1
|
Schöneberg Y, Audisio TL, Ben Hamadou A, Forman M, Král J, Kořínková T, Líznarová E, Mayer C, Prokopcová L, Krehenwinkel H, Prost S, Kennedy S. Three Novel Spider Genomes Unveil Spidroin Diversification and Hox Cluster Architecture: Ryuthela nishihirai (Liphistiidae), Uloborus plumipes (Uloboridae) and Cheiracanthium punctorium (Cheiracanthiidae). Mol Ecol Resour 2025; 25:e14038. [PMID: 39435585 DOI: 10.1111/1755-0998.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Spiders are a hyperdiverse taxon and among the most abundant predators in nearly all terrestrial habitats. Their success is often attributed to key developments in their evolution such as silk and venom production and major apomorphies such as a whole-genome duplication. Resolving deep relationships within the spider tree of life has been historically challenging, making it difficult to measure the relative importance of these novelties for spider evolution. Whole-genome data offer an essential resource in these efforts, but also for functional genomic studies. Here, we present de novo assemblies for three spider species: Ryuthela nishihirai (Liphistiidae), a representative of the ancient Mesothelae, the suborder that is sister to all other extant spiders; Uloborus plumipes (Uloboridae), a cribellate orbweaver whose phylogenetic placement is especially challenging; and Cheiracanthium punctorium (Cheiracanthiidae), which represents only the second family to be sequenced in the hyperdiverse Dionycha clade. These genomes fill critical gaps in the spider tree of life. Using these novel genomes along with 25 previously published ones, we examine the evolutionary history of spidroin gene and structural hox cluster diversity. Our assemblies provide critical genomic resources to facilitate deeper investigations into spider evolution. The near chromosome-level genome of the 'living fossil' R. nishihirai represents an especially important step forward, offering new insights into the origins of spider traits.
Collapse
Affiliation(s)
| | - Tracy Lynn Audisio
- Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Alexander Ben Hamadou
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Germany
| | - Martin Forman
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague 2, Czech Republic
| | - Jiří Král
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tereza Kořínková
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague 2, Czech Republic
| | - Eva Líznarová
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague 2, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Christoph Mayer
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Lenka Prokopcová
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague 2, Czech Republic
| | | | - Stefan Prost
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
- South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
| | - Susan Kennedy
- Department of Biogeography, Trier University, Trier, Germany
| |
Collapse
|
2
|
Nogueira AF, Pires ES, Oliveira G, Trevelin LC, Vasconcelos S. New mitochondrial genomes of three whip spider species from the Amazon (Arachnida, Amblypygi) with phylogenetic relationships and comparative analysis. Sci Rep 2024; 14:26271. [PMID: 39487275 PMCID: PMC11530452 DOI: 10.1038/s41598-024-77525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
The complete mitochondrial genomes of the whip spiders Charinus carajas, C. ferreus, and Heterophrynus longicornis were sequenced, annotated, and compared with other mitogenomes of whip spiders and arachnids. The three new mitogenomes have the 37 genes usually observed in Metazoa: 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs), plus a non-coding control region (CR). Most PCGs presented an ATN start codon, except cox1 in both Charinus species, initiating with TTA. Most PCGs terminated with stop codons TAA or TAG, except nad5 of C. carajas and cox3 of H. longicornis, which presented an incomplete stop codon (T). The Ka/Ks ratios were less than one for all the PCGs, indicating these genes are under purifying selection. All the tRNAs, except for serine 1 (trnS1), had the typical cloverleaf-shaped secondary structure. All the phylogenetic analyses resolved Charinus carajas and C. ferreus as monophyletic groups. Nonetheless, we did not recover the monophyly of Heterophrynus longicornis. The phylogenies under partitioned models did not recover suprageneric taxonomic groups as clades, but the Bayesian inference under the CAT infinite mixture model recovered the family Phrynidae and the superfamily Phrynoidea as monophyletic groups.
Collapse
Affiliation(s)
- Acácio Freitas Nogueira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil.
| | - Eder S Pires
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil
| | - Guilherme Oliveira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil
| | | | - Santelmo Vasconcelos
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil.
| |
Collapse
|
3
|
Petrova M, Bogomolova E. The male reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 83:101404. [PMID: 39638667 DOI: 10.1016/j.asd.2024.101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Sea spiders (Pycnogonida) are marine chelicerates. As a sister clade to Euchelicerata, Pycnogonida are an interesting group for comparative anatomy, however data on pycnogonid anatomy and biology remain scarce. This research provides a detailed account of the complete male reproductive system, gametogenesis, and sperm structure of a sea spider at the ultrastructural level. The male reproductive system of P. femoratum includes the testis, femoral, and ovigeral glands. The testis is typical of Pycnogonida: U-shaped with pedal outgrowths, opening with gonopores on legs 2-4. The testis lays within the horizontal septum, separated from it by ECM. The reproductive sinus is reduced. The ventral wall of the testis is germinative, spermatogenesis proceeds in cysts, all stages are evenly distributed throughout the whole testis. Sperm of P. femoratum is a typical sperm of animals with fertilization in mucus but without an acrosome. It lacks apomorphic euchelicerate features such as an acrosomal filament and implantation fossa. Femoral and ovigeral glands are sex-specific and likely related to reproduction. Ovigeral glands possibly secrete a fungicide substance, while the function of femoral glands remains obscure.
Collapse
Affiliation(s)
- Maria Petrova
- Department of Invertebrates Zoology, Faculty of Biology, Moscow State University, Vorob'evy gory 1, building 12, Moscow, 119992, Russia.
| | - Ekaterina Bogomolova
- Department of Invertebrates Zoology, Faculty of Biology, Moscow State University, Vorob'evy gory 1, building 12, Moscow, 119992, Russia.
| |
Collapse
|
4
|
Petrova M, Bogomolova E. The female reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 81:101370. [PMID: 38848644 DOI: 10.1016/j.asd.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Sea spiders (Pycnogonida) are marine chelicerates. Current pycnogonid phylogeny based on molecular data remains uncertain and contradicts traditional morphological perspectives. To resolve this conflict, understanding their inner anatomy is crucial. The reproductive system of sea spiders shows promise as a source of phylogenetic signal, yet our knowledge in this area is limited. This study presents the first description of the whole female reproductive system of a sea spider at the ultrastructural level. We suggest a more detailed functional regionalization of the ovary based on the ovarian wall ultrastructure and distribution of oocyte developmental stages. Meiosis begins in the germarium, and oocytes progress to the vitellarium through a transportational zone. Vitellogenic oocytes extend through the vitellarium wall, connected with it by a stalk - specialized cells. Balbiani bodies are present in early vitellogenic oocytes but dissipate later. The formation of the vitelline envelope, yolk, and fertilization envelope involves functionally diverse RER vesicles. The study also identifies a reproductive sinus as a separate haemocoel compartment that may enhance nutrient concentration near vitellogenic oocytes. Additionally, oviduct and gonopore glands are described in the female of P. femoratum, although their specific functions and prevalence in other sea spider species remain unclear.
Collapse
Affiliation(s)
- Maria Petrova
- Department of Invertebrates Zoology, Faculty of Biology, Moscow State University, Vorob'evy Gory 1, Building 12, Moscow, 119992, Russia.
| | - Ekaterina Bogomolova
- Department of Invertebrates Zoology, Faculty of Biology, Moscow State University, Vorob'evy Gory 1, Building 12, Moscow, 119992, Russia.
| |
Collapse
|
5
|
Gainett G, Klementz BC, Setton EVW, Simian C, Iuri HA, Edgecombe GD, Peretti AV, Sharma PP. A plurality of morphological characters need not equate with phylogenetic accuracy: A rare genomic change refutes the placement of Solifugae and Pseudoscorpiones in Haplocnemata. Evol Dev 2024; 26:e12467. [PMID: 38124251 DOI: 10.1111/ede.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Recent advances in higher-level invertebrate phylogeny have leveraged shared features of genomic architecture to resolve contentious nodes across the tree of life. Yet, the interordinal relationships within Chelicerata have remained recalcitrant given competing topologies in recent molecular analyses. As such, relationships between topologically unstable orders remain supported primarily by morphological cladistic analyses. Solifugae, one such unstable chelicerate order, has long been thought to be the sister group of Pseudoscorpiones, forming the clade Haplocnemata, on the basis of eight putative morphological synapomorphies. The discovery, however, of a shared whole genome duplication placing Pseudoscorpiones in Arachnopulmonata provides the opportunity for a simple litmus test evaluating the validity of Haplocnemata. Here, we present the first developmental transcriptome of a solifuge (Titanopuga salinarum) and survey copy numbers of the homeobox genes for evidence of systemic duplication. We find that over 70% of the identified homeobox genes in T. salinarum are retained in a single copy, while representatives of the arachnopulmonates retain orthologs of those genes as two or more copies. Our results refute the placement of Solifugae in Haplocnemata. Subsequent reevaluation of putative interordinal morphological synapomorphies among chelicerates reveals a high incidence of homoplasy, reversals, and inaccurate coding within Haplocnemata and other small clades, as well as Arachnida more broadly, suggesting existing morphological character matrices are insufficient to resolve chelicerate phylogeny.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catalina Simian
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Laboratorio de Biología Reproductiva y Evolución, Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Hernán A Iuri
- División de Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - Gregory D Edgecombe
- Department of Earth Sciences, Division ES Invertebrates and Plants Palaeobiology, The Natural History Museum, London, UK
| | - Alfredo V Peretti
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Laboratorio de Biología Reproductiva y Evolución, Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Lustri L, Gueriau P, Daley AC. Lower Ordovician synziphosurine reveals early euchelicerate diversity and evolution. Nat Commun 2024; 15:3808. [PMID: 38714651 PMCID: PMC11076625 DOI: 10.1038/s41467-024-48013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/18/2024] [Indexed: 05/10/2024] Open
Abstract
Euchelicerata is a clade of arthropods comprising horseshoe crabs, scorpions, spiders, mites and ticks, as well as the extinct eurypterids (sea scorpions) and chasmataspidids. The understanding of the ground plans and relationships between these crown-group euchelicerates has benefited from the discovery of numerous fossils. However, little is known regarding the origin and early evolution of the euchelicerate body plan because the relationships between their Cambrian sister taxa and synziphosurines, a group of Silurian to Carboniferous stem euchelicerates with chelicerae and an unfused opisthosoma, remain poorly understood owing to the scarce fossil record of appendages. Here we describe a synziphosurine from the Lower Ordovician (ca. 478 Ma) Fezouata Shale of Morocco. This species possesses five biramous appendages with stenopodous exopods bearing setae in the prosoma and a fully expressed first tergite in the opisthosoma illuminating the ancestral anatomy of the group. Phylogenetic analyses recover this fossil as a member of the stem euchelicerate family Offacolidae, which is characterized by biramous prosomal appendages. Moreover, it also shares anatomical features with the Cambrian euarthropod Habelia optata, filling the anatomical gap between euchelicerates and Cambrian stem taxa, while also contributing to our understanding of the evolution of euchelicerate uniramous prosomal appendages and tagmosis.
Collapse
Affiliation(s)
- Lorenzo Lustri
- Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, Switzerland.
| | - Pierre Gueriau
- Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, Switzerland
- Université Paris-Saclay, CNRS, ministère de la Culture, UVSQ, MNHN, Institut photonique d'analyse non-destructive européen des matériaux anciens, Saint-Aubin, France
| | - Allison C Daley
- Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, Switzerland.
| |
Collapse
|
7
|
Sato S, Derkarabetian S, Valdez-Mondragón A, Pérez-González A, Benavides LR, Daniels SR, Giribet G. Under the hood: Phylogenomics of hooded tick spiders (Arachnida, Ricinulei) uncovers discordance between morphology and molecules. Mol Phylogenet Evol 2024; 193:108026. [PMID: 38341007 DOI: 10.1016/j.ympev.2024.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/14/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Ricinulei or hooded tick-spiders are a cryptic and ancient group of arachnids. The order consists of around 100 highly endemic extant species restricted to the Afrotropics and the Neotropics along with 22 fossil species. Their antiquity and low vagility make them an excellent group with which to interrogate biogeographic questions. To date, only four molecular analyses have been conducted on the group and they failed to resolve the relationships of the main lineages and even recovering the non-monophyly of the three genera. These studies were limited to a few Sanger loci or phylogenomic analyses with at most seven ingroup samples. To increase phylogenetic resolution in this little-understood and poorly studied group, we present the most comprehensive phylogenomic study of Ricinulei to date leveraging the Arachnida ultra-conserved element probe set. With a data set of 473 loci across 96 ingroup samples, analyses resolved a monophyletic Neotropical clade consisting of four main lineages. Two of them correspond to the current genera Cryptocellus and Pseudocellus while topology testing revealed one lineage to likely be a phylogenetic reconstruction artefact. The fourth lineage, restricted to Northwestern, Andean South America, is consistent with the Cryptocellus magnus group, likely corresponding to the historical genus Heteroricinoides. Since we did not sample the type species for this old genus, we do not formally re-erect Heteroricinoides but our data suggest the need for a thorough morphological re-examination of Neotropical Ricinulei.
Collapse
Affiliation(s)
- Shoyo Sato
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Shahan Derkarabetian
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Alejandro Valdez-Mondragón
- Collection of Arachnology (CARCIB), Programa Académico de Planeación Ambiental y Conservación (PLAYCO), Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C., La Paz, Baja California Sur, Mexico
| | - Abel Pérez-González
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ligia R Benavides
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Savel R Daniels
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, Matieland, Stellenbosch, South Africa
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
8
|
Wang W, Zhang XS, Wang ZN, Zhang DX. Evolution and phylogenetic diversity of the aquaporin gene family in arachnids. Int J Biol Macromol 2023; 240:124480. [PMID: 37068537 DOI: 10.1016/j.ijbiomac.2023.124480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Water flux across cells predominantly occurs through the pore formed by the aquaporin channels. Since water balance is one of the most important challenges to terrestrial animals, aquaporin evolution and diversity is known to play roles in animal terrestrialisation. Arachnids (Arthropoda: Chelicerata: Arachnida) are the second most diverse group and represent the pioneer land colonists in animals; however, there remains no thorough investigation on aquaporin evolution and diversity in this evolutionarily important lineage. Here we reported a phylogenetic study of aquaporin evolution and diversity using genomic data from 116 arachnid species covering almost all (15/16) extant orders. A previously unrecognised subfamily related to aquaporin-4 (i.e. Aqp4-like subfamily) via phylogenetic analysis was identified, suggesting certain underestimate of the arachnid aquaporin diversity in earlier studies probably due to limited taxonomic sampling. Further analysis indicates that this subfamily emerged deep within the life tree of arthropods. Gene tree of another Aqp4-like subfamily (PripL) shows an unexpected basal split between acariform mites (Acariformes) and other arachnids. A closer inspection demonstrated that the PripL evolved quickly and has been under differential selection pressure in acariform mites. Evidence is provided that the evolutionarily ancient Glp subfamily (i.e. aquaglyceroporin) is significantly expanded in terrestrial arachnids compared with their marine relatives. Finally, in spite of the phylogenetic diversity, there exists conservation of some exons in size, functional domain, and intron-insertion phase: an 81-bp and a 218-bp exon, respectively, in apq4-like and glp genes across Eumetazoa lineages including arachnids and human beings. Both exons encode the carboxyl-terminal NPA motif, implying the coding and splicing pressure during hundreds of million years of animal evolution. Hypotheses were tested to explore the possible link between these findings and arachnid terrestrialisation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xue-Shu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhen-Nan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - De-Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
9
|
Vrech DE, Peretti AV, Prendini L, Mattoni CI. Bundles of Sperm: Structural Diversity in Scorpion Sperm Packages Illuminates Evolution of Insemination in an Ancient Lineage. AMERICAN MUSEUM NOVITATES 2022. [DOI: 10.1206/3993.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David E. Vrech
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal, CONICET – FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo V. Peretti
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal, CONICET – FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lorenzo Prendini
- Arachnology Lab and Scorpion Systematics Research Group, Division of Invertebrate Zoology, American Museum of Natural History, New York
| | - Camilo I. Mattoni
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal, CONICET – FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
10
|
Tihelka E, Howard RJ, Cai C, Lozano-Fernandez J. Was There a Cambrian Explosion on Land? The Case of Arthropod Terrestrialization. BIOLOGY 2022; 11:biology11101516. [PMID: 36290419 PMCID: PMC9598930 DOI: 10.3390/biology11101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023]
Abstract
Arthropods, the most diverse form of macroscopic life in the history of the Earth, originated in the sea. Since the early Cambrian, at least ~518 million years ago, these animals have dominated the oceans of the world. By the Silurian-Devonian, the fossil record attests to arthropods becoming the first animals to colonize land, However, a growing body of molecular dating and palaeontological evidence suggests that the three major terrestrial arthropod groups (myriapods, hexapods, and arachnids), as well as vascular plants, may have invaded land as early as the Cambrian-Ordovician. These dates precede the oldest fossil evidence of those groups and suggest an unrecorded continental "Cambrian explosion" a hundred million years prior to the formation of early complex terrestrial ecosystems in the Silurian-Devonian. We review the palaeontological, phylogenomic, and molecular clock evidence pertaining to the proposed Cambrian terrestrialization of the arthropods. We argue that despite the challenges posed by incomplete preservation and the scarcity of early Palaeozoic terrestrial deposits, the discrepancy between molecular clock estimates and the fossil record is narrower than is often claimed. We discuss strategies for closing the gap between molecular clock estimates and fossil data in the evolution of early ecosystems on land.
Collapse
Affiliation(s)
- Erik Tihelka
- School of Earth and Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Richard J. Howard
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Chenyang Cai
- School of Earth and Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jesus Lozano-Fernandez
- School of Earth and Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Department of Genetics, Microbiology and Statistics & Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
11
|
Grimaldi DA. Evolutionary history of interactions among terrestrial arthropods. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100915. [PMID: 35364331 DOI: 10.1016/j.cois.2022.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The study of terrestrial arthopod fossils preserved with microscopic fidelity in amber and as permineralized replicas has been revolutionized by CT scanning. Fine preservation facilitates phylogenetic interpretation of fossils, but molecular divergence-time models still commonly use insufficient fossil calibrations, skewing estimates away from the direct (i.e. fossil, morphological) evidence. Interactions among terrestrial arthropods (predation, parasitoidism; phoresy, social symbionts) are briefly reviewed from the fossil record. Predation is the oldest and most widespread, originating with arachnids since probably the Silurian. The first phoretic arthropods were probably mites (Acari). Parasitoidism extends to the early Jurassic ~200 mya, with four main episodes proposed by [1•]. 100-myo Burmese amber, the most diverse Cretaceous paleobiota, is unique for our understanding of insect eusociality and interrelationships among terrestrial arthropods. Eusocial insect colonies are ecological sinks for thousands of symbiont species; ages of the major eusocial groups and some of their nest symbionts are discussed. Fossilized arthropod interrelationships in Miocene Dominican amber are presented as visual exemplars.
Collapse
Affiliation(s)
- David A Grimaldi
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA.
| |
Collapse
|
12
|
Xiong Q, Wan ATY, Liu X, Fung CSH, Xiao X, Malainual N, Hou J, Wang L, Wang M, Yang KY, Cui Y, Leung ELH, Nong W, Shin SK, Au SWN, Jeong KY, Chew FT, Hui JHL, Leung TF, Tungtrongchitr A, Zhong N, Liu Z, Tsui SKW. Comparative Genomics Reveals Insights into the Divergent Evolution of Astigmatic Mites and Household Pest Adaptations. Mol Biol Evol 2022; 39:6582989. [PMID: 35535514 PMCID: PMC9113151 DOI: 10.1093/molbev/msac097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing ∼1–2% of all allergic diseases globally; however, their evolutionary origin and diverse lifestyles including reversible parasitism have not been illustrated at the genomic level, which hampers allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the diversification of astigmatic mites. In monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, and then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases. Gene diversification after tandem duplications provides many genetic resources for adaptation to sensing environmental signals, digestion, and detoxification in rapidly changing household environments. Many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UDP glucuronosyltransferases and several important fungal cell wall lytic enzymes, which enable detoxification and digestive functions and provide perfect drug targets for pest control. This comparative study sheds light on the divergent evolution and quick adaptation to human household environments of astigmatic mites and provides insights into the genetic adaptations and even control of human household pests.
Collapse
Affiliation(s)
- Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Angel Tsz-Yau Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoyu Liu
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Cathy Sin-Hang Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xiaojun Xiao
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Nat Malainual
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jinpao Hou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
| | - Lingyi Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Mingqiang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Elaine Lai-Han Leung
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Soo-Kyung Shin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | - Kyoung Yong Jeong
- Institute of Allergy, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Korea
| | - Fook-Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jerome Ho-Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ting-Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhigang Liu
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
13
|
Aria C. The origin and early evolution of arthropods. Biol Rev Camb Philos Soc 2022; 97:1786-1809. [PMID: 35475316 DOI: 10.1111/brv.12864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
The rise of arthropods is a decisive event in the history of life. Likely the first animals to have established themselves on land and in the air, arthropods have pervaded nearly all ecosystems and have become pillars of the planet's ecological networks. Forerunners of this saga, exceptionally well-preserved Palaeozoic fossils recently discovered or re-discovered using new approaches and techniques have elucidated the precocious appearance of extant lineages at the onset of the Cambrian explosion, and pointed to the critical role of the plankton and hard integuments in early arthropod diversification. The notion put forward at the beginning of the century that the acquisition of extant arthropod characters was stepwise and represented by the majority of Cambrian fossil taxa is being rewritten. Although some key traits leading to Euarthropoda are indeed well documented along a diversified phylogenetic stem, this stem led to several speciose and ecologically diverse radiations leaving descendants late into the Palaeozoic, and a large part, if not all of the Cambrian euarthropods can now be placed on either of the two extant lineages: Mandibulata and Chelicerata. These new observations and discoveries have altered our view on the nature and timing of the Cambrian explosion and clarified diagnostic characters at the origin of extant arthropods, but also raised new questions, especially with respect to cephalic plasticity. There is now strong evidence that early arthropods shared a homologous frontalmost appendage, coined here the cheira, which likely evolved into antennules and chelicerae, but other aspects, such as brain and labrum evolution, are still subject to active debate. The early evolution of panarthropods was generally driven by increased mastication and predation efficiency and sophistication, but a wealth of recent studies have also highlighted the prevalent role of suspension-feeding, for which early panarthropods developed their own adaptive feedback through both specialized appendages and the diversification of small, morphologically differentiated larvae. In a context of general integumental differentiation and hardening across Cambrian metazoans, arthrodization of body and limbs notably prompted two diverging strategies of basipod differentiation, which arguably became founding criteria in the divergence of total-groups Mandibulata and Chelicerata. The kinship of trilobites and their relatives remains a source of disagreement, but a recent topological solution, termed the 'deep split', could embed Artiopoda as sister taxa to chelicerates and constitute definitive support for Arachnomorpha. Although Cambrian fossils have been critical to all these findings, data of exceptional quality have also been accumulating from other Palaeozoic Konservat-Lagerstätten, and a better integration of this information promises a much more complete and elaborate picture of early arthropod evolution in the near future. From the broader perspective of a total-evidence approach to the understanding of life's history, and despite persisting systematic debates and new interpretative challenges, various advances based on palaeontological evidence open the prospect of finally using the full potential of the most diverse animal phylum to investigate macroevolutionary patterns and processes.
Collapse
Affiliation(s)
- Cédric Aria
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, P. R. China.,Shaanxi Key Laboratory of Early Life and Environments, Northwest University, Xi'an, 710069, P.R. China
| |
Collapse
|
14
|
Spectacular alterations in the female reproductive system during the ovarian cycle and adaptations for matrotrophy in chernetid pseudoscorpions (Pseudoscorpiones: Chernetidae). Sci Rep 2022; 12:6447. [PMID: 35440674 PMCID: PMC9018881 DOI: 10.1038/s41598-022-10283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 11/12/2022] Open
Abstract
Pseudoscorpions are small matrotrophic chelicerates. The embryos develop in a brood sac and feed on the nutritive fluid provided by the female. It was widely accepted that the nutritive fluid is synthesized in the ovary. Recent studies have shown that in Chelifer cancroides, a representative of Cheliferidae, considered one of the most derived pseudoscorpion families, the nutritive fluid is produced not only in the ovary but also in the oviducts. Since evolution of adaptations for matrotrophy in pseudoscorpions is poorly known, we aimed to verify our hypothesis that pseudoscorpions of the family Chernetidae, closely related to Cheliferidae, share the traits of adaptations to matrotrophy in the structure and function of the female reproductive system with C. cancroides. We analysed the structure of the ovary and oviducts in five representatives of chernetids with light, confocal, and transmission electron microscopy. The results confirmed our hypothesis and provided new data which broaden our knowledge of matrotrophic pseudoscorpions. We show that in chernetids, the ovary and oviducts undergo significant alterations including their size, multistep hypertrophy and polyploidization of the epithelial cells involved in secretion of the nutritive fluid, the complex secretory activity of the epithelial cells, massive degeneration of the epithelial cells that have completed secretion, and epithelium renewal.
Collapse
|
15
|
Ban XC, Shao ZK, Wu LJ, Sun JT, Xue XF. Highly diversified mitochondrial genomes provide new evidence for interordinal relationships in the Arachnida. Cladistics 2022; 38:452-464. [PMID: 35349189 DOI: 10.1111/cla.12504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2022] [Indexed: 12/11/2022] Open
Abstract
Arachnida is an exceptionally diverse class in the Arthropoda, consisting of 20 orders and playing crucial roles in the terrestrial ecosystems. However, their interordinal relationships have been debated for over a century. Rearranged or highly rearranged mitochondrial genomes (mitogenomes) were consistently found in this class, but their various extent in different lineages and efficiency for resolving arachnid phylogenies are unclear. Here, we reconstructed phylogenetic trees using mitogenome sequences of 290 arachnid species to decipher interordinal relationships as well as diversification through time. Our results recovered monophyly of ten orders (i.e. Amblypygi, Araneae, Ixodida, Mesostigmata, Opiliones, Pseudoscorpiones, Ricinulei, Sarcoptiformes, Scorpiones and Solifugae), while rejecting monophyly of the Trombidiformes due to the unstable position of the Eriophyoidea. The monophyly of Acari (subclass) was rejected, possibly due to the long-branch attraction of the Pseudoscorpiones. The monophyly of Arachnida was further rejected because the Xiphosura nested within arachnid orders with unstable positions. Mitogenomes that are highly rearranged in mites but less rearranged or conserved in the remaining lineages point to their exceptional diversification in mite orders; however, shared derived mitochondrial (mt) gene clusters were found within superfamilies rather than interorders, confusing phylogenetic signals in arachnid interordinal relationships. Molecular dating results show that arachnid orders have ancient origins, ranging from the Ordovician to the Carboniferous, yet have significantly diversified since the Cretaceous in orders Araneae, Mesostigmata, Sarcoptiformes, and Trombidiformes. By summarizing previously resolved key positions of some orders, we propose a plausible arachnid tree of life. Our results underline a more precise framework for interordinal phylogeny in the Arachnida and provide new insights into their ancient evolution.
Collapse
Affiliation(s)
- Xin-Chao Ban
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zi-Kai Shao
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Li-Jun Wu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
16
|
Ballesteros JA, Santibáñez-López CE, Baker CM, Benavides LR, Cunha TJ, Gainett G, Ontano AZ, Setton EVW, Arango CP, Gavish-Regev E, Harvey MS, Wheeler WC, Hormiga G, Giribet G, Sharma PP. Comprehensive species sampling and sophisticated algorithmic approaches refute the monophyly of Arachnida. Mol Biol Evol 2022; 39:6522129. [PMID: 35137183 PMCID: PMC8845124 DOI: 10.1093/molbev/msac021] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deciphering the evolutionary relationships of Chelicerata (arachnids, horseshoe crabs, and allied taxa) has proven notoriously difficult, due to their ancient rapid radiation and the incidence of elevated evolutionary rates in several lineages. Although conflicting hypotheses prevail in morphological and molecular data sets alike, the monophyly of Arachnida is nearly universally accepted, despite historical lack of support in molecular data sets. Some phylotranscriptomic analyses have recovered arachnid monophyly, but these did not sample all living orders, whereas analyses including all orders have failed to recover Arachnida. To understand this conflict, we assembled a data set of 506 high-quality genomes and transcriptomes, sampling all living orders of Chelicerata with high occupancy and rigorous approaches to orthology inference. Our analyses consistently recovered the nested placement of horseshoe crabs within a paraphyletic Arachnida. This result was insensitive to variation in evolutionary rates of genes, complexity of the substitution models, and alternative algorithmic approaches to species tree inference. Investigation of sources of systematic bias showed that genes and sites that recover arachnid monophyly are enriched in noise and exhibit low information content. To test the impact of morphological data, we generated a 514-taxon morphological data matrix of extant and fossil Chelicerata, analyzed in tandem with the molecular matrix. Combined analyses recovered the clade Merostomata (the marine orders Xiphosura, Eurypterida, and Chasmataspidida), but merostomates appeared nested within Arachnida. Our results suggest that morphological convergence resulting from adaptations to life in terrestrial habitats has driven the historical perception of arachnid monophyly, paralleling the history of numerous other invertebrate terrestrial groups.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biology, Western Connecticut State University, Danbury, CT, 06810, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Tauana J Cunha
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Claudia P Arango
- Office for Research, Griffith University, Nathan, Queensland, 4111, Australia
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, 6106, Australia
- School of Biological Sciences, University of Western, Crawley, Western Australia, 6009, Australia; Australia
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
17
|
Engelhardt J, Scheer O, Stadler PF, Prohaska SJ. Evolution of DNA Methylation Across Ecdysozoa. J Mol Evol 2022; 90:56-72. [PMID: 35089376 PMCID: PMC8821070 DOI: 10.1007/s00239-021-10042-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
DNA methylation is a crucial, abundant mechanism of gene regulation in vertebrates. It is less prevalent in many other metazoan organisms and completely absent in some key model species, such as Drosophila melanogaster and Caenorhabditis elegans. We report here a comprehensive study of the presence and absence of DNA methyltransferases (DNMTs) in 138 Ecdysozoa, covering Arthropoda, Nematoda, Priapulida, Onychophora, and Tardigrada. Three of these phyla have not been investigated for the presence of DNA methylation before. We observe that the loss of individual DNMTs independently occurred multiple times across ecdysozoan phyla. We computationally predict the presence of DNA methylation based on CpG rates in coding sequences using an implementation of Gaussian Mixture Modeling, MethMod. Integrating both analysis we predict two previously unknown losses of DNA methylation in Ecdysozoa, one within Chelicerata (Mesostigmata) and one in Tardigrada. In the early-branching Ecdysozoa Priapulus caudatus, we predict the presence of a full set of DNMTs and the presence of DNA methylation. We are therefore showing a very diverse and independent evolution of DNA methylation in different ecdysozoan phyla spanning a phylogenetic range of more than 700 million years.
Collapse
Affiliation(s)
- Jan Engelhardt
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany. .,Computational EvoDevo Group, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany. .,Interdisciplinary Centre for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany. .,Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Oliver Scheer
- Computational EvoDevo Group, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany.,Interdisciplinary Centre for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany.,Interdisciplinary Centre for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany.,The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, 87501, USA.,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103, Leipzig, Germany.,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090, Vienna, Austria.,Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Colombia
| | - Sonja J Prohaska
- Computational EvoDevo Group, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany.,Interdisciplinary Centre for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany.,The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, 87501, USA.,Complexity Science Hub Vienna, Josefstädter Str. 39, 1080, Vienna, Austria
| |
Collapse
|
18
|
Brenneis G. The visual pathway in sea spiders (Pycnogonida) displays a simple serial layout with similarities to the median eye pathway in horseshoe crabs. BMC Biol 2022; 20:27. [PMID: 35086529 PMCID: PMC8796508 DOI: 10.1186/s12915-021-01212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Phylogenomic studies over the past two decades have consolidated the major branches of the arthropod tree of life. However, especially within the Chelicerata (spiders, scorpions, and kin), interrelationships of the constituent taxa remain controversial. While sea spiders (Pycnogonida) are firmly established as sister group of all other extant representatives (Euchelicerata), euchelicerate phylogeny itself is still contested. One key issue concerns the marine horseshoe crabs (Xiphosura), which recent studies recover either as sister group of terrestrial Arachnida or nested within the latter, with significant impact on postulated terrestrialization scenarios and long-standing paradigms of ancestral chelicerate traits. In potential support of a nested placement, previous neuroanatomical studies highlighted similarities in the visual pathway of xiphosurans and some arachnopulmonates (scorpions, whip scorpions, whip spiders). However, contradictory descriptions of the pycnogonid visual system hamper outgroup comparison and thus character polarization. RESULTS To advance the understanding of the pycnogonid brain and its sense organs with the aim of elucidating chelicerate visual system evolution, a wide range of families were studied using a combination of micro-computed X-ray tomography, histology, dye tracing, and immunolabeling of tubulin, the neuropil marker synapsin, and several neuroactive substances (including histamine, serotonin, tyrosine hydroxylase, and orcokinin). Contrary to previous descriptions, the visual system displays a serial layout with only one first-order visual neuropil connected to a bilayered arcuate body by catecholaminergic interneurons. Fluorescent dye tracing reveals a previously reported second visual neuropil as the target of axons from the lateral sense organ instead of the eyes. CONCLUSIONS Ground pattern reconstruction reveals remarkable neuroanatomical stasis in the pycnogonid visual system since the Ordovician or even earlier. Its conserved layout exhibits similarities to the median eye pathway in euchelicerates, especially in xiphosurans, with which pycnogonids share two median eye pairs that differentiate consecutively during development and target one visual neuropil upstream of the arcuate body. Given multiple losses of median and/or lateral eyes in chelicerates, and the tightly linked reduction of visual processing centers, interconnections between median and lateral visual neuropils in xiphosurans and arachnopulmonates are critically discussed, representing a plausible ancestral condition of taxa that have retained both eye types.
Collapse
Affiliation(s)
- Georg Brenneis
- Universität Greifswald, Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Soldmannstraße 23, 17489, Greifswald, Germany.
| |
Collapse
|
19
|
De novo transcriptome sequencing of the northern fowl mite, Ornithonyssus sylviarum, shed light on parasitiform poultry mites evolution and its chemoreceptor repertoires. Parasitol Res 2022; 121:521-535. [PMID: 35032220 DOI: 10.1007/s00436-022-07432-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022]
Abstract
The northern fowl mite (NFM), Ornithonyssus sylviarum, and the poultry red mite (PRM), Dermanyssus gallinae, are the most serious pests of poultry, both of which have an expanding global prevalence. Research on NFM has been constrained by a lack of genomic and transcriptomic data. Here, we report and analyze the first global transcriptome data across all mite live stages and sexes. A total of 28,999 unigenes were assembled, of which 19,750 (68.10%) were annotated using seven functional databases. The biological function of these unigenes was classified using the GO, KOG, and KEGG databases. To gain insight into the chemosensory receptor-based system of parasitiform mites, we furthermore assessed the gene repertoire of gustatory receptors (GRs) and ionotropic receptors (IRs), both of which encode putative ligand-gated ion channel proteins. While these receptors are well characterized in insect model species, our understanding of chemosensory detection in mites and ticks is in its infancy. To address this paucity of data, we identified 9 IR/iGluRs and 2 GRs genes by analyzing transcriptome data in the NFM, while 9 GRs and 41 IR/iGluRs genes were annotated in the PRM genome. Taken together, the transcriptomic and genomic annotation of these two species provide a valuable reference for studies of parasitiform mites and also help to understand how chemosensory gene family expansion/contraction events may have been reshaped by an obligate parasitic lifestyle compared with their free-living closest relatives. Future studies should include additional species to validate this observation and functional characterization of the identified proteins as a step forward in identifying tools for controlling these poultry pests.
Collapse
|
20
|
Comparative anatomy of the rostrosoma of Solifugae, Pseudoscorpiones and Acari. ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-021-00551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractWe compare the microscopic anatomy of the mouthparts of representative species of Solifugae, Pseudoscorpiones and Parasitiformes (Acari). Specifically, we focus on the epistome, the labrum, the lateral lips (= endites of the pedipalpal coxae) and the musculature of the pharyngeal suction pump. We provide evidence that the labrum is reduced in Solifugae, but present and functional in Pseudoscorpiones and Acari. The epistome constitutes the entire dorsal face of the rostrosoma in Solifugae, but is internalized into the prosoma in Pseudoscorpiones. In Acari, the epistome shows an ancestral morphology, probably close to the ground pattern of chelicerates. The lateral lips of Solifugae contribute to the ventral face of the rostrosoma and the two lips of the mouth opening. In Solifugae, the ventral rostrosoma also includes a sclerite that might derive from a tritosternum. In Pseudoscorpiones, the lateral lips remain independent of the rostrosoma, they interlock ventral to the rostrosoma forming a perioral space. Here, the rostrosoma has an unpaired ventral lip of unresolved morphological origin, which is, however, clearly distinct from the lateral lips of Solifugae. The pharyngeal suction pump differs in all three clades in attachment, number of muscles and origin of muscles. We interpret the data as evidence for independent, parallel evolution of elements of the ground pattern of the (eu)chelicerate mouth parts. Based on the morphological elements of a common euchelicerate ground plan, the rostrosoma evolved independently in the three clades. We reject earlier hypotheses that consider the rostrosoma a character to support a phylogenetic relationship of the three clades.
Collapse
|
21
|
Ontano AZ, Steiner HG, Sharma PP. How many long branch orders occur in Chelicerata? Opposing effects of Palpigradi and Opilioacariformes on phylogenetic stability. Mol Phylogenet Evol 2021; 168:107378. [PMID: 34968680 DOI: 10.1016/j.ympev.2021.107378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/20/2023]
Abstract
Excepting a handful of nodes, phylogenetic relationships between chelicerate orders remains poorly resolved, due to both the incidence of long branch attraction artifacts and the limited sampling of key lineages. It has recently been shown that increasing representation of basal nodes plays an outsized role in resolving the higher-level placement of long branch chelicerate orders. Two lineages have been consistently undersampled in chelicerate phylogeny. First, sampling of the miniaturized order Palpigradi has been restricted to a fragmentary transcriptome of a single species. Second, sampling of Opilioacariformes, a rarely encountered and key group of Parasitiformes, has been restricted to a single exemplar. These two lineages exhibit dissimilar properties with respect to branch length; Opilioacariformes shows relatively low evolutionary rate compared to other Parasitiformes, whereas Palpigradi possibly acts as another long branch order (an effect that may be conflated with the degree of missing data). To assess these properties and their effects on tree stability, we constructed a phylogenomic dataset of Chelicerata wherein both lineages were sampled with three terminals, increasing the representation of these lineages per locus. We examined the effect of subsampling phylogenomic matrices using (1) taxon occupancy, (2) evolutionary rate, and (3) a principal components-based approach. We further explored the impact of taxon deletion experiments that mitigate the effect of long branches. Here, we show that Palpigradi constitutes a fourth long branch chelicerate order (together with Acariformes, Parasitiformes, and Pseudoscorpiones), which further destabilizes the chelicerate backbone topology. By contrast, the slow-evolving Opilioacariformes were consistently recovered within Parasitiformes, with certain subsampling practices recovering their placement as the sister group to the remaining Parasitiformes. Whereas the inclusion of Opilioacariformes always resulted in the non-monophyly of Acari with support, deletion of Opilioacariformes from datasets consistently incurred the monophyly of Acari except in matrices constructed on the basis of evolutionary rate. Our results strongly suggest that Acari is an artifact of long-branch attraction.
Collapse
Affiliation(s)
- Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Hugh G Steiner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA 53706.
| |
Collapse
|
22
|
Benavides LR, Daniels SR, Giribet G. Understanding the real magnitude of the arachnid order Ricinulei through deep Sanger sequencing across its distribution range and phylogenomics, with the formalization of the first species from the Lesser Antilles. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ligia R. Benavides
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Savel R. Daniels
- Department of Botany and Zoology Stellenbosch University Matieland South Africa
| | - Gonzalo Giribet
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| |
Collapse
|
23
|
What Is an “Arachnid”? Consensus, Consilience, and Confirmation Bias in the Phylogenetics of Chelicerata. DIVERSITY 2021. [DOI: 10.3390/d13110568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The basal phylogeny of Chelicerata is one of the opaquest parts of the animal Tree of Life, defying resolution despite application of thousands of loci and millions of sites. At the forefront of the debate over chelicerate relationships is the monophyly of Arachnida, which has been refuted by most analyses of molecular sequence data. A number of phylogenomic datasets have suggested that Xiphosura (horseshoe crabs) are derived arachnids, refuting the traditional understanding of arachnid monophyly. This result is regarded as controversial, not least by paleontologists and morphologists, due to the widespread perception that arachnid monophyly is unambiguously supported by morphological data. Moreover, some molecular datasets have been able to recover arachnid monophyly, galvanizing the belief that any result that challenges arachnid monophyly is artefactual. Here, we explore the problems of distinguishing phylogenetic signal from noise through a series of in silico experiments, focusing on datasets that have recently supported arachnid monophyly. We assess the claim that filtering by saturation rate is a valid criterion for recovering Arachnida. We demonstrate that neither saturation rate, nor the ability to assemble a molecular phylogenetic dataset supporting a given outcome with maximal nodal support, is a guarantor of phylogenetic accuracy. Separately, we review empirical morphological phylogenetic datasets to examine characters supporting Arachnida and the downstream implication of a single colonization of terrestrial habitats. We show that morphological support of arachnid monophyly is contingent upon a small number of ambiguous or incorrectly coded characters, most of these tautologically linked to adaptation to terrestrial habitats.
Collapse
|
24
|
Mongiardino Koch N. Phylogenomic Subsampling and the Search for Phylogenetically Reliable Loci. Mol Biol Evol 2021; 38:4025-4038. [PMID: 33983409 DOI: 10.1101/2021.02.13.431075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
25
|
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
26
|
Ontano AZ, Gainett G, Aharon S, Ballesteros JA, Benavides LR, Corbett KF, Gavish-Regev E, Harvey MS, Monsma S, Santibáñez-López CE, Setton EVW, Zehms JT, Zeh JA, Zeh DW, Sharma PP. Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions. Mol Biol Evol 2021; 38:2446-2467. [PMID: 33565584 PMCID: PMC8136511 DOI: 10.1093/molbev/msab038] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long-branch attraction is a systematic artifact that results in erroneous groupings of fast-evolving taxa. The combination of short, deep internodes in tandem with long-branch attraction artifacts has produced empirically intractable parts of the Tree of Life. One such group is the arthropod subphylum Chelicerata, whose backbone phylogeny has remained unstable despite improvements in phylogenetic methods and genome-scale data sets. Pseudoscorpion placement is particularly variable across data sets and analytical frameworks, with this group either clustering with other long-branch orders or with Arachnopulmonata (scorpions and tetrapulmonates). To surmount long-branch attraction, we investigated the effect of taxonomic sampling via sequential deletion of basally branching pseudoscorpion superfamilies, as well as varying gene occupancy thresholds in supermatrices. We show that concatenated supermatrices and coalescent-based summary species tree approaches support a sister group relationship of pseudoscorpions and scorpions, when more of the basally branching taxa are sampled. Matrix completeness had demonstrably less influence on tree topology. As an external arbiter of phylogenetic placement, we leveraged the recent discovery of an ancient genome duplication in the common ancestor of Arachnopulmonata as a litmus test for competing hypotheses of pseudoscorpion relationships. We generated a high-quality developmental transcriptome and the first genome for pseudoscorpions to assess the incidence of arachnopulmonate-specific duplications (e.g., homeobox genes and miRNAs). Our results support the inclusion of pseudoscorpions in Arachnopulmonata (new definition), as the sister group of scorpions. Panscorpiones (new name) is proposed for the clade uniting Scorpiones and Pseudoscorpiones.
Collapse
Affiliation(s)
- Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shlomi Aharon
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kevin F Corbett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, WA, Australia
| | | | | | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeanne A Zeh
- Department of Biology and Program in Ecology, Evolution & Conservation Biology, University of Nevada, Reno, NV, USA
| | - David W Zeh
- Department of Biology and Program in Ecology, Evolution & Conservation Biology, University of Nevada, Reno, NV, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Fusco G, Minelli A. The Development of Arthropod Segmentation Across the Embryonic/Post-embryonic Divide – An Evolutionary Perspective. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.622482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In many arthropods, the appearance of new segments and their differentiation are not completed by the end of embryogenesis but continue, in different form and degree, well after hatching, in some cases up to the last post-embryonic molt. Focusing on the segmentation process currently described as post-embryonic segment addition (or, anamorphosis), we revise here the current knowledge and discuss it in an evolutionary framework which involves data from fossils, comparative morphology of extant taxa and gene expression. We advise that for a better understanding of the developmental changes underlying the evolution of arthropod segmentation, some key concepts should be applied in a critical way. These include the notion of the segment as a body block and the idea that hatching represents a well-defined divide, shared by all arthropods, between two contrasting developmental phases, embryonic vs. post-embryonic. This eventually reveals the complexity of the developmental processes occurring across hatching, which can evolve in different directions and with a different pace, creating the observed vagueness of the embryonic/post-embryonic divide.
Collapse
|
28
|
Lehmann T, Melzer RR. Outsourcing a visual neuropil - The central visual system of the median eyes of Galeodes granti Pocock, 1903 (Arachnida: Solifugae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101024. [PMID: 33383276 DOI: 10.1016/j.asd.2020.101024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Only a few studies have examined the central visual system of Solifugae until now. To get new insights suitable for phylogenetic analysis we studied the R-cell (or retinula cell) projections and visual neuropils of Galeodes granti using various methods. G. granti possesses large median eyes and rudimentary lateral eyes. In this study, only the R-cells and neuropils of the median eyes were successfully stained. The R-cells terminate in two distinct visual neuropils. The first neuropil is located externally to the protocerebrum directly below the retina, the second neuropil lies in the cell body rind of the protocerebrum, and immediately adjacent is the arcuate body. This layout of the median eye visual system differs from Arachnopulmonata (Scorpiones + Tetrapulmonata). However, there are several similarities with Opiliones. In both, (1) the R-cells are connected to a first and second visual neuropil and not to any other region of the brain, (2) the first neuropil is not embedded in the cell body rind of the protocerebrum, it is rather external to the protocerebrum, (3) the second visual neuropil is embedded in the cell body rind, and (4) the second neuropil abuts the arcuate body. These findings may provide important new characters for the discussion on arachnid phylogeny.
Collapse
Affiliation(s)
- Tobias Lehmann
- Bavarian State Collection of Zoology - SNSB, Münchhausenstraße 21, 81247, Munich, Germany.
| | - Roland R Melzer
- Bavarian State Collection of Zoology - SNSB, Münchhausenstraße 21, 81247, Munich, Germany; Ludwig-Maximilians-Universität München, Department Biologie II, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany; GeoBioCenter(LMU), Richard -Wagner-Str. 10, 80333 Munich, Germany
| |
Collapse
|