1
|
Ryu S, Howland A, Song B, Youn C, Song PI. Scavenger Receptor Class A to E Involved in Various Cancers. Chonnam Med J 2020; 56:1-5. [PMID: 32021835 PMCID: PMC6976765 DOI: 10.4068/cmj.2020.56.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Scavenger receptors typically bind to multiple ligands on a cell surface, including endogenous and modified host-derived molecules and microbial pathogens. They promote the elimination of degraded or harmful substances such as non-self or altered-self targets through endocytosis, phagocytosis, and adhesion. Currently, scavenger receptors are subdivided into eight classes based on several variations in their sequences due to alternative splicing. Since recent studies indicate targeting scavenger receptors has been involved in cancer prognosis and carcinogenesis, we will focus on the current knowledge about the emerging role of scavenger receptor classes A to E in cancer progression.
Collapse
Affiliation(s)
- Sunhyo Ryu
- Boston University School of Medicine, Boston, MA, USA
| | - Amanda Howland
- University of Colorado Denver School of Medicine, Aurora, CO, USA
| | | | - Chakyung Youn
- Department of Biomedical Science, Research Center for Proteinaceous Materials, Chosun University School of Medicine, Gwangju, Korea
| | | |
Collapse
|
2
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
3
|
Strauss O, Dunbar PR, Bartlett A, Phillips A. The immunophenotype of antigen presenting cells of the mononuclear phagocyte system in normal human liver--a systematic review. J Hepatol 2015; 62:458-68. [PMID: 25315649 DOI: 10.1016/j.jhep.2014.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
The mononuclear phagocytic system (MPS), comprised of monocytes, macrophages, and dendritic cells, is essential in tissue homeostasis and in determining the balance of the immune response through its role in antigen presentation. It has been identified as a therapeutic target in infectious disease, cancer, autoimmune disease and transplant rejection. Here, we review the current understanding of the immunophenotype and function of the MPS in normal human liver. Using well-defined selection criteria, a search of MEDLINE and EMBASE databases identified 76 appropriate studies. The majority (n=67) described Kupffer cells (KCs), although the definition of KC differs between sources, and little data were available regarding their function. Only 10 papers looked at liver dendritic cells (DCs), and largely confirmed the presence of the major dendritic cell subsets identified in human blood. Monocytes were thoroughly characterized in four studies that utilized flow cytometry and fluorescent microscopy and highlighted their prominent role in liver homeostasis and displayed subtle differences from circulating monocytes. There was some limited evidence that liver DCs are tolerogenic but neither liver dendritic cell subsets nor macrophages have been thoroughly characterized, using either multi-colour flow cytometry or multi-parameter fluorescence microscopy. The lobular distribution of different subsets of liver MPS cells was also poorly described, and the ability to distinguish between passenger leukocytes and tissue resident cells remains limited. It was apparent that further research, using modern immunological techniques, is now required to accurately characterize the cells of the MPS in human liver.
Collapse
Affiliation(s)
- Otto Strauss
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Adam Bartlett
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Anthony Phillips
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Kent AP, Stylianou IM. Scavenger receptor class B member 1 protein: hepatic regulation and its effects on lipids, reverse cholesterol transport, and atherosclerosis. Hepat Med 2011; 3:29-44. [PMID: 24367219 PMCID: PMC3846864 DOI: 10.2147/hmer.s7860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Scavenger receptor class B member 1 (SR-BI, also known as SCARB1) is the primary receptor for the selective uptake of cholesterol from high-density lipoprotein (HDL). SR-BI is present in several key tissues; however, its presence and function in the liver is deemed the most relevant for protection against atherosclerosis. Cholesterol is transferred from HDL via SR-BI to the liver, which ultimately results in the excretion of cholesterol via bile and feces in what is known as the reverse cholesterol transport pathway. Much of our knowledge of SR-BI hepatic function and regulation is derived from mouse models and in vitro characterization. Multiple independent regulatory mechanisms of SR-BI have been discovered that operate at the transcriptional and post-transcriptional levels. In this review we summarize the critical discoveries relating to hepatic SR-BI cholesterol metabolism, atherosclerosis, and regulation of SR-BI, as well as alternative functions that may indirectly affect atherosclerosis.
Collapse
Affiliation(s)
- Anthony P Kent
- Department of Medicine and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ioannis M Stylianou
- Department of Medicine and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Modulators of Protein Kinase C Affect SR-BI-Dependent HDL Lipid Uptake in Transfected HepG2 Cells. CHOLESTEROL 2011; 2011:687939. [PMID: 21490774 PMCID: PMC3065880 DOI: 10.1155/2011/687939] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/02/2010] [Indexed: 11/17/2022]
Abstract
SR-BI is a cell surface HDL receptor that mediates selective uptake of the lipid cargo of HDL, an important process in hepatocytes, driving reverse cholesterol transport from cells in the artery wall. To facilitate examination of factors that modulate SR-BI activity in hepatocytes, we have generated fluorescent protein-tagged versions of SR-BI that allow for facile monitoring of SR-BI protein levels and distribution in transfected cells. We show that deletion of the C-terminal cytosolic tail does not affect the distribution of SR-BI in HepG2 cells, nor is the C-terminal cytosolic tail required for SR-BI-mediated uptake of HDL lipids. We also demonstrate that the phorbol ester, PMA, increased, while protein kinase C inhibitors reduced SR-BI-mediated HDL lipid uptake in HepG2 cells. These data suggest that protein kinase C may modulate selective uptake of HDL lipids including cholesterol in hepatocytes, thereby influencing hepatic HDL cholesterol clearance and reverse cholesterol transport.
Collapse
|
6
|
Hoekstra M, Berkel TJCV, Eck MV. Scavenger receptor BI: A multi-purpose player in cholesterol and steroid metabolism. World J Gastroenterol 2010; 16:5916-24. [PMID: 21157967 PMCID: PMC3007109 DOI: 10.3748/wjg.v16.i47.5916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Scavenger receptor class B type I (SR-BI) is an important member of the scavenger receptor family of integral membrane glycoproteins. This review highlights studies in SR-BI knockout mice, which concern the role of SR-BI in cholesterol and steroid metabolism. SR-BI in hepatocytes is the sole molecule involved in selective uptake of cholesteryl esters from high-density lipoprotein (HDL). SR-BI plays a physiological role in binding and uptake of native apolipoprotein B (apoB)-containing lipoproteins by hepatocytes, which identifies SR-BI as a multi-purpose player in lipid uptake from the blood circulation into hepatocytes in mice. In adrenocortical cells, SR-BI mediates the selective uptake of HDL-cholesteryl esters, which is efficiently coupled to the synthesis of glucocorticoids (i.e. corticosterone). SR-BI knockout mice suffer from adrenal glucocorticoid insufficiency, which suggests that functional SR-BI protein is necessary for optimal adrenal steroidogenesis in mice. SR-BI in macrophages plays a dual role in cholesterol metabolism as it is able to take up cholesterol associated with HDL and apoB-containing lipoproteins and can possibly facilitate cholesterol efflux to HDL. Absence of SR-BI is associated with thrombocytopenia and altered thrombosis susceptibility, which suggests a novel role for SR-BI in regulating platelet number and function in mice. Transgenic expression of cholesteryl ester transfer protein in humanized SR-BI knockout mice normalizes hepatic delivery of HDL-cholesteryl esters. However, other pathologies associated with SR-BI deficiency, i.e. increased atherosclerosis susceptibility, adrenal glucocorticoid insufficiency, and impaired platelet function are not normalized, which suggests an important role for SR-BI in cholesterol and steroid metabolism in man. In conclusion, generation of SR-BI knockout mice has significantly contributed to our knowledge of the physiological role of SR-BI. Studies using these mice have identified SR-BI as a multi-purpose player in cholesterol and steroid metabolism because it has distinct roles in reverse cholesterol transport, adrenal steroidogenesis, and platelet function.
Collapse
|
7
|
Ishikawa Y, Kimura-Matsumoto M, Murakami M, Murakami M, Yamamoto K, Akasaka Y, Uzuki M, Yuri Y, Inomata N, Yokoo T, Ishii T. Distribution of smooth muscle cells and macrophages expressing scavenger receptor BI/II in atherosclerosis. J Atheroscler Thromb 2009; 16:829-39. [PMID: 20032583 DOI: 10.5551/jat.1941] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Scavenger receptors type I and II (SRBI/II) have dual roles in both atherogenic and antiatherogenic functions through interactions with lipoproteins and their expression in macrophages; how-ever, the distribution and density of SRBI/II-positive macrophages and smooth muscle cells (SMCs) as well as their association with lipid metabolism-related proteins in atherosclerotic intima of the human aorta remain unclear. METHODS Autopsied aortic tissues were double-immunostained with SRBI/BII and smooth muscle actin or macrophage-specific antibodies. The density of SRBI/BII-positive SMCs and macrophages in intimal lesion was measured. They were also immunostained with antibodies against four apolipoproteins, four phospholipase A2s, and CETP. RESULTS SRBI/II was expressed in both macrophages and SMCs distributed in various intimal lesions. The density of SRBI/II-positive SMCs in intimal lesions significantly decreased with the advance of atherosclerosis, whereas the density of SRBI/II-positive macrophages significantly increased with atherosclerotic development. In addition, functional proteins, such as apolipoproteins, secretory phospholipase A2s, and CETP, were distributed in the intimal stroma around SRBI/II-positive cells in all lesion types. CONCLUSION The results indicated that SMCs are involved in lipid metabolism via SRBI/II expression mainly in the early stages of atherosclerosis evolution, and that SRBI/II-positive macrophages are mainly involved in advanced stages.
Collapse
Affiliation(s)
- Yukio Ishikawa
- Department of Pathology, Toho University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Komori H, Arai H, Kashima T, Huby T, Kita T, Ueda Y. Coexpression of CLA-1 and human PDZK1 in murine liver modulates HDL cholesterol metabolism. Arterioscler Thromb Vasc Biol 2008; 28:1298-303. [PMID: 18403724 DOI: 10.1161/atvbaha.108.165845] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE In rodents scavenger receptor class B type I (SR-BI) is a key molecule for selective uptake of cholesteryl ester from high-density lipoprotein (HDL). This study was aimed to clarify the role of the human SR-BI/CD36 and LIMP-II Analogues-1 (CLA-1) as a molecular target of selective uptake of cholesteryl ester from HDL in vivo. METHODS AND RESULTS To clarify the function and regulation of CLA-1 in vivo we produced CLA-1 BAC transgenic mice. In spite of abundant hepatic RNA expression of CLA-1, CLA-1 BAC transgenic mice had no significant effect on mouse HDL cholesterol. Although coexpression of a human scaffolding protein PDZK1 along with CLA-1 enhanced hepatic CLA-1 expression, it did not affect mouse HDL cholesterol levels, either. However, in the presence of human apoA-1, HDL cholesterol level and size were significantly reduced in CLA-1 transgenic mice, and its reduction was more pronounced in CLA-1/human PDZK1 double transgenic mouse. CONCLUSIONS We established a mouse model to study human reverse cholesterol transport by expressing CLA-1, human PDZK1, and human apoA-I gene. Our results imply that enhancing CLA-1 expression by human PDZK1 in the liver can modulate HDL cholesterol metabolism and possibly enhance reverse cholesterol transport to prevent the progression of atherosclerosis in human.
Collapse
Affiliation(s)
- Hidenori Komori
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Lee-Rueckert M, Kovanen PT. Mast cell proteases: Physiological tools to study functional significance of high density lipoproteins in the initiation of reverse cholesterol transport. Atherosclerosis 2006; 189:8-18. [PMID: 16530202 DOI: 10.1016/j.atherosclerosis.2006.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/17/2006] [Accepted: 02/01/2006] [Indexed: 11/27/2022]
Abstract
The extracellular fluid of the intima is rich in lipid-poor species of high density lipoproteins (HDL) that promote efficient efflux of cholesterol from macrophages. Yet, during atherogenesis, cholesterol accumulates in macrophages, and foam cells are formed. We have studied proteolytic modification of HDL by mast cell proteases as a potential mechanism of reduced cholesterol efflux from foam cells. Mast cells are present in human atherosclerotic lesions and, when activated, they expel cytoplasmic granules that are filled with heparin proteoglycans and two neutral proteases, chymase and tryptase. Both proteases were found to specifically deplete in vitro the apoA-I-containing prebeta-migrating HDL (prebeta-HDL) and other lipid-poor HDL particles that contain only apoA-IV or apoE. These losses led to inhibition of the high-affinity component of cholesterol efflux from macrophage foam cells facilitated by the ATP-binding cassette transporter A1 (ABCA1). In contrast, the diffusional component of efflux promoted by alpha-HDL particles was not changed after proteolysis. Mast cell proteases are providing new insights into the role of extracellular proteolysis of HDL as an inhibiting principle of the initial steps of reverse cholesterol transport in the atherosclerotic intima, where many types of protease-secreting cells are present.
Collapse
|
10
|
Jessup W, Gelissen IC, Gaus K, Kritharides L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol 2006; 17:247-57. [PMID: 16680029 DOI: 10.1097/01.mol.0000226116.35555.eb] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The initial steps of reverse cholesterol transport involve export of cholesterol from peripheral cells to plasma lipoproteins for subsequent delivery to the liver. The review discusses recent developments in our understanding of how these steps occur, with particular emphasis on the macrophage, the major site of cellular cholesterol accumulation in atherosclerosis. RECENT FINDINGS ATP binding cassette transporter (ABC) A1 exports cholesterol and phospholipid to lipid-free apolipoproteins, while ATP binding cassette transporter G1 and scavenger receptor BI export cholesterol to phospholipid-containing acceptors. ABCA1-dependent cholesterol export involves an initial interaction of apolipoprotein AI with lipid raft membrane domains, although ABCA1 and most exported cholesterol are not raft associated. ABCG1 exports cholesterol to HDL and other phospholipid-containing acceptors. These include particles generated during lipidation of apoAI by ABCA1, suggesting that the two transporters cooperate in cholesterol export. Scavenger receptor BI is atheroprotective, mediating clearance of HDL cholesterol by the liver. The relative contributions of scavenger receptor BI and ABCG to cholesterol export to HDL from macrophages is unclear and may depend on cellular cholesterol status and the cholesterol gradient between cell and acceptor. SUMMARY The presence of distinct pathways for cholesterol efflux to lipid-free apolipoprotein AI and phospholipid-containing HDL species clarifies our understanding of reverse cholesterol transport, and provides new opportunities for its therapeutic manipulation.
Collapse
Affiliation(s)
- Wendy Jessup
- Centre for Vascular Research, at the School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
11
|
Reverse cholesterol transport. COR ET VASA 2006. [DOI: 10.33678/cor.2006.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|