutic Drugs for Hepatocellular Carcinoma Based on Gene Mutation and Expression. Front Bioeng Biotechnol 2020; 8:8. [PMID: 32047745 PMCID: PMC6997129 DOI: 10.3389/fbioe.2020.00008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/07/2020] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common primary liver tumor and is an important medical problem worldwide. However, the use of current therapies for HCC is no possible to be cured, and despite numerous attempts and clinical trials, there are not so many approved targeted treatments for HCC. So, it is necessary to identify additional treatment strategies to prevent the growth of HCC tumors. We are looking for a systematic drug repositioning bioinformatics method to identify new drug candidates for the treatment of HCC, which considers not only aberrant genomic information, but also the changes of transcriptional landscapes. First, we screen the collection of HCC feature genes, i.e., kernel genes, which frequently mutated in most samples of HCC based on human mutation data. Then, the gene expression data of HCC in TCGA are combined to classify the kernel genes of HCC. Finally, the therapeutic score (TS) of each drug is calculated based on the kolmogorov-smirnov statistical method. Using this strategy, we identify five drugs that associated with HCC, including three drugs that could treat HCC and two drugs that might have side-effect on HCC. In addition, we also make Connectivity Map (CMap) profiles similarity analysis and KEGG enrichment analysis on drug targets. All these findings suggest that our approach is effective for accurate predicting novel therapeutic options for HCC and easily to be extended to other tumors.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Fengdan Xu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
24
|
Cheng L, Zhao H, Wang P, Zhou W, Luo M, Li T, Han J, Liu S, Jiang Q. Computational Methods for Identifying Similar Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:590-604. [PMID: 31678735 PMCID: PMC6838934 DOI: 10.1016/j.omtn.2019.09.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/01/2023]
Abstract
Although our knowledge of human diseases has increased dramatically, the molecular basis, phenotypic traits, and therapeutic targets of most diseases still remain unclear. An increasing number of studies have observed that similar diseases often are caused by similar molecules, can be diagnosed by similar markers or phenotypes, or can be cured by similar drugs. Thus, the identification of diseases similar to known ones has attracted considerable attention worldwide. To this end, the associations between diseases at the molecular, phenotypic, and taxonomic levels were used to measure the pairwise similarity in diseases. The corresponding performance assessment strategies for these methods involving the terms “category-based,” “simulated-patient-based,” and “benchmark-data-based” were thus further emphasized. Then, frequently used methods were evaluated using a benchmark-data-based strategy. To facilitate the assessment of disease similarity scores, researchers have designed dozens of tools that implement these methods for calculating disease similarity. Currently, disease similarity has been advantageous in predicting noncoding RNA (ncRNA) function and therapeutic drugs for diseases. In this article, we review disease similarity methods, evaluation strategies, tools, and their applications in the biomedical community. We further evaluate the performance of these methods and discuss the current limitations and future trends for calculating disease similarity.
Collapse
Affiliation(s)
- Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hengqiang Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Tianxin Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Shulin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| |
Collapse
|
25
|
Wang C, Guo J, Zhao N, Liu Y, Liu X, Liu G, Guo M. A Cancer Survival Prediction Method Based on Graph Convolutional Network. IEEE Trans Nanobioscience 2019; 19:117-126. [PMID: 31443039 DOI: 10.1109/tnb.2019.2936398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Cancer, as the most challenging part in the human disease history, has always been one of the main threats to human life and health. The high mortality of cancer is largely due to the complexity of cancer and the significant differences in clinical outcomes. Therefore, it will be significant to improve accuracy of cancer survival prediction, which has become one of the main fields of cancer research. Many calculation models for cancer survival prediction have been proposed at present, but most of them generate prediction models only by using single genomic data or clinical data. Multiple genomic data and clinical data have not been integrated yet to take a comprehensive consideration of cancers and predict their survival. METHOD In order to effectively integrate multiple genomic data (including genetic expression, copy number alteration, DNA methylation and exon expression) and clinical data and apply them to predictive studies on cancer survival, similar network fusion algorithm (SNF) was proposed in this paper to integrate multiple genomic data and clinical data so as to generate sample similarity matrix, min-redundancy and max-relevance algorithm (mRMR) was used to conduct feature selection of multiple genomic data and clinical data of cancer samples and generate sample feature matrix, and finally two matrixes were used for semi-supervised training through graph convolutional network (GCN) so as to obtain a cancer survival prediction method integrating multiple genomic data and clinical data based on graph convolutional network (GCGCN). RESULT Performance indexes of GCGCN model indicate that both multiple genomic data and clinical data play significant roles in the accurate survival time prediction of cancer patients. It is compared with existing survival prediction methods, and results show that cancer survival prediction method GCGCN which integrates multiple genomic data and clinical data has obviously superior prediction effect than existing survival prediction methods. CONCLUSION All study results in this paper have verified effectiveness and superiority of GCGCN in the aspect of cancer survival prediction.
Collapse
|
26
|
Meng C, Wei L, Zou Q. SecProMTB: Support Vector Machine‐Based Classifier for Secretory Proteins Using Imbalanced Data Sets Applied toMycobacterium tuberculosis. Proteomics 2019; 19:e1900007. [DOI: 10.1002/pmic.201900007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Chaolu Meng
- College of Intelligence and ComputingTianjin University 300350 Tianjin China
- College of Computer and Information EngineeringInner Mongolia Agricultural University 010018 Hohhot China
| | - Leyi Wei
- College of Intelligence and ComputingTianjin University 300350 Tianjin China
| | - Quan Zou
- College of Intelligence and ComputingTianjin University 300350 Tianjin China
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China 610054 Chengdu China
- Center for Informational BiologyUniversity of Electronic Science and Technology of China 610054 Chengdu China
| |
Collapse
|
27
|
Xuan P, Sun C, Zhang T, Ye Y, Shen T, Dong Y. Gradient Boosting Decision Tree-Based Method for Predicting Interactions Between Target Genes and Drugs. Front Genet 2019; 10:459. [PMID: 31214240 PMCID: PMC6555260 DOI: 10.3389/fgene.2019.00459] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/30/2019] [Indexed: 02/01/2023] Open
Abstract
Determining the target genes that interact with drugs—drug–target interactions—plays an important role in drug discovery. Identification of drug–target interactions through biological experiments is time consuming, laborious, and costly. Therefore, using computational approaches to predict candidate targets is a good way to reduce the cost of wet-lab experiments. However, the known interactions (positive samples) and the unknown interactions (negative samples) display a serious class imbalance, which has an adverse effect on the accuracy of the prediction results. To mitigate the impact of class imbalance and completely exploit the negative samples, we proposed a new method, named DTIGBDT, based on gradient boosting decision trees, for predicting candidate drug–target interactions. We constructed a drug–target heterogeneous network that contains the drug similarities based on the chemical structures of drugs, the target similarities based on target sequences, and the known drug–target interactions. The topological information of the network was captured by random walks to update the similarities between drugs or targets. The paths between drugs and targets could be divided into multiple categories, and the features of each category of paths were extracted. We constructed a prediction model based on gradient boosting decision trees. The model establishes multiple decision trees with the extracted features and obtains the interaction scores between drugs and targets. DTIGBDT is a method of ensemble learning, and it effectively reduces the impact of class imbalance. The experimental results indicate that DTIGBDT outperforms several state-of-the-art methods for drug–target interaction prediction. In addition, case studies on Quetiapine, Clozapine, Olanzapine, Aripiprazole, and Ziprasidone demonstrate the ability of DTIGBDT to discover potential drug–target interactions.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Chang Sun
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin, China
| | - Yilin Ye
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tonghui Shen
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Yihua Dong
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| |
Collapse
|
28
|
Lin CH, Konecki DM, Liu M, Wilson SJ, Nassar H, Wilkins AD, Gleich DF, Lichtarge O. Multimodal network diffusion predicts future disease-gene-chemical associations. Bioinformatics 2019; 35:1536-1543. [PMID: 30304494 PMCID: PMC6499233 DOI: 10.1093/bioinformatics/bty858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/14/2018] [Accepted: 10/08/2018] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION Precision medicine is an emerging field with hopes to improve patient treatment and reduce morbidity and mortality. To these ends, computational approaches have predicted associations among genes, chemicals and diseases. Such efforts, however, were often limited to using just some available association types. This lowers prediction coverage and, since prior evidence shows that integrating heterogeneous data is likely beneficial, it may limit accuracy. Therefore, we systematically tested whether using more association types improves prediction. RESULTS We study multimodal networks linking diseases, genes and chemicals (drugs) by applying three diffusion algorithms and varying information content. Ten-fold cross-validation shows that these networks are internally consistent, both within and across association types. Also, diffusion methods recovered missing edges, even if all the edges from an entire mode of association were removed. This suggests that information is transferable between these association types. As a realistic validation, time-stamped experiments simulated the predictions of future associations based solely on information known prior to a given date. The results show that many future published results are predictable from current associations. Moreover, in most cases, using more association types increases prediction coverage without significantly decreasing sensitivity and specificity. In case studies, literature-supported validation shows that these predictions mimic human-formulated hypotheses. Overall, this study suggests that diffusion over a more comprehensive multimodal network will generate more useful hypotheses of associations among diseases, genes and chemicals, which may guide the development of precision therapies. AVAILABILITY AND IMPLEMENTATION Code and data are available at https://github.com/LichtargeLab/multimodal-network-diffusion. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chih-Hsu Lin
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Daniel M Konecki
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Meng Liu
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Stephen J Wilson
- Department of Biochemistry and Molecular Biology, Houston, TX, USA
| | - Huda Nassar
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Angela D Wilkins
- Departments of Molecular and Human Genetics, and Pharmacology, Houston, TX, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA
| | - David F Gleich
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Olivier Lichtarge
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Houston, TX, USA
- Departments of Molecular and Human Genetics, and Pharmacology, Houston, TX, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
29
|
Qu K, Guo F, Liu X, Lin Y, Zou Q. Application of Machine Learning in Microbiology. Front Microbiol 2019; 10:827. [PMID: 31057526 PMCID: PMC6482238 DOI: 10.3389/fmicb.2019.00827] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 02/01/2023] Open
Abstract
Microorganisms are ubiquitous and closely related to people's daily lives. Since they were first discovered in the 19th century, researchers have shown great interest in microorganisms. People studied microorganisms through cultivation, but this method is expensive and time consuming. However, the cultivation method cannot keep a pace with the development of high-throughput sequencing technology. To deal with this problem, machine learning (ML) methods have been widely applied to the field of microbiology. Literature reviews have shown that ML can be used in many aspects of microbiology research, especially classification problems, and for exploring the interaction between microorganisms and the surrounding environment. In this study, we summarize the application of ML in microbiology.
Collapse
Affiliation(s)
- Kaiyang Qu
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Xiangrong Liu
- School of Information Science and Technology, Xiamen University, Xiamen, China
| | - Yuan Lin
- School of Information Science and Technology, Xiamen University, Xiamen, China
- Department of System Integration, Sparebanken Vest, Bergen, Norway
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
30
|
Ru X, Li L, Wang C. Identification of Phage Viral Proteins With Hybrid Sequence Features. Front Microbiol 2019; 10:507. [PMID: 30972038 PMCID: PMC6443926 DOI: 10.3389/fmicb.2019.00507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/27/2019] [Indexed: 02/01/2023] Open
Abstract
The uniqueness of bacteriophages plays an important role in bioinformatics research. In real applications, the function of the bacteriophage virion proteins is the main area of interest. Therefore, it is very important to classify bacteriophage virion proteins and non-phage virion proteins accurately. Extracting comprehensive and effective sequence features from proteins plays a vital role in protein classification. In order to more fully represent protein information, this paper is more comprehensive and effective by combining the features extracted by the feature information representation algorithm based on sequence information (CCPA) and the feature representation algorithm based on sequence and structure information. After extracting features, the Max-Relevance-Max-Distance (MRMD) algorithm is used to select the optimal feature set with the strongest correlation between class labels and low redundancy between features. Given the randomness of the samples selected by the random forest classification algorithm and the randomness features for producing each node variable, a random forest method is employed to perform 10-fold cross-validation on the bacteriophage protein classification. The accuracy of this model is as high as 93.5% in the classification of phage proteins in this study. This study also found that, among the eight physicochemical properties considered, the charge property has the greatest impact on the classification of bacteriophage proteins These results indicate that the model discussed in this paper is an important tool in bacteriophage protein research.
Collapse
Affiliation(s)
- Xiaoqing Ru
- School of Information and Electrical Engineering, Hebei University of Engineering, Handan, China
| | - Lihong Li
- School of Information and Electrical Engineering, Hebei University of Engineering, Handan, China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
31
|
Zheng Y, Peng H, Ghosh S, Lan C, Li J. Inverse similarity and reliable negative samples for drug side-effect prediction. BMC Bioinformatics 2019; 19:554. [PMID: 30717666 PMCID: PMC7402513 DOI: 10.1186/s12859-018-2563-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/07/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND In silico prediction of potential drug side-effects is of crucial importance for drug development, since wet experimental identification of drug side-effects is expensive and time-consuming. Existing computational methods mainly focus on leveraging validated drug side-effect relations for the prediction. The performance is severely impeded by the lack of reliable negative training data. Thus, a method to select reliable negative samples becomes vital in the performance improvement. METHODS Most of the existing computational prediction methods are essentially based on the assumption that similar drugs are inclined to share the same side-effects, which has given rise to remarkable performance. It is also rational to assume an inverse proposition that dissimilar drugs are less likely to share the same side-effects. Based on this inverse similarity hypothesis, we proposed a novel method to select highly-reliable negative samples for side-effect prediction. The first step of our method is to build a drug similarity integration framework to measure the similarity between drugs from different perspectives. This step integrates drug chemical structures, drug target proteins, drug substituents, and drug therapeutic information as features into a unified framework. Then, a similarity score between each candidate negative drug and validated positive drugs is calculated using the similarity integration framework. Those candidate negative drugs with lower similarity scores are preferentially selected as negative samples. Finally, both the validated positive drugs and the selected highly-reliable negative samples are used for predictions. RESULTS The performance of the proposed method was evaluated on simulative side-effect prediction of 917 DrugBank drugs, comparing with four machine-learning algorithms. Extensive experiments show that the drug similarity integration framework has superior capability in capturing drug features, achieving much better performance than those based on a single type of drug property. Besides, the four machine-learning algorithms achieved significant improvement in macro-averaging F1-score (e.g., SVM from 0.655 to 0.898), macro-averaging precision (e.g., RBF from 0.592 to 0.828) and macro-averaging recall (e.g., KNN from 0.651 to 0.772) complimentarily attributed to the highly-reliable negative samples selected by the proposed method. CONCLUSIONS The results suggest that the inverse similarity hypothesis and the integration of different drug properties are valuable for side-effect prediction. The selection of highly-reliable negative samples can also make significant contributions to the performance improvement.
Collapse
Affiliation(s)
- Yi Zheng
- Advanced Analytics Institute, FEIT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Hui Peng
- Advanced Analytics Institute, FEIT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Shameek Ghosh
- Advanced Analytics Institute, FEIT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Chaowang Lan
- Advanced Analytics Institute, FEIT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Jinyan Li
- Advanced Analytics Institute, FEIT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| |
Collapse
|
32
|
Yu L, Zhao J, Gao L. Predicting Potential Drugs for Breast Cancer based on miRNA and Tissue Specificity. Int J Biol Sci 2018; 14:971-982. [PMID: 29989066 PMCID: PMC6036744 DOI: 10.7150/ijbs.23350] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 02/01/2023] Open
Abstract
Network-based computational method, with the emphasis on biomolecular interactions and biological data integration, has succeeded in drug development and created new directions, such as drug repositioning and drug combination. Drug repositioning, that is finding new uses for existing drugs to treat more patients, offers time, cost and efficiency benefits in drug development, especially when in silico techniques are used. MicroRNAs (miRNAs) play important roles in multiple biological processes and have attracted much scientific attention recently. Moreover, cumulative studies demonstrate that the mature miRNAs as well as their precursors can be targeted by small molecular drugs. At the same time, human diseases result from the disordered interplay of tissue- and cell lineage-specific processes. However, few computational researches predict drug-disease potential relationships based on miRNA data and tissue specificity. Therefore, based on miRNA data and the tissue specificity of diseases, we propose a new method named as miTS to predict the potential treatments for diseases. Firstly, based on miRNAs data, target genes and information of FDA (Food and Drug Administration) approved drugs, we evaluate the relationships between miRNAs and drugs in the tissue-specific PPI (protein-protein) network. Then, we construct a tripartite network: drug-miRNA-disease Finally, we obtain the potential drug-disease associations based on the tripartite network. In this paper, we take breast cancer as case study and focus on the top-30 predicted drugs. 25 of them (83.3%) are found having known connections with breast cancer in CTD (Comparative Toxicogenomics Database) benchmark and the other 5 drugs are potential drugs for breast cancer. We further evaluate the 5 newly predicted drugs from clinical records, literature mining, KEGG pathways enrichment analysis and overlapping genes between enriched pathways. For each of the 5 new drugs, strongly supported evidences can be found in three or more aspects. In particular, Regorafenib (DB08896) has 15 overlapping KEGG pathways with breast cancer and their p-values are all very small. In addition, whether in the literature curation or clinical validation, Regorafenib has a strong correlation with breast cancer. All the facts show that Regorafenib is likely to be a truly effective drug, worthy of our further study. It further follows that our method miTS is effective and practical for predicting new drug indications, which will provide potential values for treatments of complex diseases.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, P.R. China
| | - Jin Zhao
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, P.R. China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, P.R. China
| |
Collapse
|