1
|
Alzakari SA, Allinjawi A, Aldrees A, Zamzami N, Umer M, Innab N, Ashraf I. Early detection of autism spectrum disorder using explainable AI and optimized teaching strategies. J Neurosci Methods 2025; 413:110315. [PMID: 39532186 DOI: 10.1016/j.jneumeth.2024.110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/13/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Autism spectrum disorder (ASD) is defined by the deficits of social relating, language, object use and understanding, intelligence and learning, and verbal and nonverbal communication. Most of the individuals with ASD have genetic conditions; however, early identification and intervention reduce the use of health services and other diagnostic procedures. The varied nature of ASD is widely acknowledged, with each affected individual displaying distinct traits. The variability among autistic children underscores the challenge of identifying effective teaching strategies, as what works for one child may not be suitable for another. In this study, we merge two ASD screening datasets focusing on toddlers. We employ three feature engineering techniques to extract significant features from the dataset to enhance model performance. This study presents an innovative two-phase method where initially, we employ diverse machine learning models, such as a combination of logistic regression and support vector machine classifiers. The focus of the second phase is on identifying tailored educational methods for children with ASD through the assessment of their behavioral, verbal, and physical responses. The main goal of this study is to develop personalized educational strategies for individuals with ASD. This will be achieved by employing machine learning techniques to enhance precision and better meet their unique needs. Experimental results achieve a classification accuracy of 94% in ASD identification using Chi-square extracted features. Concerning the choice of the best teaching approach for ASD children, the proposed approach shows 99.29% accuracy. Performance comparison with existing studies shows the superior performance of the proposed LR-SVM ensemble coupled with Chi-square features. In conclusion, the proposed approach provides a two-phase strategy for identifying ASD children and offering a suitable teaching strategy with respect to the severity of the ASD, thereby potentially contributing to the development of tailored solutions for children with varying needs.
Collapse
Affiliation(s)
- Sarah A Alzakari
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Arwa Allinjawi
- Department of Computer Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia.
| | - Asma Aldrees
- Department of Informatics and Computer Systems College of Computer Science, King Khalid University, Abha, Saudi Arabia.
| | - Nuha Zamzami
- College of Computer Science and Engineering, Department of Computer Science and Artificial Intelligence, University of Jeddah, Jeddah, Saudi Arabia.
| | - Muhammad Umer
- Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Nisreen Innab
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Imran Ashraf
- Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Aldrees A, Ojo S, Wanliss J, Umer M, Khan MA, Alabdullah B, Alsubai S, Innab N. Data-centric automated approach to predict autism spectrum disorder based on selective features and explainable artificial intelligence. Front Comput Neurosci 2024; 18:1489463. [PMID: 39498381 PMCID: PMC11532156 DOI: 10.3389/fncom.2024.1489463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by notable challenges in cognitive function, understanding language, recognizing objects, interacting with others, and communicating effectively. Its origins are mainly genetic, and identifying it early and intervening promptly can reduce the necessity for extensive medical treatments and lengthy diagnostic procedures for those impacted by ASD. This research is designed with two types of experimentation for ASD analysis. In the first set of experiments, authors utilized three feature engineering techniques (Chi-square, backward feature elimination, and PCA) with multiple machine learning models for autism presence prediction in toddlers. The proposed XGBoost 2.0 obtained 99% accuracy, F1 score, and recall with 98% precision with chi-square significant features. In the second scenario, main focus shifts to identifying tailored educational methods for children with ASD through the assessment of their behavioral, verbal, and physical responses. Again, the proposed approach performs well with 99% accuracy, F1 score, recall, and precision. In this research, cross-validation technique is also implemented to check the stability of the proposed model along with the comparison of previously published research works to show the significance of the proposed model. This study aims to develop personalized educational strategies for individuals with ASD using machine learning techniques to meet their specific needs better.
Collapse
Affiliation(s)
- Asma Aldrees
- Department of Informatics and Computer Systems, College of Computer Science, King Khalid University, Abha, Saudi Arabia
| | - Stephen Ojo
- College of Engineering, Anderson University, Anderson, SC, United States
| | - James Wanliss
- College of Engineering, Anderson University, Anderson, SC, United States
| | - Muhammad Umer
- Department of Computer Science and Information Technology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Attique Khan
- Department of AI, College of Computer Engineering and Science, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
| | - Bayan Alabdullah
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shtwai Alsubai
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nisreen Innab
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Schielen SJC, Pilmeyer J, Aldenkamp AP, Zinger S. The diagnosis of ASD with MRI: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:318. [PMID: 39095368 PMCID: PMC11297045 DOI: 10.1038/s41398-024-03024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
While diagnosing autism spectrum disorder (ASD) based on an objective test is desired, the current diagnostic practice involves observation-based criteria. This study is a systematic review and meta-analysis of studies that aim to diagnose ASD using magnetic resonance imaging (MRI). The main objective is to describe the state of the art of diagnosing ASD using MRI in terms of performance metrics and interpretation. Furthermore, subgroups, including different MRI modalities and statistical heterogeneity, are analyzed. Studies that dichotomously diagnose individuals with ASD and healthy controls by analyses progressing from magnetic resonance imaging obtained in a resting state were systematically selected by two independent reviewers. Studies were sought on Web of Science and PubMed, which were last accessed on February 24, 2023. The included studies were assessed on quality and risk of bias using the revised Quality Assessment of Diagnostic Accuracy Studies tool. A bivariate random-effects model was used for syntheses. One hundred and thirty-four studies were included comprising 159 eligible experiments. Despite the overlap in the studied samples, an estimated 4982 unique participants consisting of 2439 individuals with ASD and 2543 healthy controls were included. The pooled summary estimates of diagnostic performance are 76.0% sensitivity (95% CI 74.1-77.8), 75.7% specificity (95% CI 74.0-77.4), and an area under curve of 0.823, but uncertainty in the study assessments limits confidence. The main limitations are heterogeneity and uncertainty about the generalization of diagnostic performance. Therefore, comparisons between subgroups were considered inappropriate. Despite the current limitations, methods progressing from MRI approach the diagnostic performance needed for clinical practice. The state of the art has obstacles but shows potential for future clinical application.
Collapse
Affiliation(s)
- Sjir J C Schielen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Albert P Aldenkamp
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
4
|
Zhang X, Gao Y, Zhang Y, Li F, Li H, Lei F. Identification of Autism Spectrum Disorder Using Topological Data Analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1023-1037. [PMID: 38351222 PMCID: PMC11169318 DOI: 10.1007/s10278-024-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
Autism spectrum disorder (ASD) is a pervasive brain development disease. Recently, the incidence rate of ASD has increased year by year and posed a great threat to the lives and families of individuals with ASD. Therefore, the study of ASD has become very important. A suitable feature representation that preserves the data intrinsic information and also reduces data complexity is very vital to the performance of established models. Topological data analysis (TDA) is an emerging and powerful mathematical tool for characterizing shapes and describing intrinsic information in complex data. In TDA, persistence barcodes or diagrams are usually regarded as visual representations of topological features of data. In this paper, the Regional Homogeneity (ReHo) data of subjects obtained from Autism Brain Imaging Data Exchange (ABIDE) database were used to extract features by using TDA. The average accuracy of cross validation on ABIDE I database was 95.6% that was higher than any other existing methods (the highest accuracy among existing methods was 93.59%). The average accuracy for sampling with the same resolutions with the ABIDE I on the ABIDE II database was 96.5% that was also higher than any other existing methods (the highest accuracy among existing methods was 75.17%).
Collapse
Affiliation(s)
- Xudong Zhang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Yaru Gao
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Yunge Zhang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fengling Li
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China.
| | - Huanjie Li
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fengchun Lei
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
5
|
Lee DJ, Shin DH, Son YH, Han JW, Oh JH, Kim DH, Jeong JH, Kam TE. Spectral Graph Neural Network-Based Multi-Atlas Brain Network Fusion for Major Depressive Disorder Diagnosis. IEEE J Biomed Health Inform 2024; 28:2967-2978. [PMID: 38363664 DOI: 10.1109/jbhi.2024.3366662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Major Depressive Disorder (MDD) imposes a substantial burden within the healthcare domain, impacting millions of individuals worldwide. Functional Magnetic Resonance Imaging (fMRI) has emerged as a promising tool for the objective diagnosis of MDD, enabling the investigation of functional connectivity patterns in the brain associated with this disorder. However, most existing methods focus on a single brain atlas, which limits their ability to capture the complex, multi-scale nature of functional brain networks. To address these limitations, we propose a novel multi-atlas fusion method that incorporates early and late fusion in a unified framework. Our method introduces the concept of the holistic Functional Connectivity Network (FCN), which captures both intra-atlas relationships within individual atlases and inter-regional relationships between atlases with different brain parcellation scales. This comprehensive representation enables the identification of potential disease-related patterns associated with MDD in the early stage of our framework. Moreover, by decoding the holistic FCN from various perspectives through multiple spectral Graph Convolutional Neural Networks and fusing their results with decision-level ensembles, we further improve the performance of MDD diagnosis. Our approach is easily implemented with minimal modifications to existing model structures and demonstrates a robust performance across different baseline models. Our method, evaluated on public resting-state fMRI datasets, surpasses the current multi-atlas fusion methods, enhancing the accuracy of MDD diagnosis. The proposed novel multi-atlas fusion framework provides a more reliable MDD diagnostic technique. Experimental results show our approach outperforms both single- and multi-atlas-based methods, demonstrating its effectiveness in advancing MDD diagnosis.
Collapse
|
6
|
Alharthi AG, Alzahrani SM. Do it the transformer way: A comprehensive review of brain and vision transformers for autism spectrum disorder diagnosis and classification. Comput Biol Med 2023; 167:107667. [PMID: 37939407 DOI: 10.1016/j.compbiomed.2023.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a condition observed in children who display abnormal patterns of interaction, behavior, and communication with others. Despite extensive research efforts, the underlying causes of this neurodevelopmental disorder and its biomarkers remain unknown. However, advancements in artificial intelligence and machine learning have improved clinicians' ability to diagnose ASD. This review paper investigates various MRI modalities to identify distinct features that characterize individuals with ASD compared to typical control subjects. The review then moves on to explore deep learning models for ASD diagnosis, including convolutional neural networks (CNNs), autoencoders, graph convolutions, attention networks, and other models. CNNs and their variations are particularly effective due to their capacity to learn structured image representations and identify reliable biomarkers for brain disorders. Computer vision transformers often employ CNN architectures with transfer learning techniques like fine-tuning and layer freezing to enhance image classification performance, surpassing traditional machine learning models. This review paper contributes in three main ways. Firstly, it provides a comprehensive overview of a recommended architecture for using vision transformers in the systematic ASD diagnostic process. To this end, the paper investigates various pre-trained vision architectures such as VGG, ResNet, Inception, InceptionResNet, DenseNet, and Swin models that were fine-tuned for ASD diagnosis and classification. Secondly, it discusses the vision transformers of 2020th like BiT, ViT, MobileViT, and ConvNeXt, and applying transfer learning methods in relation to their prospective practicality in ASD classification. Thirdly, it explores brain transformers that are pre-trained on medically rich data and MRI neuroimaging datasets. The paper recommends a systematic architecture for ASD diagnosis using brain transformers. It also reviews recently developed brain transformer-based models, such as METAFormer, Com-BrainTF, Brain Network, ST-Transformer, STCAL, BolT, and BrainFormer, discussing their deep transfer learning architectures and results in ASD detection. Additionally, the paper summarizes and discusses brain-related transformers for various brain disorders, such as MSGTN, STAGIN, and MedTransformer, in relation to their potential usefulness in ASD. The study suggests that developing specialized transformer-based models, following the success of natural language processing (NLP), can offer new directions for image classification problems in ASD brain biomarkers learning and classification. By incorporating the attention mechanism, treating MRI modalities as sequence prediction tasks trained on brain disorder classification problems, and fine-tuned on ASD datasets, brain transformers can show a great promise in ASD diagnosis.
Collapse
Affiliation(s)
- Asrar G Alharthi
- Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia.
| | - Salha M Alzahrani
- Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia
| |
Collapse
|
7
|
Qureshi MS, Qureshi MB, Asghar J, Alam F, Aljarbouh A. Prediction and Analysis of Autism Spectrum Disorder Using Machine Learning Techniques. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:4853800. [PMID: 37469788 PMCID: PMC10352530 DOI: 10.1155/2023/4853800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 07/21/2023]
Abstract
Autism spectrum disorder is a severe, life-prolonged neurodevelopmental disease typified by disabilities that are chronic or limited in the development of socio-communication skills, thinking abilities, activities, and behavior. In children aged two to three years, the symptoms of autism are more evident and easier to recognize. The major part of the existing literature on autism spectrum disorder is covered by a prediction system based on traditional machine learning algorithms such as support vector machine, random forest, multiple layer perceptron, naive Bayes, convolution neural network, and deep neural network. The proposed models are validated by using performance measurement parameters such as accuracy, precision, and recall. In this research, autism spectrum disorder prediction has been investigated and compared using common parameters such as application type, simulation method, comparison methodology, and input data. The key purpose of this study is to give a centralized framework to use for researchers working on autism spectrum disorder prediction. The best results were obtained by using the random forest algorithm as it performs better than other traditional machine learning algorithms. The achieved accuracy is 89.23%. The workflow representations of the investigated frameworks assist readers in comprehending the fundamental workings and architectures of these frameworks.
Collapse
Affiliation(s)
- Muhammad Shuaib Qureshi
- Department of Computer Science, School of Arts and Sciences, University of Central Asia, Naryn, Kyrgyzstan
| | | | - Junaid Asghar
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, KPK, Pakistan
| | - Fatima Alam
- Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad 44000, Pakistan
| | - Ayman Aljarbouh
- Department of Computer Science, School of Arts and Sciences, University of Central Asia, Naryn, Kyrgyzstan
| |
Collapse
|
8
|
Benabdallah FZ, Drissi El Maliani A, Lotfi D, El Hassouni M. A Convolutional Neural Network-Based Connectivity Enhancement Approach for Autism Spectrum Disorder Detection. J Imaging 2023; 9:110. [PMID: 37367458 DOI: 10.3390/jimaging9060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Autism spectrum disorder (ASD) represents an ongoing obstacle facing many researchers to achieving early diagnosis with high accuracy. To advance developments in ASD detection, the corroboration of findings presented in the existing body of autism-based literature is of high importance. Previous works put forward theories of under- and over-connectivity deficits in the autistic brain. An elimination approach based on methods that are theoretically comparable to the aforementioned theories proved the existence of these deficits. Therefore, in this paper, we propose a framework that takes into account the properties of under- and over-connectivity in the autistic brain using an enhancement approach coupled with deep learning through convolutional neural networks (CNN). In this approach, image-alike connectivity matrices are created, and then connections related to connectivity alterations are enhanced. The overall objective is the facilitation of early diagnosis of this disorder. After conducting tests using information from the large multi-site Autism Brain Imaging Data Exchange (ABIDE I) dataset, the results show that this approach provides an accurate prediction value reaching up to 96%.
Collapse
Affiliation(s)
- Fatima Zahra Benabdallah
- Laboratory of Research in Information Technology and Telecommunication (LRIT), Rabat IT Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat B.P. 1014 RP, Morocco
| | - Ahmed Drissi El Maliani
- Laboratory of Research in Information Technology and Telecommunication (LRIT), Rabat IT Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat B.P. 1014 RP, Morocco
| | - Dounia Lotfi
- Laboratory of Research in Information Technology and Telecommunication (LRIT), Rabat IT Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat B.P. 1014 RP, Morocco
| | - Mohammed El Hassouni
- Laboratory of Research in Information Technology and Telecommunication (LRIT), Rabat IT Center, lFLSH, Mohammed V University in Rabat, Rabat B.P. 1014 RP, Morocco
| |
Collapse
|
9
|
Ma H, Cao Y, Li M, Zhan L, Xie Z, Huang L, Gao Y, Jia X. Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study. Hum Brain Mapp 2023; 44:1094-1104. [PMID: 36346215 PMCID: PMC9875923 DOI: 10.1002/hbm.26141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Previous studies have explored resting-state functional connectivity (rs-FC) of the amygdala in patients with autism spectrum disorder (ASD). However, it remains unclear whether there are frequency-specific FC alterations of the amygdala in ASD and whether FC in specific frequency bands can be used to distinguish patients with ASD from typical controls (TCs). Data from 306 patients with ASD and 314 age-matched and sex-matched TCs were collected from 28 sites in the Autism Brain Imaging Data Exchange database. The bilateral amygdala, defined as the seed regions, was used to perform seed-based FC analyses in the conventional, slow-5, and slow-4 frequency bands at each site. Image-based meta-analyses were used to obtain consistent brain regions across 28 sites in the three frequency bands. By combining generative adversarial networks and deep neural networks, a deep learning approach was applied to distinguish patients with ASD from TCs. The meta-analysis results showed frequency band specificity of FC in ASD, which was reflected in the slow-5 frequency band instead of the conventional and slow-4 frequency bands. The deep learning results showed that, compared with the conventional and slow-4 frequency bands, the slow-5 frequency band exhibited a higher accuracy of 74.73%, precision of 74.58%, recall of 75.05%, and area under the curve of 0.811 to distinguish patients with ASD from TCs. These findings may help us to understand the pathological mechanisms of ASD and provide preliminary guidance for the clinical diagnosis of ASD.
Collapse
Affiliation(s)
- Huibin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yikang Cao
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Yanyan Gao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| |
Collapse
|
10
|
Chaki J, Woźniak M. Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Shi C, Xin X, Zhang J. A novel multigranularity feature-selection method based on neighborhood mutual information and its application in autistic patient identification. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Wang Y, Fu Y, Luo X. Identification of Pathogenetic Brain Regions via Neuroimaging Data for Diagnosis of Autism Spectrum Disorders. Front Neurosci 2022; 16:900330. [PMID: 35655751 PMCID: PMC9152096 DOI: 10.3389/fnins.2022.900330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a kind of neurodevelopmental disorder that often occurs in children and has a hidden onset. Patients usually have lagged development of communication ability and social behavior and thus suffer an unhealthy physical and mental state. Evidence has indicated that diseases related to ASD have commonalities in brain imaging characteristics. This study aims to study the pathogenesis of ASD based on brain imaging data to locate the ASD-related brain regions. Specifically, we collected the functional magnetic resonance image data of 479 patients with ASD and 478 normal subjects matched in age and gender and used a machine-learning framework named random support vector machine cluster to extract distinctive brain regions from the preprocessed data. According to the experimental results, compared with other existing approaches, the method used in this study can more accurately distinguish patients from normal individuals based on brain imaging data. At the same time, this study found that the development of ASD was highly correlated with certain brain regions, e.g., lingual gyrus, superior frontal gyrus, medial gyrus, insular lobe, and olfactory cortex. This study explores the effectiveness of a novel machine-learning approach in the study of ASD brain imaging and provides a reference brain area for the medical research and clinical treatment of ASD.
Collapse
Affiliation(s)
- Yu Wang
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| | - Yu Fu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
- *Correspondence: Yu Fu
| | - Xun Luo
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
- Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| |
Collapse
|
13
|
Hu Q, Gois FNB, Costa R, Zhang L, Yin L, Magai N, de Albuquerque VHC. Explainable artificial intelligence-based edge fuzzy images for COVID-19 detection and identification. Appl Soft Comput 2022; 123:108966. [PMID: 35582662 PMCID: PMC9102011 DOI: 10.1016/j.asoc.2022.108966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic continues to wreak havoc on the world’s population’s health and well-being. Successful screening of infected patients is a critical step in the fight against it, with radiology examination using chest radiography being one of the most important screening methods. For the definitive diagnosis of COVID-19 disease, reverse-transcriptase polymerase chain reaction remains the gold standard. Currently available lab tests may not be able to detect all infected individuals; new screening methods are required. We propose a Multi-Input Transfer Learning COVID-Net fuzzy convolutional neural network to detect COVID-19 instances from torso X-ray, motivated by the latter and the open-source efforts in this research area. Furthermore, we use an explainability method to investigate several Convolutional Networks COVID-Net forecasts in an effort to not only gain deeper insights into critical factors associated with COVID-19 instances, but also to aid clinicians in improving screening. We show that using transfer learning and pre-trained models, we can detect it with a high degree of accuracy. Using X-ray images, we chose four neural networks to predict its probability. Finally, in order to achieve better results, we considered various methods to verify the techniques proposed here. As a result, we were able to create a model with an AUC of 1.0 and accuracy, precision, and recall of 0.97. The model was quantized for use in Internet of Things devices and maintained a 0.95 percent accuracy.
Collapse
Affiliation(s)
- Qinhua Hu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | | | | | - Lijuan Zhang
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China
| | - Ling Yin
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Naercio Magai
- Instituto Superior Técnico (IST), Universidade de Lisboa, Portugal
| | - Victor Hugo C de Albuquerque
- Graduate Program on Teleinformatics Engineering, Federal University of Ceará, Fortaleza/CE, Brazil.,Graduate Program on Electrical Engineering, Federal University of Ceará, Fortaleza/CE, Brazil
| |
Collapse
|
14
|
Li J, Wang F, Pan J, Wen Z. Identification of Autism Spectrum Disorder With Functional Graph Discriminative Network. Front Neurosci 2021; 15:729937. [PMID: 34744607 PMCID: PMC8566666 DOI: 10.3389/fnins.2021.729937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a specific brain disease that causes communication impairments and restricted interests. Functional connectivity analysis methodology is widely used in neuroscience research and shows much potential in discriminating ASD patients from healthy controls. However, due to heterogeneity of ASD patients, the performance of conventional functional connectivity classification methods is relatively poor. Graph neural network is an effective graph representation method to model structured data like functional connectivity. In this paper, we proposed a functional graph discriminative network (FGDN) for ASD classification. On the basis of pre-built graph templates, the proposed FGDN is able to effectively distinguish ASD patient from health controls. Moreover, we studied the size of training set for effective training, inter-site predictions, and discriminative brain regions. Discriminative brain regions were determined by the proposed model to investigate its applicability and biomarkers for ASD identification. For functional connectivity classification and analysis, FGDN is not only an effective tool for ASD identification but also a potential technique in neuroscience research.
Collapse
Affiliation(s)
- Jingcong Li
- School of Software, South China Normal University, Guangzhou, China.,Pazhou Lab, Guangzhou, China
| | - Fei Wang
- School of Software, South China Normal University, Guangzhou, China.,Pazhou Lab, Guangzhou, China
| | - Jiahui Pan
- School of Software, South China Normal University, Guangzhou, China.,Pazhou Lab, Guangzhou, China
| | - Zhenfu Wen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|