1
|
Charbonnier S, Vogt G, Forel MB, Hieu N, Devillez J, Laville T, Poulet-Crovisier N, King A, Briggs DEG. The La Voulte-sur-Rhône Konservat-Lagerstätte reveals the male and female internal anatomy of the Middle Jurassic clawed lobster Eryma ventrosum. Sci Rep 2024; 14:17744. [PMID: 39085260 PMCID: PMC11291483 DOI: 10.1038/s41598-024-67357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
The biology of extinct animals is usually reconstructed from external morphological characters and comparison with present-day analogues. Internal soft organs are very rarely preserved in fossils and require high-tech approaches for visualization. Here, we report the internal anatomy of a female and male of the ~ 162 Myr-old lobster Eryma ventrosum from the Jurassic La Voulte-sur-Rhône Konservat-Lagerstätte in France using X-ray synchrotron tomography. The Erymidae is an extinct, species-rich, widespread and ecologically important Mesozoic family of decapod crustaceans. Our investigation revealed the anatomy of the locomotory, respiratory, circulatory, excretory, digestive, nervous and sensory, and reproductive systems at a resolution resembling low-magnification histology. Particularly notable is the detailed preservation of the small brain and the fragile hepatopancreas, the main metabolic organ of decapods that decays rapidly post-mortem. The remarkable preservation shows that the internal anatomy of Eryma ventrosum is closer to that of Nephropidae (clawed lobsters) than Astacidae (freshwater crayfish), their closest living relatives based on skeletal morphology. The microanatomy of the gonads and hepatopancreas indicates that the two specimens investigated were a young, well-nourished female and male prior to sexual maturity. The analysis of the soft anatomy reveals remarkable conservatism over 160 Myr and offers new insights into feeding, reproduction, life history and lifestyle of an important component of the macrozoobenthos of Middle Jurassic seas.
Collapse
Affiliation(s)
- Sylvain Charbonnier
- Muséum National d'Histoire Naturelle, CNRS UMR 7207, Centre de Recherche en Paléontologie-Paris, CR2P, Sorbonne Université, Paris, France.
| | - Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Marie-Béatrice Forel
- Muséum National d'Histoire Naturelle, CNRS UMR 7207, Centre de Recherche en Paléontologie-Paris, CR2P, Sorbonne Université, Paris, France
| | - Nathan Hieu
- Muséum National d'Histoire Naturelle, CNRS UMR 7207, Centre de Recherche en Paléontologie-Paris, CR2P, Sorbonne Université, Paris, France
| | - Julien Devillez
- Muséum National d'Histoire Naturelle, CNRS UMR 7207, Centre de Recherche en Paléontologie-Paris, CR2P, Sorbonne Université, Paris, France
| | - Thomas Laville
- Muséum National d'Histoire Naturelle, CNRS UMR 7207, Centre de Recherche en Paléontologie-Paris, CR2P, Sorbonne Université, Paris, France
| | - Nathalie Poulet-Crovisier
- Muséum National d'Histoire Naturelle, CNRS UMR 7207, Centre de Recherche en Paléontologie-Paris, CR2P, Sorbonne Université, Paris, France
| | - Andrew King
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, France
| | - Derek E G Briggs
- Department of Earth and Planetary Sciences, Yale Peabody Museum, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Krings W, Brütt JO, Gorb SN. Mechanical properties, degree of sclerotisation and elemental composition of the gastric mill in the red swamp crayfish Procambarus clarkii (Decapoda, Crustacea). Sci Rep 2022; 12:17799. [PMID: 36274188 PMCID: PMC9588795 DOI: 10.1038/s41598-022-22724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
The gastric mill of Decapoda is a unique feature, which comprises teeth, stabilizing ossicles, and particle sorting setae. Involved in the fragmentation and sorting of the food, this structure serves as interface between the organism and its environment. As material properties complement morphology and hold information about function and trophic preferences, we here provide a basis for more comparative research on gastric mills. For gastric mill components of the adult red swamp crayfish Procambarus clarkii, we studied (a) the micro-structure via scanning electron microscopy, (b) the elemental composition by energy-dispersive X-ray spectroscopy, (c) the heterogeneities in material properties and degree of tanning (autofluorescence) by confocal laser scanning microscopy, and (d) the mechanical properties hardness and elasticity by nanoindentation technique. The morphology and micro-structure were previously described for this species, but the mechanical properties and the autofluorescence were not studied before. As epicuticle and exocuticle could be analyzed individually, material property gradients, with values decreasing from the interacting surface towards interior, could be determined. Finally, we were able to relate the mechanical property data with the elemental composition and the degree of tanning. We found that the epicuticle of the teeth is among the hardest and stiffest biological materials in invertebrates due to the incorporations of high proportions of silicon.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Jan-Ole Brütt
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
- Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|
3
|
Okada S, Chen C, Watanabe HK, Isobe N, Takai K. Unusual bromine enrichment in the gastric mill and setae of the hadal amphipod Hirondellea gigas. PLoS One 2022; 17:e0272032. [PMID: 35925928 PMCID: PMC9352070 DOI: 10.1371/journal.pone.0272032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
The hadal amphipod Hirondellea gigas is an emblematic animal of the Pacific trenches, and has a number of special adaptations to thrive in this ‘extreme’ environment, which includes the deepest part of the Earth’s ocean. One such adaptation that has been suggested is the presence of an ‘aluminum gel shield’ on the surface of its body in order to prevent the dissolution of calcitic exoskeleton below the carbonate compensation depth. However, this has not been investigated under experimental conditions that sufficiently prevent aluminum artefacts, and the possibility of other elements with similar characteristic X-ray energy as aluminum (such as bromine) has not been considered. Here, we show with new electron microscopy data gathered under optimized conditions to minimize aluminum artefacts that H. gigas actually does not have an aluminum shield–instead many parts of its body are enriched in bromine, particularly gastric ossicles and setae. Results from elemental analyses pointed to the use of calcite partially substituted with magnesium by H. gigas in its exoskeleton, in order to suppress dissolution. Our results exemplify the necessity of careful sample preparation and analysis of the signals in energy-dispersive X-ray spectroscopic analysis, and the importance of analyses at different electron energies.
Collapse
Affiliation(s)
- Satoshi Okada
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- * E-mail:
| | - Chong Chen
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Hiromi Kayama Watanabe
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Noriyuki Isobe
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
4
|
The accumulation of microplastic pollution in a commercially important fishing ground. Sci Rep 2022; 12:4217. [PMID: 35273306 PMCID: PMC8913702 DOI: 10.1038/s41598-022-08203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/03/2022] [Indexed: 11/08/2022] Open
Abstract
The Irish Sea is an important area for Norway Lobster Nephrops norvegicus fisheries, which are the most valuable fishing resource in the UK. Norway lobster are known to ingest microplastic pollution present in the sediment and have displayed reduced body mass when exposed to microplastic pollution. Here, we identified microplastic pollution in the Irish Sea fishing grounds through analysis of 24 sediment samples from four sites of differing proximity to the Western Irish Sea Gyre in both 2016 and 2019. We used µFTIR spectroscopy to identify seven polymer types, and a total of 77 microplastics consisting of fibres and fragments. The mean microplastics per gram of sediment ranged from 0.13 to 0.49 and 0 to 1.17 MP/g in 2016 and 2019, respectively. There were no differences in the microplastic counts across years, and there was no correlation of microplastic counts with proximity to the Western Irish Sea Gyre. Considering the consistently high microplastic abundance found in the Irish Sea, and the propensity of N. norvegicus to ingest and be negatively impacted by them, we suggest microplastic pollution levels in the Irish Sea may have adverse impacts on N. norvegicus and negative implications for fishery sustainability in the future.
Collapse
|
5
|
Fairfield EA, Richardson DS, Daniels CL, Butler CL, Bell E, Taylor MI. Ageing European lobsters ( Homarus gammarus) using DNA methylation of evolutionarily conserved ribosomal DNA. Evol Appl 2021; 14:2305-2318. [PMID: 34603500 PMCID: PMC8477595 DOI: 10.1111/eva.13296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
Crustaceans are notoriously difficult to age because of their indeterminate growth and the moulting of their exoskeleton throughout life. The poor knowledge of population age structure in crustaceans therefore hampers accurate assessment of population dynamics and consequently sustainable fisheries management. Quantification of DNA methylation of the evolutionarily conserved ribosomal DNA (rDNA) may allow for age prediction across diverse species. However, the rDNA epigenetic clock remains to be tested in crustaceans, despite its potential to inform both ecological and evolutionary understanding, as well as conservation and management practices. Here, patterns of rDNA methylation with age were measured across 5154 bp of rDNA corresponding to 355 quality-filtered loci in the economically important European lobster (Homarus gammarus). Across 0- to 51-month-old lobsters (n = 155), there was a significant linear relationship between age and percentage rDNA methylation in claw tissue at 60% of quality-filtered loci (n = 214). An Elastic Net regression model using 46 loci allowed for the accurate and precise age estimation of individuals (R 2 = 0.98; standard deviation = 1.6 months). Applying this ageing model to antennal DNA from wild lobsters of unknown age (n = 38) resulted in predicted ages that are concordant with estimates of minimum size at age in the wild (mean estimated age = 40.1 months; range 32.8-55.7 months). Overall, the rDNA epigenetic clock shows potential as a novel, nonlethal ageing technique for European lobsters. However, further validation is required across a wider range of known-age individuals and tissue types before the model can be used in fisheries management.
Collapse
Affiliation(s)
| | | | | | | | - Ewen Bell
- The Centre for Environment, Fisheries and Aquaculture ScienceLowestoftUK
| | | |
Collapse
|