1
|
Hans R, Sharma SK, Aickelin U. Optimised deep k-nearest neighbour's based diabetic retinopathy diagnosis(ODeep-NN) using retinal images. Health Inf Sci Syst 2024; 12:23. [PMID: 38469456 PMCID: PMC10924814 DOI: 10.1007/s13755-024-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/18/2024] [Indexed: 03/13/2024] Open
Abstract
Diabetes mellitus has been regarded as one of the prime health issues in present days, which can often lead to diabetic retinopathy, a complication of the disease that affects the eyes, causing loss of vision. For precisely detecting the condition's existence, clinicians are required to recognise the presence of lesions in colour fundus images, making it an arduous and time-consuming task. To deal with this problem, a lot of work has been undertaken to develop deep learning-based computer-aided diagnosis systems that assist clinicians in making accurate diagnoses of the diseases in medical images. Contrariwise, the basic operations involved in deep learning models lead to the extraction of a bulky set of features, further taking a long period of training to predict the existence of the disease. For effective execution of these models, feature selection becomes an important task that aids in selecting the most appropriate features, with an aim to increase the classification accuracy. This research presents an optimised deep k-nearest neighbours'-based pipeline model in a bid to amalgamate the feature extraction capability of deep learning models with nature-inspired metaheuristic algorithms, further using k-nearest neighbour algorithm for classification. The proposed model attains an accuracy of 97.67 and 98.05% on two different datasets considered, outperforming Resnet50 and AlexNet deep learning models. Additionally, the experimental results also portray an analysis of five different nature-inspired metaheuristic algorithms, considered for feature selection on the basis of various evaluation parameters.
Collapse
Affiliation(s)
- Rahul Hans
- Department of Computer Science and Engineering, DAV University, Jalandhar, Punjab India
| | - Sanjeev Kumar Sharma
- Department of Computer Science and Applications, DAV University, Jalandhar, Punjab India
| | - Uwe Aickelin
- School of Computing and Information Systems, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Li P, Wang H, Tian G, Fan Z. Identification of key biomarkers for early warning of diabetic retinopathy using BP neural network algorithm and hierarchical clustering analysis. Sci Rep 2024; 14:15108. [PMID: 38956257 PMCID: PMC11219780 DOI: 10.1038/s41598-024-65694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Diabetic retinopathy is one of the most common microangiopathy in diabetes, essentially caused by abnormal blood glucose metabolism resulting from insufficient insulin secretion or reduced insulin activity. Epidemiological survey results show that about one third of diabetes patients have signs of diabetic retinopathy, and another third may suffer from serious retinopathy that threatens vision. However, the pathogenesis of diabetic retinopathy is still unclear, and there is no systematic method to detect the onset of the disease and effectively predict its occurrence. In this study, we used medical detection data from diabetic retinopathy patients to determine key biomarkers that induce disease onset through back propagation neural network algorithm and hierarchical clustering analysis, ultimately obtaining early warning signals of the disease. The key markers that induce diabetic retinopathy have been detected, which can also be used to explore the induction mechanism of disease occurrence and deliver strong warning signal before disease occurrence. We found that multiple clinical indicators that form key markers, such as glycated hemoglobin, serum uric acid, alanine aminotransferase are closely related to the occurrence of the disease. They respectively induced disease from the aspects of the individual lipid metabolism, cell oxidation reduction, bone metabolism and bone resorption and cell function of blood coagulation. The key markers that induce diabetic retinopathy complications do not act independently, but form a complete module to coordinate and work together before the onset of the disease, and transmit a strong warning signal. The key markers detected by this algorithm are more sensitive and effective in the early warning of disease. Hence, a new method related to key markers is proposed for the study of diabetic microvascular lesions. In clinical prediction and diagnosis, doctors can use key markers to give early warning of individual diseases and make early intervention.
Collapse
Affiliation(s)
- Peiyu Li
- Network and Informatization Office, Henan University of Science and Technology, Luoyang, 471023, China.
- Henan Engineering Laboratory of Cloud Computing Data Center Network Key Technologies, Luoyang, 471023, China.
| | - Hui Wang
- Network and Informatization Office, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Laboratory of Cloud Computing Data Center Network Key Technologies, Luoyang, 471023, China
| | - Guo Tian
- Network and Informatization Office, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhihui Fan
- Network and Informatization Office, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Laboratory of Cloud Computing Data Center Network Key Technologies, Luoyang, 471023, China
| |
Collapse
|
3
|
Parmar UPS, Surico PL, Singh RB, Romano F, Salati C, Spadea L, Musa M, Gagliano C, Mori T, Zeppieri M. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:527. [PMID: 38674173 PMCID: PMC11052176 DOI: 10.3390/medicina60040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Artificial intelligence (AI) has emerged as a transformative tool in the field of ophthalmology, revolutionizing disease diagnosis and management. This paper provides a comprehensive overview of AI applications in various retinal diseases, highlighting its potential to enhance screening efficiency, facilitate early diagnosis, and improve patient outcomes. Herein, we elucidate the fundamental concepts of AI, including machine learning (ML) and deep learning (DL), and their application in ophthalmology, underscoring the significance of AI-driven solutions in addressing the complexity and variability of retinal diseases. Furthermore, we delve into the specific applications of AI in retinal diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), Macular Neovascularization, retinopathy of prematurity (ROP), retinal vein occlusion (RVO), hypertensive retinopathy (HR), Retinitis Pigmentosa, Stargardt disease, best vitelliform macular dystrophy, and sickle cell retinopathy. We focus on the current landscape of AI technologies, including various AI models, their performance metrics, and clinical implications. Furthermore, we aim to address challenges and pitfalls associated with the integration of AI in clinical practice, including the "black box phenomenon", biases in data representation, and limitations in comprehensive patient assessment. In conclusion, this review emphasizes the collaborative role of AI alongside healthcare professionals, advocating for a synergistic approach to healthcare delivery. It highlights the importance of leveraging AI to augment, rather than replace, human expertise, thereby maximizing its potential to revolutionize healthcare delivery, mitigate healthcare disparities, and improve patient outcomes in the evolving landscape of medicine.
Collapse
Affiliation(s)
| | - Pier Luigi Surico
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Romano
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Ophthalmology, University of California San Diego, La Jolla, CA 92122, USA
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
4
|
Fu Y, Wei Y, Chen S, Chen C, Zhou R, Li H, Qiu M, Xie J, Huang D. UC-stack: a deep learning computer automatic detection system for diabetic retinopathy classification. Phys Med Biol 2024; 69:045021. [PMID: 38271723 DOI: 10.1088/1361-6560/ad22a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Object. The existing diagnostic paradigm for diabetic retinopathy (DR) greatly relies on subjective assessments by medical practitioners utilizing optical imaging, introducing susceptibility to individual interpretation. This work presents a novel system for the early detection and grading of DR, providing an automated alternative to the manual examination.Approach. First, we use advanced image preprocessing techniques, specifically contrast-limited adaptive histogram equalization and Gaussian filtering, with the goal of enhancing image quality and module learning capabilities. Second, a deep learning-based automatic detection system is developed. The system consists of a feature segmentation module, a deep learning feature extraction module, and an ensemble classification module. The feature segmentation module accomplishes vascular segmentation, the deep learning feature extraction module realizes the global feature and local feature extraction of retinopathy images, and the ensemble module performs the diagnosis and classification of DR for the extracted features. Lastly, nine performance evaluation metrics are applied to assess the quality of the model's performance.Main results. Extensive experiments are conducted on four retinal image databases (APTOS 2019, Messidor, DDR, and EyePACS). The proposed method demonstrates promising performance in the binary and multi-classification tasks for DR, evaluated through nine indicators, including AUC and quadratic weighted Kappa score. The system shows the best performance in the comparison of three segmentation methods, two convolutional neural network architecture models, four Swin Transformer structures, and the latest literature methods.Significance. In contrast to existing methods, our system demonstrates superior performance across multiple indicators, enabling accurate screening of DR and providing valuable support to clinicians in the diagnostic process. Our automated approach minimizes the reliance on subjective assessments, contributing to more consistent and reliable DR evaluations.
Collapse
Affiliation(s)
- Yong Fu
- The Life Sciences Research Institute of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yuekun Wei
- School of Information and Management, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Siying Chen
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Caihong Chen
- The Life Sciences Research Institute of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Rong Zhou
- The Life Sciences Research Institute of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Hongjun Li
- The Life Sciences Research Institute of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Mochan Qiu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jin Xie
- The Life Sciences Research Institute of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Daizheng Huang
- The Life Sciences Research Institute of Guangxi Medical University, Nanning, 530021, People's Republic of China
| |
Collapse
|
5
|
Akella PL, Kumar R. An advanced deep learning method to detect and classify diabetic retinopathy based on color fundus images. Graefes Arch Clin Exp Ophthalmol 2024; 262:231-247. [PMID: 37548671 DOI: 10.1007/s00417-023-06181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND In this article, we present a computerized system for the analysis and assessment of diabetic retinopathy (DR) based on retinal fundus photographs. DR is a chronic ophthalmic disease and a major reason for blindness in people with diabetes. Consistent examination and prompt diagnosis are the vital approaches to control DR. METHODS With the aim of enhancing the reliability of DR diagnosis, we utilized the deep learning model called You Only Look Once V3 (YOLO V3) to recognize and classify DR from retinal images. The DR was classified into five major stages: normal, mild, moderate, severe, and proliferative. We evaluated the performance of the YOLO V3 algorithm based on color fundus images. RESULTS We have achieved high precision and sensitivity on the train and test data for the DR classification and mean average precision (mAP) is calculated on DR lesion detection. CONCLUSIONS The results indicate that the suggested model distinguishes all phases of DR and performs better than existing models in terms of accuracy and implementation time.
Collapse
Affiliation(s)
- Prasanna Lakshmi Akella
- Department of Electronics and Instrumentation Engineering, National Institute of Technology, Dimapur, Nagaland, India.
| | - R Kumar
- Department of Electronics and Instrumentation Engineering, National Institute of Technology, Dimapur, Nagaland, India
| |
Collapse
|
6
|
Ishihara K, Matsumoto K. Comparing the Robustness of ResNet, Swin-Transformer, and MLP-Mixer under Unique Distribution Shifts in Fundus Images. Bioengineering (Basel) 2023; 10:1383. [PMID: 38135974 PMCID: PMC10740473 DOI: 10.3390/bioengineering10121383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness. Consequently, numerous deep learning models have been developed for the early detection of DR. Safety-critical applications employed in medical diagnosis must be robust to distribution shifts. Previous studies have focused on model performance under distribution shifts using natural image datasets such as ImageNet, CIFAR-10, and SVHN. However, there is a lack of research specifically investigating the performance using medical image datasets. To address this gap, we investigated trends under distribution shifts using fundus image datasets. METHODS We used the EyePACS dataset for DR diagnosis, introduced noise specific to fundus images, and evaluated the performance of ResNet, Swin-Transformer, and MLP-Mixer models under a distribution shift. The discriminative ability was evaluated using the Area Under the Receiver Operating Characteristic curve (ROC-AUC), while the calibration ability was evaluated using the monotonic sweep calibration error (ECE sweep). RESULTS Swin-Transformer exhibited a higher ROC-AUC than ResNet under all types of noise and displayed a smaller reduction in the ROC-AUC due to noise. ECE sweep did not show a consistent trend across different model architectures. CONCLUSIONS Swin-Transformer consistently demonstrated superior discrimination compared to ResNet. This trend persisted even under unique distribution shifts in the fundus images.
Collapse
|
7
|
Morano J, Hervella ÁS, Rouco J, Novo J, Fernández-Vigo JI, Ortega M. Weakly-supervised detection of AMD-related lesions in color fundus images using explainable deep learning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107296. [PMID: 36481530 DOI: 10.1016/j.cmpb.2022.107296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Age-related macular degeneration (AMD) is a degenerative disorder affecting the macula, a key area of the retina for visual acuity. Nowadays, AMD is the most frequent cause of blindness in developed countries. Although some promising treatments have been proposed that effectively slow down its development, their effectiveness significantly diminishes in the advanced stages. This emphasizes the importance of large-scale screening programs for early detection. Nevertheless, implementing such programs for a disease like AMD is usually unfeasible, since the population at risk is large and the diagnosis is challenging. For the characterization of the disease, clinicians have to identify and localize certain retinal lesions. All this motivates the development of automatic diagnostic methods. In this sense, several works have achieved highly positive results for AMD detection using convolutional neural networks (CNNs). However, none of them incorporates explainability mechanisms linking the diagnosis to its related lesions to help clinicians to better understand the decisions of the models. This is specially relevant, since the absence of such mechanisms limits the application of automatic methods in the clinical practice. In that regard, we propose an explainable deep learning approach for the diagnosis of AMD via the joint identification of its associated retinal lesions. METHODS In our proposal, a CNN with a custom architectural setting is trained end-to-end for the joint identification of AMD and its associated retinal lesions. With the proposed setting, the lesion identification is directly derived from independent lesion activation maps; then, the diagnosis is obtained from the identified lesions. The training is performed end-to-end using image-level labels. Thus, lesion-specific activation maps are learned in a weakly-supervised manner. The provided lesion information is of high clinical interest, as it allows clinicians to assess the developmental stage of the disease. Additionally, the proposed approach allows to explain the diagnosis obtained by the models directly from the identified lesions and their corresponding activation maps. The training data necessary for the approach can be obtained without much extra work on the part of clinicians, since the lesion information is habitually present in medical records. This is an important advantage over other methods, including fully-supervised lesion segmentation methods, which require pixel-level labels whose acquisition is arduous. RESULTS The experiments conducted in 4 different datasets demonstrate that the proposed approach is able to identify AMD and its associated lesions with satisfactory performance. Moreover, the evaluation of the lesion activation maps shows that the models trained using the proposed approach are able to identify the pathological areas within the image and, in most cases, to correctly determine to which lesion they correspond. CONCLUSIONS The proposed approach provides meaningful information-lesion identification and lesion activation maps-that conveniently explains and complements the diagnosis, and is of particular interest to clinicians for the diagnostic process. Moreover, the data needed to train the networks using the proposed approach is commonly easy to obtain, what represents an important advantage in fields with particularly scarce data, such as medical imaging.
Collapse
Affiliation(s)
- José Morano
- Centro de Investigación CITIC, Universidade da Coruña, A Coruña, Spain; VARPA Research Group, Instituto de Investigación Biomédica de A Coruńa (INIBIC), Universidade da Coruña, A Coruña, Spain.
| | - Álvaro S Hervella
- Centro de Investigación CITIC, Universidade da Coruña, A Coruña, Spain; VARPA Research Group, Instituto de Investigación Biomédica de A Coruńa (INIBIC), Universidade da Coruña, A Coruña, Spain.
| | - José Rouco
- Centro de Investigación CITIC, Universidade da Coruña, A Coruña, Spain; VARPA Research Group, Instituto de Investigación Biomédica de A Coruńa (INIBIC), Universidade da Coruña, A Coruña, Spain.
| | - Jorge Novo
- Centro de Investigación CITIC, Universidade da Coruña, A Coruña, Spain; VARPA Research Group, Instituto de Investigación Biomédica de A Coruńa (INIBIC), Universidade da Coruña, A Coruña, Spain.
| | - José I Fernández-Vigo
- Department of Ophthalmology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain; Department of Ophthalmology, Centro Internacional de Oftalmología Avanzada, Madrid, Spain.
| | - Marcos Ortega
- Centro de Investigación CITIC, Universidade da Coruña, A Coruña, Spain; VARPA Research Group, Instituto de Investigación Biomédica de A Coruńa (INIBIC), Universidade da Coruña, A Coruña, Spain.
| |
Collapse
|
8
|
Alwakid G, Gouda W, Humayun M, Jhanjhi NZ. Deep learning-enhanced diabetic retinopathy image classification. Digit Health 2023; 9:20552076231194942. [PMID: 37588156 PMCID: PMC10426308 DOI: 10.1177/20552076231194942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Objective Diabetic retinopathy (DR) can sometimes be treated and prevented from causing irreversible vision loss if caught and treated properly. In this work, a deep learning (DL) model is employed to accurately identify all five stages of DR. Methods The suggested methodology presents two examples, one with and one without picture augmentation. A balanced dataset meeting the same criteria in both cases is then generated using augmentative methods. The DenseNet-121-rendered model on the Asia Pacific Tele-Ophthalmology Society (APTOS) and dataset for diabetic retinopathy (DDR) datasets performed exceptionally well when compared to other methods for identifying the five stages of DR. Results Our propose model achieved the highest test accuracy of 98.36%, top-2 accuracy of 100%, and top-3 accuracy of 100% for the APTOS dataset, and the highest test accuracy of 79.67%, top-2 accuracy of 92.%76, and top-3 accuracy of 98.94% for the DDR dataset. Additional criteria (precision, recall, and F1-score) for gauging the efficacy of the proposed model were established with the help of APTOS and DDR. Conclusions It was discovered that feeding a model with higher-quality photographs increased its efficiency and ability for learning, as opposed to both state-of-the-art technology and the other, non-enhanced model.
Collapse
Affiliation(s)
- Ghadah Alwakid
- Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia
| | - Walaa Gouda
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo, Egypt
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia
| | | |
Collapse
|
9
|
Selvachandran G, Quek SG, Paramesran R, Ding W, Son LH. Developments in the detection of diabetic retinopathy: a state-of-the-art review of computer-aided diagnosis and machine learning methods. Artif Intell Rev 2023; 56:915-964. [PMID: 35498558 PMCID: PMC9038999 DOI: 10.1007/s10462-022-10185-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 02/02/2023]
Abstract
The exponential increase in the number of diabetics around the world has led to an equally large increase in the number of diabetic retinopathy (DR) cases which is one of the major complications caused by diabetes. Left unattended, DR worsens the vision and would lead to partial or complete blindness. As the number of diabetics continue to increase exponentially in the coming years, the number of qualified ophthalmologists need to increase in tandem in order to meet the demand for screening of the growing number of diabetic patients. This makes it pertinent to develop ways to automate the detection process of DR. A computer aided diagnosis system has the potential to significantly reduce the burden currently placed on the ophthalmologists. Hence, this review paper is presented with the aim of summarizing, classifying, and analyzing all the recent development on automated DR detection using fundus images from 2015 up to this date. Such work offers an unprecedentedly thorough review of all the recent works on DR, which will potentially increase the understanding of all the recent studies on automated DR detection, particularly on those that deploys machine learning algorithms. Firstly, in this paper, a comprehensive state-of-the-art review of the methods that have been introduced in the detection of DR is presented, with a focus on machine learning models such as convolutional neural networks (CNN) and artificial neural networks (ANN) and various hybrid models. Each AI will then be classified according to its type (e.g. CNN, ANN, SVM), its specific task(s) in performing DR detection. In particular, the models that deploy CNN will be further analyzed and classified according to some important properties of the respective CNN architectures of each model. A total of 150 research articles related to the aforementioned areas that were published in the recent 5 years have been utilized in this review to provide a comprehensive overview of the latest developments in the detection of DR. Supplementary Information The online version contains supplementary material available at 10.1007/s10462-022-10185-6.
Collapse
Affiliation(s)
- Ganeshsree Selvachandran
- Department of Actuarial Science and Applied Statistics, Faculty of Business & Management, UCSI University, Jalan Menara Gading, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Shio Gai Quek
- Department of Actuarial Science and Applied Statistics, Faculty of Business & Management, UCSI University, Jalan Menara Gading, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Raveendran Paramesran
- Institute of Computer Science and Digital Innovation, UCSI University, Jalan Menara Gading, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Weiping Ding
- School of Information Science and Technology, Nantong University, Nantong, 226019 People’s Republic of China
| | - Le Hoang Son
- VNU Information Technology Institute, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
10
|
Srinivasan V, Strodthoff N, Ma J, Binder A, Müller KR, Samek W. To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy. PLoS One 2022; 17:e0274291. [PMID: 36256665 PMCID: PMC9578637 DOI: 10.1371/journal.pone.0274291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
There is an increasing number of medical use cases where classification algorithms based on deep neural networks reach performance levels that are competitive with human medical experts. To alleviate the challenges of small dataset sizes, these systems often rely on pretraining. In this work, we aim to assess the broader implications of these approaches in order to better understand what type of pretraining works reliably (with respect to performance, robustness, learned representation etc.) in practice and what type of pretraining dataset is best suited to achieve good performance in small target dataset size scenarios. Considering diabetic retinopathy grading as an exemplary use case, we compare the impact of different training procedures including recently established self-supervised pretraining methods based on contrastive learning. To this end, we investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions. Our results indicate that models initialized from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions. In particular, self-supervised models show further benefits to supervised models. Self-supervised models with initialization from ImageNet pretraining not only report higher performance, they also reduce overfitting to large lesions along with improvements in taking into account minute lesions indicative of the progression of the disease. Understanding the effects of pretraining in a broader sense that goes beyond simple performance comparisons is of crucial importance for the broader medical imaging community beyond the use case considered in this work.
Collapse
Affiliation(s)
- Vignesh Srinivasan
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Nils Strodthoff
- School of Medicine and Health Services, Oldenburg University, Oldenburg, Germany
| | - Jackie Ma
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Alexander Binder
- Singapore Institute of Technology, ICT Cluster, Singapore, Singapore
- Department of Informatics, Oslo University, Oslo, Norway
| | - Klaus-Robert Müller
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
- Max Planck Institute for Informatics, Saarbrücken, Germany
- * E-mail: (KRM); (WS)
| | - Wojciech Samek
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- * E-mail: (KRM); (WS)
| |
Collapse
|
11
|
Dubey S, Dixit M. Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:14471-14525. [PMID: 36185322 PMCID: PMC9510498 DOI: 10.1007/s11042-022-13841-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a long-term condition in which the pancreas quits producing insulin or the body's insulin isn't utilised properly. One of the signs of diabetes is Diabetic Retinopathy. Diabetic retinopathy is the most prevalent type of diabetes, if remains unaddressed, diabetic retinopathy can affect all diabetics and become very serious, raising the chances of blindness. It is a chronic systemic condition that affects up to 80% of patients for more than ten years. Many researchers believe that if diabetes individuals are diagnosed early enough, they can be rescued from the condition in 90% of cases. Diabetes damages the capillaries, which are microscopic blood vessels in the retina. On images, blood vessel damage is usually noticeable. Therefore, in this study, several traditional, as well as deep learning-based approaches, are reviewed for the classification and detection of this particular diabetic-based eye disease known as diabetic retinopathy, and also the advantage of one approach over the other is also described. Along with the approaches, the dataset and the evaluation metrics useful for DR detection and classification are also discussed. The main finding of this study is to aware researchers about the different challenges occurs while detecting diabetic retinopathy using computer vision, deep learning techniques. Therefore, a purpose of this review paper is to sum up all the major aspects while detecting DR like lesion identification, classification and segmentation, security attacks on the deep learning models, proper categorization of datasets and evaluation metrics. As deep learning models are quite expensive and more prone to security attacks thus, in future it is advisable to develop a refined, reliable and robust model which overcomes all these aspects which are commonly found while designing deep learning models.
Collapse
Affiliation(s)
- Shradha Dubey
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| | - Manish Dixit
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| |
Collapse
|
12
|
Özbay E. An active deep learning method for diabetic retinopathy detection in segmented fundus images using artificial bee colony algorithm. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Comput Biol Med 2022; 146:105602. [DOI: 10.1016/j.compbiomed.2022.105602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 01/02/2023]
|
14
|
Khan MZ, Lee Y. Stacked Ensemble Network to Assess the Structural Variations in Retina: A Bio-marker for Early Disease Diagnosis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3222-3226. [PMID: 36085628 DOI: 10.1109/embc48229.2022.9871379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The retina is a unique tissue that extends the human brain in transmitting the incoming light into neural spikes. Researchers collaborating with domain experts proposed numerous deep networks to extract vessels from the retina; however, these techniques have the least response for micro-vessels. The proposed method has developed a stacked ensemble network approach with deep neural architectures for precise vessel extraction. Our method has used bi-directional LSTM for filling gaps in dis-joint vessels and applied W-Net for boundary refinement and emphasizing local regions to achieve better results for micro-vessels extraction. The platform has combined the strength of various networks to improve the automated screening process and has shown promising results on benchmark datasets.
Collapse
|
15
|
Aujih AB, Shapiai MI, Meriaudeau F, Tang TB. EDR-Net: Lightweight Deep Neural Network Architecture for Detecting Referable Diabetic Retinopathy. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:467-478. [PMID: 35700260 DOI: 10.1109/tbcas.2022.3182907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Present architecture of convolution neural network for diabetic retinopathy (DR-Net) is based on normal convolution (NC). It incurs high computational cost as NC uses a multiplicative weight that measures a combined correlation in both cross-channel and spatial dimension of layer's inputs. This might cause the overall DR-Net architecture to be over-parameterised and computationally inefficient. This paper proposes EDR-Net - a new end-to-end, DR-Net architecture with depth-wise separable convolution module. The EDR-Net architecture was trained with DRKaggle-train dataset (35,126 images), and tested on two datasets, i.e. DRKaggle-test (53,576 images) and Messidor-2 (1,748 images). Results showed that the proposed EDR-Net achieved predictive performance comparable with current state-of-the-arts in detecting referable diabetic retinopathy (rDR) from fundus images and outperformed other light weight architectures, with at least two times less computation cost. This makes it more amenable for mobile device based computer-assisted rDR screening applications.
Collapse
|
16
|
Dos Santos Martins TG, Schor P, Augusto Stuchi J, Fowler SB. Nova Metodologia de Ensino de Oftalmoscopia Direta e Indireta para Médicos. JOURNAL OF VETERINARY MEDICAL EDUCATION 2022; 49:274-279. [PMID: 35377294 DOI: 10.3138/jvme-2020-0089.pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As doenças oftalmológicas podem refletir a presença de doenças sistêmicas em animais. Assim, os especialistas em medicina veterinária devem dominar a técnica do exame de fundoscopia. Para auxiliar na aquisição dessa habilidade, desenvolvemos uma metodologia de ensino utilizando um modelo de baixo custo que permite o exame da retina para ensinar as técnicas de oftalmoscopia direta e indireta em medicina veterinária.
Collapse
|
17
|
Barreto J, Wolf V, Bonilha I, Luchiari B, Lima M, Oliveira A, Vitte S, Machado G, Cunha J, Borges C, Munhoz D, Fernandes V, Kimura-Medorima ST, Breder I, Fernandez MD, Quinaglia T, Oliveira RB, Chaves F, Arieta C, Guerra-Júnior G, Avila S, Nadruz W, Carvalho LSF, Sposito AC. Rationale and design of the Brazilian diabetes study: a prospective cohort of type 2 diabetes. Curr Med Res Opin 2022; 38:523-529. [PMID: 35174749 DOI: 10.1080/03007995.2022.2043658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Optimal control of traditional risk factors only partially attenuates the exceeding cardiovascular mortality of individuals with diabetes. Employment of machine learning (ML) techniques aimed at the identification of novel features of risk prediction is a compelling target to tackle residual cardiovascular risk. The objective of this study is to identify clinical phenotypes of T2D which are more prone to developing cardiovascular disease. METHODS The Brazilian Diabetes Study is a single-center, ongoing, prospective registry of T2D individuals. Eligible patients are 30 years old or older, with a confirmed T2D diagnosis. After an initial visit for the signature of the informed consent form and medical history registration, all volunteers undergo biochemical analysis, echocardiography, carotid ultrasound, ophthalmologist visit, dual x-ray absorptiometry, coronary artery calcium score, polyneuropathy assessment, advanced glycation end-products reader, and ambulatory blood pressure monitoring. A 5-year follow-up will be conducted by yearly phone interviews for endpoints disclosure. The primary endpoint is the difference between ML-based clinical phenotypes in the incidence of a composite of death, myocardial infarction, revascularization, and stroke. Since June/2016, 1030 patients (mean age: 57 years, diabetes duration of 9.7 years, 58% male) were enrolled in our study. The mean follow-up time was 3.7 years in October/2021. CONCLUSION The BDS will be the first large population-based cohort dedicated to the identification of clinical phenotypes of T2D at higher risk of cardiovascular events. Data derived from this study will provide valuable information on risk estimation and prevention of cardiovascular and other diabetes-related events. CLINICALTRIALS.GOV IDENTIFIER NCT04949152.
Collapse
Affiliation(s)
- Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Vaneza Wolf
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
- Growth and Body Composition Lab, Center for Investigation in Pediatrics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Isabella Bonilha
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Beatriz Luchiari
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Marcus Lima
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Alessandra Oliveira
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Sofia Vitte
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Gabriela Machado
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Jessica Cunha
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Cynthia Borges
- Nephrology Division, Clinics Hospital, University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Daniel Munhoz
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
- Cardiology Division, Department of Internal Medicine, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Vicente Fernandes
- Department of Ophthalmology, Clinics Hospital, University of Campinas, Sao Paulo, Brazil
| | - Sheila Tatsumi Kimura-Medorima
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
- Cardiology Division, Department of Internal Medicine, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Ikaro Breder
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Marta Duran Fernandez
- Clarity Healthcare Intelligence, Sao Paulo, Brazil
- School of Electrical and Computer Engineering, Unicamp, Sao Paulo, Brazil
| | - Thiago Quinaglia
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
- Cardiology Division, Department of Internal Medicine, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Rodrigo B Oliveira
- Nephrology Division, Clinics Hospital, University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Fernando Chaves
- Department of Ophthalmology, Clinics Hospital, University of Campinas, Sao Paulo, Brazil
| | - Carlos Arieta
- Department of Ophthalmology, Clinics Hospital, University of Campinas, Sao Paulo, Brazil
| | - Gil Guerra-Júnior
- Growth and Body Composition Lab, Center for Investigation in Pediatrics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Sandra Avila
- School of Electrical and Computer Engineering, Unicamp, Sao Paulo, Brazil
- Institute of Computing, Unicamp, Sao Paulo, Brazil
| | - Wilson Nadruz
- Cardiology Division, Department of Internal Medicine, State University of Campinas (Unicamp), Sao Paulo, Brazil
| | - Luiz Sergio F Carvalho
- Clarity Healthcare Intelligence, Sao Paulo, Brazil
- Laboratory of Data for Quality of Care and Outcomes Research, Institute of Strategic Management in Healthcare, Brasılia, Federal District, Brazil
| | - Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (Atherolab), Cardiology Division, State University of Campinas (Unicamp), Sao Paulo, Brazil
- Cardiology Division, Department of Internal Medicine, State University of Campinas (Unicamp), Sao Paulo, Brazil
| |
Collapse
|
18
|
Shaik NS, Cherukuri TK. Hinge attention network: A joint model for diabetic retinopathy severity grading. APPL INTELL 2022. [DOI: 10.1007/s10489-021-03043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques. SENSORS 2022; 22:s22051803. [PMID: 35270949 PMCID: PMC8914671 DOI: 10.3390/s22051803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023]
Abstract
Diabetic Retinopathy (DR) is a predominant cause of visual impairment and loss. Approximately 285 million worldwide population is affected with diabetes, and one-third of these patients have symptoms of DR. Specifically, it tends to affect the patients with 20 years or more with diabetes, but it can be reduced by early detection and proper treatment. Diagnosis of DR by using manual methods is a time-consuming and expensive task which involves trained ophthalmologists to observe and evaluate DR using digital fundus images of the retina. This study aims to systematically find and analyze high-quality research work for the diagnosis of DR using deep learning approaches. This research comprehends the DR grading, staging protocols and also presents the DR taxonomy. Furthermore, identifies, compares, and investigates the deep learning-based algorithms, techniques, and, methods for classifying DR stages. Various publicly available dataset used for deep learning have also been analyzed and dispensed for descriptive and empirical understanding for real-time DR applications. Our in-depth study shows that in the last few years there has been an increasing inclination towards deep learning approaches. 35% of the studies have used Convolutional Neural Networks (CNNs), 26% implemented the Ensemble CNN (ECNN) and, 13% Deep Neural Networks (DNN) are amongst the most used algorithms for the DR classification. Thus using the deep learning algorithms for DR diagnostics have future research potential for DR early detection and prevention based solution.
Collapse
|
20
|
Review of Machine Learning Applications Using Retinal Fundus Images. Diagnostics (Basel) 2022; 12:diagnostics12010134. [PMID: 35054301 PMCID: PMC8774893 DOI: 10.3390/diagnostics12010134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Automating screening and diagnosis in the medical field saves time and reduces the chances of misdiagnosis while saving on labor and cost for physicians. With the feasibility and development of deep learning methods, machines are now able to interpret complex features in medical data, which leads to rapid advancements in automation. Such efforts have been made in ophthalmology to analyze retinal images and build frameworks based on analysis for the identification of retinopathy and the assessment of its severity. This paper reviews recent state-of-the-art works utilizing the color fundus image taken from one of the imaging modalities used in ophthalmology. Specifically, the deep learning methods of automated screening and diagnosis for diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma are investigated. In addition, the machine learning techniques applied to the retinal vasculature extraction from the fundus image are covered. The challenges in developing these systems are also discussed.
Collapse
|
21
|
Bhuvaneswari R, Ganesh Vaidyanathan S. Classification and grading of diabetic retinopathy images using mixture of ensemble classifiers. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-211364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diabetic Retinopathy (DR) is one of the most common diabetic diseases that affect the retina’s blood vessels. Too much of the glucose level in blood leads to blockage of blood vessels in the retina, weakening and damaging the retina. Automatic classification of diabetic retinopathy is a challenging task in medical research. This work proposes a Mixture of Ensemble Classifiers (MEC) to classify and grade diabetic retinopathy images using hierarchical features. We use an ensemble of classifiers such as support vector machine, random forest, and Adaboost classifiers that use the hierarchical feature maps obtained at every pooling layer of a convolutional neural network (CNN) for training. The feature maps are generated by applying the filters to the output of the previous layer. Lastly, we predict the class label or the grade for the given test diabetic retinopathy image by considering the class labels of all the ensembled classifiers. We have tested our approaches on the E-ophtha dataset for the classification task and the Messidor dataset for the grading task. We achieved an accuracy of 95.8% and 96.2% for the E-ophtha and Messidor datasets, respectively. A comparison among prominent convolutional neural network architectures and the proposed approach is provided.
Collapse
Affiliation(s)
- R. Bhuvaneswari
- Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, Tamilnadu, India
| | - S. Ganesh Vaidyanathan
- Department of Electronics and Communication Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, Tamilnadu, India
| |
Collapse
|
22
|
Al-Mukhtar M, Morad AH, Albadri M, Islam MDS. Weakly Supervised Sensitive Heatmap framework to classify and localize diabetic retinopathy lesions. Sci Rep 2021; 11:23631. [PMID: 34880311 PMCID: PMC8655092 DOI: 10.1038/s41598-021-02834-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
Vision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are applied to smooth the data set. In stage two, the network had gotten deeply to the optic disk segment for eliminating any exudate's false prediction because the exudates had the same color pixel as the optic disk. In stage three, the network is fed through training data to classify each label. Finally, the layers of the convolution neural network are re-edited, and used to localize the impact of DR on the patient's eye. The framework tackles the matching technique between two essential concepts where the classification problem depends on the supervised learning method. While the localization problem was obtained by the weakly supervised method. An additional layer known as weakly supervised sensitive heat map (WSSH) was added to detect the ROI of the lesion at a test accuracy of 98.65%, while comparing with Class Activation Map that involved weakly supervised technology achieved 0.954. The main purpose is to learn a representation that collect the central localization of discriminative features in a retina image. CNN-WSSH model is able to highlight decisive features in a single forward pass for getting the best detection of lesions.
Collapse
Affiliation(s)
| | | | | | - M D Samiul Islam
- Department of Computing Science, University of Alberta, Edmonton, Canada.
| |
Collapse
|
23
|
Salman OH, Taha Z, Alsabah MQ, Hussein YS, Mohammed AS, Aal-Nouman M. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 209:106357. [PMID: 34438223 DOI: 10.1016/j.cmpb.2021.106357] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND With the remarkable increasing in the numbers of patients, the triaging and prioritizing patients into multi-emergency level is required to accommodate all the patients, save more lives, and manage the medical resources effectively. Triaging and prioritizing patients becomes particularly challenging especially for the patients who are far from hospital and use telemedicine system. To this end, the researchers exploiting the useful tool of machine learning to address this challenge. Hence, carrying out an intensive investigation and in-depth study in the field of using machine learning in E-triage and patient priority are essential and required. OBJECTIVES This research aims to (1) provide a literature review and an in-depth study on the roles of machine learning in the fields of electronic emergency triage (E-triage) and prioritize patients for fast healthcare services in telemedicine applications. (2) highlight the effectiveness of machine learning methods in terms of algorithms, medical input data, output results, and machine learning goals in remote healthcare telemedicine systems. (3) present the relationship between machine learning goals and the electronic triage processes specifically on the: triage levels, medical features for input, outcome results as outputs, and the relevant diseases. (4), the outcomes of our analyses are subjected to organize and propose a cross-over taxonomy between machine learning algorithms and telemedicine structure. (5) present lists of motivations, open research challenges and recommendations for future intelligent work for both academic and industrial sectors in telemedicine and remote healthcare applications. METHODS An intensive research is carried out by reviewing all articles related to the field of E-triage and remote priority systems that utilise machine learning algorithms and sensors. We have searched all related keywords to investigate the databases of Science Direct, IEEE Xplore, Web of Science, PubMed, and Medline for the articles, which have been published from January 2012 up to date. RESULTS A new crossover matching between machine learning methods and telemedicine taxonomy is proposed. The crossover-taxonomy is developed in this study to identify the relationship between machine learning algorithm and the equivalent telemedicine categories whereas the machine learning algorithm has been utilized. The impact of utilizing machine learning is composed in proposing the telemedicine architecture based on synchronous (real-time/ online) and asynchronous (store-and-forward / offline) structure. In addition to that, list of machine learning algorithms, list of the performance metrics, list of inputs data and outputs results are presented. Moreover, open research challenges, the benefits of utilizing machine learning and the recommendations for new research opportunities that need to be addressed for the synergistic integration of multidisciplinary works are organized and presented accordingly. DISCUSSION The state-of-the-art studies on the E-triage and priority systems that utilise machine learning algorithms in telemedicine architecture are discussed. This approach allows the researchers to understand the modernisation of healthcare systems and the efficient use of artificial intelligence and machine learning. In particular, the growing worldwide population and various chronic diseases such as heart chronic diseases, blood pressure and diabetes, require smart health monitoring systems in E-triage and priority systems, in which machine learning algorithms could be greatly beneficial. CONCLUSIONS Although research directions on E-triage and priority systems that use machine learning algorithms in telemedicine vary, they are equally essential and should be considered. Hence, we provide a comprehensive review to emphasise the advantages of the existing research in multidisciplinary works of artificial intelligence, machine learning and healthcare services.
Collapse
Affiliation(s)
- Omar H Salman
- Network Department, Faculty of Engineering, AL Iraqia University, Baghdad, Iraq.
| | - Zahraa Taha
- Network Department, Faculty of Engineering, AL Iraqia University, Baghdad, Iraq
| | - Muntadher Q Alsabah
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4ET, United Kingdom
| | - Yaseein S Hussein
- Information Systems and Computer Science Department, Ahmed Bin Mohammed Military College (ABMMC), P.O. Box: 22988, Doha Qatar
| | - Ahmed S Mohammed
- Information Systems and Computer Science Department, Ahmed Bin Mohammed Military College (ABMMC), P.O. Box: 22988, Doha Qatar
| | | |
Collapse
|
24
|
An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images. Sci Rep 2021; 11:14326. [PMID: 34253799 PMCID: PMC8275626 DOI: 10.1038/s41598-021-93632-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of vision loss across the world. Yet despite its wide prevalence, the majority of affected people lack access to the specialized ophthalmologists and equipment required for monitoring their condition. This can lead to delays in the start of treatment, thereby lowering their chances for a successful outcome. Machine learning systems that automatically detect the disease in eye fundus images have been proposed as a means of facilitating access to retinopathy severity estimates for patients in remote regions or even for complementing the human expert’s diagnosis. Here we propose a machine learning system for the detection of referable diabetic retinopathy in fundus images, which is based on the paradigm of multiple-instance learning. Our method extracts local information independently from multiple rectangular image patches and combines it efficiently through an attention mechanism that focuses on the abnormal regions of the eye (i.e. those that contain DR-induced lesions), thus resulting in a final image representation that is suitable for classification. Furthermore, by leveraging the attention mechanism our algorithm can seamlessly produce informative heatmaps that highlight the regions where the lesions are located. We evaluate our approach on the publicly available Kaggle, Messidor-2 and IDRiD retinal image datasets, in which it exhibits near state-of-the-art classification performance (AUC of 0.961 in Kaggle and 0.976 in Messidor-2), while also producing valid lesion heatmaps (AUPRC of 0.869 in the 81 images of IDRiD that contain pixel-level lesion annotations). Our results suggest that the proposed approach provides an efficient and interpretable solution against the problem of automated diabetic retinopathy grading.
Collapse
|
25
|
Wu JH, Liu TYA, Hsu WT, Ho JHC, Lee CC. Performance and Limitation of Machine Learning Algorithms for Diabetic Retinopathy Screening: Meta-analysis. J Med Internet Res 2021; 23:e23863. [PMID: 34407500 PMCID: PMC8406115 DOI: 10.2196/23863] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic retinopathy (DR), whose standard diagnosis is performed by human experts, has high prevalence and requires a more efficient screening method. Although machine learning (ML)–based automated DR diagnosis has gained attention due to recent approval of IDx-DR, performance of this tool has not been examined systematically, and the best ML technique for use in a real-world setting has not been discussed. Objective The aim of this study was to systematically examine the overall diagnostic accuracy of ML in diagnosing DR of different categories based on color fundus photographs and to determine the state-of-the-art ML approach. Methods Published studies in PubMed and EMBASE were searched from inception to June 2020. Studies were screened for relevant outcomes, publication types, and data sufficiency, and a total of 60 out of 2128 (2.82%) studies were retrieved after study selection. Extraction of data was performed by 2 authors according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), and the quality assessment was performed according to the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Meta-analysis of diagnostic accuracy was pooled using a bivariate random effects model. The main outcomes included diagnostic accuracy, sensitivity, and specificity of ML in diagnosing DR based on color fundus photographs, as well as the performances of different major types of ML algorithms. Results The primary meta-analysis included 60 color fundus photograph studies (445,175 interpretations). Overall, ML demonstrated high accuracy in diagnosing DR of various categories, with a pooled area under the receiver operating characteristic (AUROC) ranging from 0.97 (95% CI 0.96-0.99) to 0.99 (95% CI 0.98-1.00). The performance of ML in detecting more-than-mild DR was robust (sensitivity 0.95; AUROC 0.97), and by subgroup analyses, we observed that robust performance of ML was not limited to benchmark data sets (sensitivity 0.92; AUROC 0.96) but could be generalized to images collected in clinical practice (sensitivity 0.97; AUROC 0.97). Neural network was the most widely used method, and the subgroup analysis revealed a pooled AUROC of 0.98 (95% CI 0.96-0.99) for studies that used neural networks to diagnose more-than-mild DR. Conclusions This meta-analysis demonstrated high diagnostic accuracy of ML algorithms in detecting DR on color fundus photographs, suggesting that state-of-the-art, ML-based DR screening algorithms are likely ready for clinical applications. However, a significant portion of the earlier published studies had methodology flaws, such as the lack of external validation and presence of spectrum bias. The results of these studies should be interpreted with caution.
Collapse
Affiliation(s)
- Jo-Hsuan Wu
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, United States
| | - T Y Alvin Liu
- Retina Division, Wilmer Eye Institute, The Johns Hopkins Medicine, Baltimore, MD, United States
| | - Wan-Ting Hsu
- Harvard TH Chan School of Public Health, Boston, MA, United States
| | | | - Chien-Chang Lee
- Health Data Science Research Group, National Taiwan University Hospital, Taipei, Taiwan.,The Centre for Intelligent Healthcare, National Taiwan University Hospital, Taipei, Taiwan.,Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
A review of diabetic retinopathy: Datasets, approaches, evaluation metrics and future trends. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2021. [DOI: 10.1016/j.jksuci.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Alyoubi WL, Abulkhair MF, Shalash WM. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning. SENSORS 2021; 21:s21113704. [PMID: 34073541 PMCID: PMC8198489 DOI: 10.3390/s21113704] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 01/03/2023]
Abstract
Diabetic retinopathy (DR) is a disease resulting from diabetes complications, causing non-reversible damage to retina blood vessels. DR is a leading cause of blindness if not detected early. The currently available DR treatments are limited to stopping or delaying the deterioration of sight, highlighting the importance of regular scanning using high-efficiency computer-based systems to diagnose cases early. The current work presented fully automatic diagnosis systems that exceed manual techniques to avoid misdiagnosis, reducing time, effort and cost. The proposed system classifies DR images into five stages—no-DR, mild, moderate, severe and proliferative DR—as well as localizing the affected lesions on retain surface. The system comprises two deep learning-based models. The first model (CNN512) used the whole image as an input to the CNN model to classify it into one of the five DR stages. It achieved an accuracy of 88.6% and 84.1% on the DDR and the APTOS Kaggle 2019 public datasets, respectively, compared to the state-of-the-art results. Simultaneously, the second model used an adopted YOLOv3 model to detect and localize the DR lesions, achieving a 0.216 mAP in lesion localization on the DDR dataset, which improves the current state-of-the-art results. Finally, both of the proposed structures, CNN512 and YOLOv3, were fused to classify DR images and localize DR lesions, obtaining an accuracy of 89% with 89% sensitivity, 97.3 specificity and that exceeds the current state-of-the-art results.
Collapse
Affiliation(s)
- Wejdan L. Alyoubi
- Information Technology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.F.A.); (W.M.S.)
- Correspondence:
| | - Maysoon F. Abulkhair
- Information Technology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.F.A.); (W.M.S.)
| | - Wafaa M. Shalash
- Information Technology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.F.A.); (W.M.S.)
- Computer Science Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt
| |
Collapse
|
28
|
Severity Classification of Diabetic Retinopathy Using an Ensemble Learning Algorithm through Analyzing Retinal Images. Symmetry (Basel) 2021. [DOI: 10.3390/sym13040670] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic Retinopathy (DR) refers to the damages endured by the retina as an effect of diabetes. DR has become a severe health concern worldwide, as the number of diabetes patients is soaring uncountably. Periodic eye examination allows doctors to detect DR in patients at an early stage to initiate proper treatments. Advancements in artificial intelligence and camera technology have allowed us to automate the diagnosis of DR, which can benefit millions of patients indeed. This paper inscribes a novel method for DR diagnosis based on the gray-level intensity and texture features extracted from fundus images using a decision tree-based ensemble learning technique. This study primarily works with the Asia Pacific Tele-Ophthalmology Society 2019 Blindness Detection (APTOS 2019 BD) dataset. We undertook several steps to curate its contents to make them more suitable for machine learning applications. Our approach incorporates several image processing techniques, two feature extraction techniques, and one feature selection technique, which results in a classification accuracy of 94.20% (margin of error: ±0.32%) and an F-measure of 93.51% (margin of error: ±0.5%). Several other parameters regarding the proposed method’s performance have been presented to manifest its robustness and reliability. Details on each employed technique have been included to make the provided results reproducible. This method can be a valuable tool for mass retinal screening to detect DR, thus drastically reducing the rate of vision loss attributed to it.
Collapse
|
29
|
NAIR ARUNT, MUTHUVEL K. AUTOMATED SCREENING OF DIABETIC RETINOPATHY WITH OPTIMIZED DEEP CONVOLUTIONAL NEURAL NETWORK: ENHANCED MOTH FLAME MODEL. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nowadays, analysis on retinal image exists as one of the challenging area for study. Numerous retinal diseases could be recognized by analyzing the variations taking place in retina. However, the main disadvantage among those studies is that, they do not have higher recognition accuracy. The proposed framework includes four phases namely, (i) Blood Vessel Segmentation (ii) Feature Extraction (iii) Optimal Feature Selection and (iv) Classification. Initially, the input fundus image is subjected to blood vessel segmentation from which two binary thresholded images (one from High Pass Filter (HPF) and other from top-hat reconstruction) are acquired. These two images are differentiated and the areas that are common to both are said to be the major vessels and the left over regions are fused to form vessel sub-image. These vessel sub-images are classified with Gaussian Mixture Model (GMM) classifier and the resultant is summed up with the major vessels to form the segmented blood vessels. The segmented images are subjected to feature extraction process, where the features like proposed Local Binary Pattern (LBP), Gray-Level Co-Occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRM) are extracted. As the curse of dimensionality seems to be the greatest issue, it is important to select the appropriate features from the extracted one for classification. In this paper, a new improved optimization algorithm Moth Flame with New Distance Formulation (MF-NDF) is introduced for selecting the optimal features. Finally, the selected optimal features are subjected to Deep Convolutional Neural Network (DCNN) model for classification. Further, in order to make the precise diagnosis, the weights of DCNN are optimally tuned by the same optimization algorithm. The performance of the proposed algorithm will be compared against the conventional algorithms in terms of positive and negative measures.
Collapse
Affiliation(s)
- ARUN T NAIR
- Department of Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education, Kumaracoil 629180, Tamil Nadu, India
| | - K. MUTHUVEL
- Department of Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education, Kumaracoil 629180, Tamil Nadu, India
| |
Collapse
|
30
|
Tseng VS, Chen CL, Liang CM, Tai MC, Liu JT, Wu PY, Deng MS, Lee YW, Huang TY, Chen YH. Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy. Transl Vis Sci Technol 2020; 9:41. [PMID: 32855845 PMCID: PMC7424907 DOI: 10.1167/tvst.9.2.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/28/2020] [Indexed: 01/27/2023] Open
Abstract
Purpose To improve disease severity classification from fundus images using a hybrid architecture with symptom awareness for diabetic retinopathy (DR). Methods We used 26,699 fundus images of 17,834 diabetic patients from three Taiwanese hospitals collected in 2007 to 2018 for DR severity classification. Thirty-seven ophthalmologists verified the images using lesion annotation and severity classification as the ground truth. Two deep learning fusion architectures were proposed: late fusion, which combines lesion and severity classification models in parallel using a postprocessing procedure, and two-stage early fusion, which combines lesion detection and classification models sequentially and mimics the decision-making process of ophthalmologists. Messidor-2 was used with 1748 images to evaluate and benchmark the performance of the architecture. The primary evaluation metrics were classification accuracy, weighted κ statistic, and area under the receiver operating characteristic curve (AUC). Results For hospital data, a hybrid architecture achieved a good detection rate, with accuracy and weighted κ of 84.29% and 84.01%, respectively, for five-class DR grading. It also classified the images of early stage DR more accurately than conventional algorithms. The Messidor-2 model achieved an AUC of 97.09% in referral DR detection compared to AUC of 85% to 99% for state-of-the-art algorithms that learned from a larger database. Conclusions Our hybrid architectures strengthened and extracted characteristics from DR images, while improving the performance of DR grading, thereby increasing the robustness and confidence of the architectures for general use. Translational Relevance The proposed fusion architectures can enable faster and more accurate diagnosis of various DR pathologies than that obtained in current manual clinical practice.
Collapse
Affiliation(s)
- Vincent S Tseng
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Data Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Long Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Cheng Tai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Tzu Liu
- Computational Intelligence Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Po-Yi Wu
- Computational Intelligence Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Shan Deng
- Computational Intelligence Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ya-Wen Lee
- Computational Intelligence Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Teng-Yi Huang
- Computational Intelligence Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
31
|
Islam MM, Yang HC, Poly TN, Jian WS, Jack Li YC. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 191:105320. [PMID: 32088490 DOI: 10.1016/j.cmpb.2020.105320] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Diabetic retinopathy (DR) is one of the leading causes of blindness globally. Earlier detection and timely treatment of DR are desirable to reduce the incidence and progression of vision loss. Currently, deep learning (DL) approaches have offered better performance in detecting DR from retinal fundus images. We, therefore, performed a systematic review with a meta-analysis of relevant studies to quantify the performance of DL algorithms for detecting DR. METHODS A systematic literature search on EMBASE, PubMed, Google Scholar, Scopus was performed between January 1, 2000, and March 31, 2019. The search strategy was based on the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines, and DL-based study design was mandatory for articles inclusion. Two independent authors screened abstracts and titles against inclusion and exclusion criteria. Data were extracted by two authors independently using a standard form and the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used for the risk of bias and applicability assessment. RESULTS Twenty-three studies were included in the systematic review; 20 studies met inclusion criteria for the meta-analysis. The pooled area under the receiving operating curve (AUROC) of DR was 0.97 (95%CI: 0.95-0.98), sensitivity was 0.83 (95%CI: 0.83-0.83), and specificity was 0.92 (95%CI: 0.92-0.92). The positive- and negative-likelihood ratio were 14.11 (95%CI: 9.91-20.07), and 0.10 (95%CI: 0.07-0.16), respectively. Moreover, the diagnostic odds ratio for DL models was 136.83 (95%CI: 79.03-236.93). All the studies provided a DR-grading scale, a human grader (e.g. trained caregivers, ophthalmologists) as a reference standard. CONCLUSION The findings of our study showed that DL algorithms had high sensitivity and specificity for detecting referable DR from retinal fundus photographs. Applying a DL-based automated tool of assessing DR from color fundus images could provide an alternative solution to reduce misdiagnosis and improve workflow. A DL-based automated tool offers substantial benefits to reduce screening costs, accessibility to healthcare and ameliorate earlier treatments.
Collapse
Affiliation(s)
- Md Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan; Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsuan-Chia Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan; Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan; Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Shan Jian
- School of Health Care Administration, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan; Department of Dermatology, Wan Fang Hospital, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
32
|
Stolte S, Fang R. A survey on medical image analysis in diabetic retinopathy. Med Image Anal 2020; 64:101742. [PMID: 32540699 DOI: 10.1016/j.media.2020.101742] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 01/12/2023]
Abstract
Diabetic Retinopathy (DR) represents a highly-prevalent complication of diabetes in which individuals suffer from damage to the blood vessels in the retina. The disease manifests itself through lesion presence, starting with microaneurysms, at the nonproliferative stage before being characterized by neovascularization in the proliferative stage. Retinal specialists strive to detect DR early so that the disease can be treated before substantial, irreversible vision loss occurs. The level of DR severity indicates the extent of treatment necessary - vision loss may be preventable by effective diabetes management in mild (early) stages, rather than subjecting the patient to invasive laser surgery. Using artificial intelligence (AI), highly accurate and efficient systems can be developed to help assist medical professionals in screening and diagnosing DR earlier and without the full resources that are available in specialty clinics. In particular, deep learning facilitates diagnosis earlier and with higher sensitivity and specificity. Such systems make decisions based on minimally handcrafted features and pave the way for personalized therapies. Thus, this survey provides a comprehensive description of the current technology used in each step of DR diagnosis. First, it begins with an introduction to the disease and the current technologies and resources available in this space. It proceeds to discuss the frameworks that different teams have used to detect and classify DR. Ultimately, we conclude that deep learning systems offer revolutionary potential to DR identification and prevention of vision loss.
Collapse
Affiliation(s)
- Skylar Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building JG56 P.O. Box 116131 Gainesville, FL 32611-6131, USA.
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building JG56 P.O. Box 116131 Gainesville, FL 32611-6131, USA.
| |
Collapse
|
33
|
Ali A, Qadri S, Khan Mashwani W, Kumam W, Kumam P, Naeem S, Goktas A, Jamal F, Chesneau C, Anam S, Sulaiman M. Machine Learning Based Automated Segmentation and Hybrid Feature Analysis for Diabetic Retinopathy Classification Using Fundus Image. ENTROPY 2020; 22:e22050567. [PMID: 33286339 PMCID: PMC7517087 DOI: 10.3390/e22050567] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022]
Abstract
The object of this study was to demonstrate the ability of machine learning (ML) methods for the segmentation and classification of diabetic retinopathy (DR). Two-dimensional (2D) retinal fundus (RF) images were used. The datasets of DR-that is, the mild, moderate, non-proliferative, proliferative, and normal human eye ones-were acquired from 500 patients at Bahawal Victoria Hospital (BVH), Bahawalpur, Pakistan. Five hundred RF datasets (sized 256 × 256) for each DR stage and a total of 2500 (500 × 5) datasets of the five DR stages were acquired. This research introduces the novel clustering-based automated region growing framework. For texture analysis, four types of features-histogram (H), wavelet (W), co-occurrence matrix (COM) and run-length matrix (RLM)-were extracted, and various ML classifiers were employed, achieving 77.67%, 80%, 89.87%, and 96.33% classification accuracies, respectively. To improve classification accuracy, a fused hybrid-feature dataset was generated by applying the data fusion approach. From each image, 245 pieces of hybrid feature data (H, W, COM, and RLM) were observed, while 13 optimized features were selected after applying four different feature selection techniques, namely Fisher, correlation-based feature selection, mutual information, and probability of error plus average correlation. Five ML classifiers named sequential minimal optimization (SMO), logistic (Lg), multi-layer perceptron (MLP), logistic model tree (LMT), and simple logistic (SLg) were deployed on selected optimized features (using 10-fold cross-validation), and they showed considerably high classification accuracies of 98.53%, 99%, 99.66%, 99.73%, and 99.73%, respectively.
Collapse
Affiliation(s)
- Aqib Ali
- Department of Computer Science & IT, The Islamia University of Bahawalpur, Bahawalpur 61300, Pakistan; (A.A.); (S.Q.); (S.N.)
| | - Salman Qadri
- Department of Computer Science & IT, The Islamia University of Bahawalpur, Bahawalpur 61300, Pakistan; (A.A.); (S.Q.); (S.N.)
| | - Wali Khan Mashwani
- Institute of Numerical Sciences, Kohat University of Sciences & Technology, Kohat 26000, Pakistan;
| | - Wiyada Kumam
- Program in Applied Statistics, Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Thanyaburi, Pathumthani 12110, Thailand
- Correspondence: (W.K.); (P.K.)
| | - Poom Kumam
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & KMUTT Fixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Departments of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: (W.K.); (P.K.)
| | - Samreen Naeem
- Department of Computer Science & IT, The Islamia University of Bahawalpur, Bahawalpur 61300, Pakistan; (A.A.); (S.Q.); (S.N.)
| | - Atila Goktas
- Department of Statistics, Mugla Sıtkı Koçman University, Mugla 48000, Turkey;
| | - Farrukh Jamal
- Department of Statistics, Govt S.A Post Graduate College Dera Nawab Sahib, Bahawalpur 63351, Pakistan;
| | - Christophe Chesneau
- Department of Mathematics, Université de Caen, LMNO, Campus II, Science 3, 14032 Caen, France;
| | - Sania Anam
- Department of Computer Science, Govt Degree College for Women Ahmadpur East, Bahawalpur 63350, Pakistan;
| | - Muhammad Sulaiman
- Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| |
Collapse
|
34
|
Hacisoftaoglu RE, Karakaya M, Sallam AB. Deep Learning Frameworks for Diabetic Retinopathy Detection with Smartphone-based Retinal Imaging Systems. Pattern Recognit Lett 2020; 135:409-417. [PMID: 32704196 DOI: 10.1016/j.patrec.2020.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diabetic Retinopathy (DR) may result in various degrees of vision loss and even blindness if not diagnosed in a timely manner. Therefore, having an annual eye exam helps early detection to prevent vision loss in earlier stages, especially for diabetic patients. Recent technological advances made smartphone-based retinal imaging systems available on the market to perform small-sized, low-powered, and affordable DR screening in diverse environments. However, the accuracy of DR detection depends on the field of view and image quality. Since smartphone-based retinal imaging systems have much more compact designs than a traditional fundus camera, captured images are likely to be the low quality with a smaller field of view. Our motivation in this paper is to develop an automatic DR detection model for smartphone-based retinal images using the deep learning approach with the ResNet50 network. This study first utilized the well-known AlexNet, GoogLeNet, and ResNet50 architectures, using the transfer learning approach. Second, these frameworks were retrained with retina images from several datasets including EyePACS, Messidor, IDRiD, and Messidor-2 to investigate the effect of using images from the single, cross, and multiple datasets. Third, the proposed ResNet50 model is applied to smartphone-based synthetic images to explore the DR detection accuracy of smartphone-based retinal imaging systems. Based on the vision-threatening diabetic retinopathy detection results, the proposed approach achieved a high classification accuracy of 98.6%, with a 98.2% sensitivity and a 99.1% specificity while its AUC was 0.9978 on the independent test dataset. As the main contributions, DR detection accuracy was improved using the deep transfer learning approach for the ResNet50 network with publicly available datasets and the effect of the field of view in smartphone-based retinal imaging was studied. Although a smaller number of images were used in the training set compared with the existing studies, considerably acceptable high accuracies for validation and testing data were obtained.
Collapse
Affiliation(s)
| | - Mahmut Karakaya
- Dept. of Computer Science, University of Central Arkansas, Conway, AR, 72035, USA
| | - Ahmed B Sallam
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
35
|
Diabetic retinopathy detection through deep learning techniques: A review. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100377] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|