1
|
Peroxisome Proliferator-Activated Receptor-α ( PPARα) Expression in a Clinical Population of Pakistani Patients with Type 2 Diabetes and Dyslipidemia. Int J Mol Sci 2022; 23:ijms231810847. [PMID: 36142760 PMCID: PMC9505490 DOI: 10.3390/ijms231810847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Poor glycemic control and dyslipidemia are hallmarks of type 2 diabetes mellitus (T2DM), which predispose to cardiovascular diseases. Peroxisome proliferator-activated receptor-α (PPARα) has been associated with atherosclerosis, but its role in T2DM is less clear. Previously, we studied PPARα expression levels in diabetics with and without dyslipidemia (DD). In this study we described the association with fasting blood glucose, HbA1c levels and lipid levels of the study population. Patient demography and biochemical data were collected from hospitals in Islamabad, Pakistan, and RT-PCR data of PPARα expression were retrieved from our previous study from the same cohort. We performed t-tests and regression analysis to evaluate the relationships between PPARα expression and demographic and clinical variables. As expected, body mass index and HbA1c were elevated in T2DM and DD patients compared to controls. Blood lipids (total cholesterol, triglycerides, LDL and HDL) were significantly higher in the DD group compared to the other two groups. In the T2DM and DD groups, the PPARα expression was not associated with any of the physical and biochemical parameters measured in this study. Expression of the PPARα gene was independent of blood lipids and glycemic control in this study. Further research is necessary to better understand the biological parameters of PPARα expression.
Collapse
|
2
|
Iwata H, Osborn EA, Ughi GJ, Murakami K, Goettsch C, Hutcheson JD, Mauskapf A, Mattson PC, Libby P, Singh SA, Matamalas J, Aikawa E, Tearney GJ, Aikawa M, Jaffer FA. Highly Selective PPARα (Peroxisome Proliferator-Activated Receptor α) Agonist Pemafibrate Inhibits Stent Inflammation and Restenosis Assessed by Multimodality Molecular-Microstructural Imaging. J Am Heart Assoc 2021; 10:e020834. [PMID: 34632804 PMCID: PMC8751880 DOI: 10.1161/jaha.121.020834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND New pharmacological approaches are needed to prevent stent restenosis. This study tested the hypothesis that pemafibrate, a novel clinical selective PPARα (peroxisome proliferator‐activated receptor α) agonist, suppresses coronary stent‐induced arterial inflammation and neointimal hyperplasia. METHODS AND RESULTS Yorkshire pigs randomly received either oral pemafibrate (30 mg/day; n=6) or control vehicle (n=7) for 7 days, followed by coronary arterial implantation of 3.5 × 12 mm bare metal stents (2–4 per animal; 44 stents total). On day 7, intracoronary molecular‐structural near‐infrared fluorescence and optical coherence tomography imaging was performed to assess the arterial inflammatory response, demonstrating that pemafibrate reduced stent‐induced inflammatory protease activity (near‐infrared fluorescence target‐to‐background ratio: pemafibrate, median [25th‐75th percentile]: 2.8 [2.5–3.3] versus control, 4.1 [3.3–4.3], P=0.02). At day 28, animals underwent repeat near‐infrared fluorescence–optical coherence tomography imaging and were euthanized, and coronary stent tissue molecular and histological analyses. Day 28 optical coherence tomography imaging showed that pemafibrate significantly reduced stent neointima volume (pemafibrate, 43.1 [33.7–54.1] mm3 versus control, 54.2 [41.2–81.1] mm3; P=0.03). In addition, pemafibrate suppressed day 28 stent‐induced cellular inflammation and neointima expression of the inflammatory mediators TNF‐α (tumor necrosis factor‐α) and MMP‐9 (matrix metalloproteinase 9) and enhanced the smooth muscle differentiation markers calponin and smoothelin. In vitro assays indicated that the STAT3 (signal transducer and activator of transcription 3)–myocardin axes mediated the inhibitory effects of pemafibrate on smooth muscle cell proliferation. CONCLUSIONS Pemafibrate reduces preclinical coronary stent inflammation and neointimal hyperplasia following bare metal stent deployment. These results motivate further trials evaluating pemafibrate as a new strategy to prevent clinical stent restenosis.
Collapse
Affiliation(s)
- Hiroshi Iwata
- Center for Interdisciplinary Cardiovascular Sciences Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA.,Department of Cardiovascular Biology and Medicine Juntendo University Graduate School of Medicine Tokyo Japan
| | - Eric A Osborn
- Cardiovascular Research CenterCardiology DivisionMassachusetts General HospitalHarvard Medical School Boston MA.,Cardiology Division Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - Giovanni J Ughi
- Wellman Center for Photomedicine Massachusetts General HospitalHarvard Medical School Boston MA
| | - Kentaro Murakami
- Center for Interdisciplinary Cardiovascular Sciences Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Claudia Goettsch
- Center for Interdisciplinary Cardiovascular Sciences Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Joshua D Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Adam Mauskapf
- Cardiovascular Research CenterCardiology DivisionMassachusetts General HospitalHarvard Medical School Boston MA
| | - Peter C Mattson
- Center for Interdisciplinary Cardiovascular Sciences Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Peter Libby
- Center for Excellence in Vascular Biology Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Joan Matamalas
- Center for Interdisciplinary Cardiovascular Sciences Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA.,Center for Excellence in Vascular Biology Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA.,Department of Human Pathology I.M. Sechenov First Moscow State Medical University of the Ministry of Health Moscow Russian Federation
| | - Guillermo J Tearney
- Wellman Center for Photomedicine Massachusetts General HospitalHarvard Medical School Boston MA.,Department of Pathology Massachusetts General HospitalHarvard Medical School Boston MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA.,Center for Excellence in Vascular Biology Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA.,Channing Division of Network Medicine Brigham and Women's HospitalHarvard Medical School Boston MA
| | - Farouc A Jaffer
- Cardiovascular Research CenterCardiology DivisionMassachusetts General HospitalHarvard Medical School Boston MA.,Wellman Center for Photomedicine Massachusetts General HospitalHarvard Medical School Boston MA
| |
Collapse
|
3
|
Konishi H, Miyauchi K, Onishi A, Suzuki S, Fuchimoto D, Shitara J, Endo H, Wada H, Doi S, Naito R, Ogita M, Dohi T, Kasai T, Daida H. Effect of pemafibrate (K-877), a novel selective peroxisome proliferator-activated receptor α modular (SPPARMα), in atherosclerosis model using low density lipoprotein receptor knock-out swine with balloon injury. PLoS One 2020; 15:e0241195. [PMID: 33201888 PMCID: PMC7671509 DOI: 10.1371/journal.pone.0241195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/10/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that has key roles of lipid metabolism and inflammation. The PPARα may affects the initiation and progression of atherosclerosis by reducing inflammatory responses. Pemafibrate (K-877) is a novel selective PPARα modulator (SPPARMα), which was designed to possess higher PPARα potency and selectivity than existing PPARα agonists. The aim of this study is to evaluate the effect of pemafibrate on vascular response in coronary atherosclerosis model using low density lipoprotein receptor knock-out (LDLR-KO) pigs with balloon injury. METHODS AND RESULTS Ten LDLR-KO pigs were randomly allocated to two groups [pemafibrate (n = 5) and control (n = 5)] and fed with a diet containing 2.0% cholesterol and 20% lard throughout the study. Balloon injury was created in 40 coronary segments two weeks after starting the oral administration of pemafibrate or placebo. Necropsy was conducted 8 weeks later. Coronary artery sections were reviewed to evaluate lesion progression and the mRNA expression levels for C-Jun, NFκ B, CCL2, CCR7, CD163 and MMP9 determined using real-time RT-PCR. LDL cholesterol at baseline was about 700 mg/dL. The mean ratio of macrophages to plaque area was significantly lower in pemafibrate group compared with control one (7.63±1.16 vs 14.04±4.51, P = 0.02) whereas no differences were observed in intimal area between groups. The mRNA levels of C-Jun, NFκB and MMP9 were significantly decreased in pemafibrate group. CONCLUSIONS Pemafibrate was associated with inhibition of inflammatory responses in coronary artery atherosclerosis model using LDLR-KO swine with balloon injury.
Collapse
Affiliation(s)
- Hirokazu Konishi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Onishi
- Laboratory of Animal Reproduction, Department of Animal Science and Resources, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Shunichi Suzuki
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Daiichiro Fuchimoto
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Jun Shitara
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirohisa Endo
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideki Wada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinichiro Doi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Naito
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Manabu Ogita
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomotaka Dohi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takatoshi Kasai
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Wagner N, Wagner KD. PPARs and Angiogenesis-Implications in Pathology. Int J Mol Sci 2020; 21:ijms21165723. [PMID: 32785018 PMCID: PMC7461101 DOI: 10.3390/ijms21165723] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the family of ligand-activated nuclear receptors. The PPAR family consists of three subtypes encoded by three separate genes: PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs are critical regulators of metabolism and exhibit tissue and cell type-specific expression patterns and functions. Specific PPAR ligands have been proposed as potential therapies for a variety of diseases such as metabolic syndrome, cancer, neurogenerative disorders, diabetes, cardiovascular diseases, endometriosis, and retinopathies. In this review, we focus on the knowledge of PPAR function in angiogenesis, a complex process that plays important roles in numerous pathological conditions for which therapeutic use of PPAR modulation has been suggested.
Collapse
|
5
|
Wang Y, Lin W, Ju J. MicroRNA-409-5p promotes retinal neovascularization in diabetic retinopathy. Cell Cycle 2020; 19:1314-1325. [PMID: 32292119 DOI: 10.1080/15384101.2020.1749484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Retinal neovascularization, which is characterized by the increased proliferation, migration, and tube formation of retinal microvascular endothelial cells (RMECs), contributes to the progression of diabetic retinopathy (DR). MiR-409-5p has been reported to be upregulated in peripheral blood of DR patients and in vascular endothelial growth factor (VEGF)-induced RMECs. However, the role of miR-409-5p in retinal neovascularization of DR remains unelucidated. METHOD The expression of miR-409-5p was measured in retinal tissues of streptozocin-induced and db/db diabetic mice, in high glucose-induced mouse RMECs (mRMECs), and in vitreous fluid of proliferative DR patients. Antagomir of miR-409-5p was intravitreally injected into diabetic mice. Proliferation, migration, and tube formation were detected using cell counting kit-8 assay, transwell assay, and microscope observation, respectively. Luciferase reporter assay was used to detect the direct interaction between miR-409-5p and peroxisome proliferator-activated receptor-α (PPARα). RESULT MiR-409-5p was upregulated in retinal tissues of diabetic mice, in high glucose-induced mRMECs, and in vitreous fluid of proliferative DR patients. The knockdown of miR-409-5p attenuated retinal neovascularization in vivo. The overexpression of miR-409-5p promotes the proliferation, migration, and tube formation, and increased VEGF expression and secretion, while the knockdown of miR-409-5p suppressed the VEGF-induced retinal neovascularization in vitro. PPARα is a downstream target of miR-409-5p, and PPARα overexpression negated the promotion of miR-409-5p overexpression on the proliferation, migration, and tube formation of mRMECs. CONCLUSION Our findings demonstrated that miR-409-5p acted as a neovasculogenic factor in DR, and anti-miR-409-5p therapy may provide a novel strategy in treating DR.
Collapse
Affiliation(s)
- Ying Wang
- Department of Endocrinology, Weihai Municipal Hospital , Weihai, Shandong, China
| | - Wenwen Lin
- Department of Endocrinology, Weihai Municipal Hospital , Weihai, Shandong, China
| | - Jianghua Ju
- Department of Endocrinology, Qilu Hospital of Shandong University (Qingdao) , Qingdao, Shandong, China
| |
Collapse
|
6
|
Saha L. Role of peroxisome proliferator-activated receptors alpha and gamma in gastric ulcer: An overview of experimental evidences. World J Gastrointest Pharmacol Ther 2015; 6:120-126. [PMID: 26558146 PMCID: PMC4635152 DOI: 10.4292/wjgpt.v6.i4.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/11/2015] [Accepted: 10/12/2015] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. Three subtypes, PPARα, PPARβ/δ, and PPARγ, have been identified so far. PPARα is expressed in the liver, kidney, small intestine, heart, and muscle, where it activates the fatty acid catabolism and control lipoprotein assembly in response to long-chain unsaturated fatty acids, eicosanoids, and hypolipidemic drugs (e.g., fenofibrate). PPARβ/δ is more broadly expressed and is implicated in fatty acid oxidation, keratinocyte differentiation, wound healing, and macrophage response to very low density lipoprotein metabolism. This isoform has been implicated in transcriptional-repression functions and has been shown to repress the activity of PPARα or PPARγ target genes. PPARγ1 and γ2 are generated from a single-gene peroxisome proliferator-activated receptors gamma by differential promoter usage and alternative splicing. PPARγ1 is expressed in colon, immune system (e.g., monocytes and macrophages), and other tissues where it participates in the modulation of inflammation, cell proliferation, and differentiation. PPARs regulate gene expression through distinct mechanisms: Ligand-dependent transactivation, ligand-independent repression, and ligand-dependent transrepression. Studies in animals have demonstrated the gastric antisecretory activity of PPARα agonists like ciprofibrate, bezafibrate and clofibrate. Study by Pathak et al also demonstrated the effect of PPARα agonist, bezafibrate, on gastric secretion and gastric cytoprotection in various gastric ulcer models in rats. The majority of the experimental studies is on pioglitazone and rosiglitazone, which are PPARγ activators. In all the studies, both the PPARγ activators showed protection against the gastric ulcer and also accelerate the ulcer healing in gastric ulcer model in rats. Therefore, PPARα and PPARγ may be a target for gastric ulcer therapy. Finally, more studies are also needed to confirm the involvement of PPARs α and γ in gastric ulcer.
Collapse
|
7
|
Pathogenic role of diabetes-induced PPAR-α down-regulation in microvascular dysfunction. Proc Natl Acad Sci U S A 2013; 110:15401-6. [PMID: 24003152 DOI: 10.1073/pnas.1307211110] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two independent clinical studies have reported that fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, has robust therapeutic effects on microvascular complications of diabetes, including diabetic retinopathy (DR) in type 2 diabetic patients. However, the expression and function of PPARα in the retina are unclear. Here, we demonstrated that PPARα is expressed in multiple cell types in the retina. In both type 1 and type 2 diabetes models, expression of PPARα, but not PPARβ/δ or PPARγ, was significantly down-regulated in the retina. Furthermore, high-glucose medium was sufficient to down-regulate PPARα expression in cultured retinal cells. To further investigate the role of PPARα in DR, diabetes was induced in PPARα knockout (KO) mice and wild-type (WT) mice. Diabetic PPARα KO mice developed more severe DR, as shown by retinal vascular leakage, leukostasis, pericyte loss, capillary degeneration, and over-expression of inflammatory factors, compared with diabetic WT mice. In addition, overexpression of PPARα in the retina of diabetic rats significantly alleviated diabetes-induced retinal vascular leakage and retinal inflammation. Furthermore, PPARα overexpression inhibited endothelial cell migration and proliferation. These findings revealed that diabetes-induced down-regulation of PPARα plays an important role in DR. Up-regulation or activation of PPARα may represent a novel therapeutic strategy for DR.
Collapse
|
8
|
Dana N, Javanmard SH, Fazilati M, Pilehvarian AA. A comparison of peroxisome proliferator-activated receptor-α agonist and antagonist on human umbilical vein endothelial cells angiogenesis. Adv Biomed Res 2013; 2:54. [PMID: 24223369 PMCID: PMC3814543 DOI: 10.4103/2277-9175.115792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/23/2012] [Indexed: 12/16/2022] Open
Abstract
Background: There are controversial reports about the antiangiogenic effects of peroxisome proliferator-activated receptor α (PPARα). In the current study, we compared the effects of PPARα agonist and antagonist on human umbilical vein endothelial cells (HUVECs) angiogenesis with matrigel assay. Materials and Methods: HUVECs (1 × 105 cells/well) treated with PPARα agonist (fenofibrate) and antagonist (GW6471) were cultured on matrigel for 24 h. Treated cells were stained with calcein and investigated by fluorescent microscopy. The obtained images were also analyzed by AngioQuant software. Finally, the data were analyzed using SPSS 15 software, Kruskal-Wallis and one way ANOVA. Results: Statistical analysis showed that fenofibrate significantly inhibit the tube formation (size, length, junction) (P < 0.05) but there was a trend to increased angiogenesis in GW6471 treated group (P > 0.05). Conclusion: These results showed that PPARα agonist is effective in suppression of angiogenesis. Further studies are needed to confirm these results in in vivo studies.
Collapse
Affiliation(s)
- Nasim Dana
- Department of Physiology, Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | |
Collapse
|
9
|
Weiss EP, Villareal DT, Ehsani AA, Fontana L, Holloszy JO. Dehydroepiandrosterone replacement therapy in older adults improves indices of arterial stiffness. Aging Cell 2012; 11:876-84. [PMID: 22712469 DOI: 10.1111/j.1474-9726.2012.00852.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Serum dehydroepiandrosterone (DHEA) concentrations decrease approximately 80% between ages 25 and 75 year. Aging also results in an increase in arterial stiffness, which is an independent predictor of cardiovascular disease (CVD) risk and mortality. Therefore, it is conceivable that DHEA replacement in older adults could reduce arterial stiffness. We sought to determine whether DHEA replacement therapy in older adults reduces carotid augmentation index (AI) and carotid-femoral pulse wave velocity (PWV) as indices of arterial stiffness. A randomized, double-blind trial was conducted to study the effects of 50 mg day(-1) DHEA replacement on AI (n = 92) and PWV (n = 51) in women and men aged 65-75 year. Inflammatory cytokines and sex hormones were measured in fasting serum. AI decreased in the DHEA group, but not in the placebo group (difference between groups, -6 ± 2 AI units, P = 0.002). Pulse wave velocity also decreased (difference between groups, -3.5 ± 1.0 m s(-1), P = 0.001); however, after adjusting for baseline values, the between-group comparison became nonsignificant (P = 0.20). The reductions in AI and PWV were accompanied by decreases in inflammatory cytokines (tumor necrosis factor α and IL-6, P < 0.05) and correlated with increases in serum DHEAS (r = -0.31 and -0.37, respectively, P < 0.05). The reductions in AI also correlated with free testosterone index (r = -0.23, P = 0.03). In conclusion, DHEA replacement in elderly men and women improves indices of arterial stiffness. Arterial stiffness increases with age and is an independent risk factor for CVD. Therefore, the improvements observed in this study suggest that DHEA replacement might partly reverse arterial aging and reduce CVD risk.
Collapse
Affiliation(s)
- Edward P Weiss
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
10
|
Fucci A, Colangelo T, Votino C, Pancione M, Sabatino L, Colantuoni V. The role of peroxisome proliferator-activated receptors in the esophageal, gastric, and colorectal cancer. PPAR Res 2012; 2012:242498. [PMID: 22991505 PMCID: PMC3444044 DOI: 10.1155/2012/242498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/24/2012] [Indexed: 12/21/2022] Open
Abstract
Tumors of the gastrointestinal tract are among the most frequent human malignancies and account for approximately 30% of cancer-related deaths worldwide. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that control diverse cellular functions such as proliferation, differentiation, and cell death. Owing to their involvement in so many processes, they play crucial roles also in the development and physiology of the gastrointestinal tract. Consistently, PPARs deregulation has been implicated in several pathophysiological conditions, including chronic inflammation and cancer development. This paper summarizes the current knowledge on the role that the various PPAR isoforms play in the pathogenesis of the esophageal, gastric, and intestinal cancer. Elucidation of the molecular mechanisms underlying PPARs' signaling pathways will provide insights into their possible use as predictive biomarkers in the initial stages of the process. In addition, this understanding will provide the basis for new molecular targets in cancer therapy and chemoprevention.
Collapse
Affiliation(s)
- Alessandra Fucci
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Tommaso Colangelo
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Carolina Votino
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Massimo Pancione
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Lina Sabatino
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Vittorio Colantuoni
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
11
|
Abstract
The PPAR (peroxisome-proliferator-activated receptor) family consists of three ligand-activated nuclear receptors: PPARα, PPARβ/δ and PPARγ. These PPARs have important roles in the regulation of glucose and fatty acid metabolism, cell differentiation and immune function, but were also found to be expressed in endothelial cells in the late 1990s. The early endothelial focus of PPARs was PPARγ, the molecular target for the insulin-sensitizing thiazolidinedione/glitazone class of drugs. Activation of PPARγ was shown to inhibit angiogenesis in vitro and in models of retinopathy and cancer, whereas more recent data point to a critical role in the development of the vasculature in the placenta. Similarly, PPARα, the molecular target for the fibrate class of drugs, also has anti-angiogenic properties in experimental models. In contrast, unlike PPARα or PPARγ, activation of PPARβ/δ induces angiogenesis, in vitro and in vivo, and has been suggested to be a critical component of the angiogenic switch in pancreatic cancer. Moreover, PPARβ/δ is an exercise mimetic and appears to contribute to the angiogenic remodelling of cardiac and skeletal muscle induced by exercise. This evidence and the emerging mechanisms by which PPARs act in endothelial cells are discussed in more detail.
Collapse
|
12
|
Role of peroxisome proliferator-activated receptor alpha in the control of cyclooxygenase 2 and vascular endothelial growth factor: involvement in tumor growth. PPAR Res 2011; 2008:352437. [PMID: 18670614 PMCID: PMC2490577 DOI: 10.1155/2008/352437] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 01/29/2023] Open
Abstract
A growing body of evidence indicates that PPAR (peroxisome
proliferator-activated receptor) α agonists might have therapeutic usefulness in antitumoral therapy by decreasing abnormal cell growth, and reducing tumoral angiogenesis. Most of the anti-inflammatory and antineoplastic properties of PPAR ligands are due to their inhibitory effects on transcription of a variety of genes involved in inflammation, cell growth and angiogenesis. Cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF) are crucial agents in inflammatory and angiogenic processes. They also have been significantly associated to cell proliferation, tumor growth, and metastasis, promoting tumor-associated angiogenesis. Aberrant expression of VEGF and COX-2 has been observed in a variety of tumors, pointing to these proteins as important therapeutic targets in the treatment of pathological angiogenesis and tumor growth. This review summarizes the current understanding of the role of PPARα and its ligands in the regulation of COX-2 and VEGF gene expression in the context of tumor progression.
Collapse
|
13
|
Miyazaki T, Shimada K, Miyauchi K, Kume A, Tanimoto K, Kiyanagi T, Sumiyoshi K, Hiki M, Mokuno H, Okazaki S, Sato H, Kurata T, Daida H. Effects of fenofibrate on lipid profiles, cholesterol ester transfer activity, and in-stent intimal hyperplasia in patients after elective coronary stenting. Lipids Health Dis 2010; 9:122. [PMID: 20973966 PMCID: PMC2974680 DOI: 10.1186/1476-511x-9-122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/25/2010] [Indexed: 01/08/2023] Open
Abstract
Background The association between modulation of detailed lipoprotein profiles and cholesterol ester transfer (CET) activity by peroxisome proliferator-activated receptor (PPAR)-a agonists in patients with coronary artery disease remains unclear. We assessed lipid profiles, plasma CET activity, and in-stent intimal hyperplasia after fenofibrate treatment in patients who underwent elective coronary stenting. Methods Forty-three consecutive patients who underwent elective coronary stenting were randomized to the fenofibrate group (300 mg/day for 25 weeks, n = 22) or the control group (n = 21). At baseline and follow up, CET activity and lipoprotein profiles were measured, and quantitative coronary angiography was performed. Results In the fenofibrate group, the levels of large very low-density lipoprotein cholesterol, and small low-density lipoprotein (LDL) cholesterol decreased and those of small high-density lipoprotein (HDL) cholesterol increased. Besides, CET activity decreased independent of the effect of fenofibrate on total and LDL cholesterol. The reduction of CET activity significantly correlated with the increase in LDL particle size (r = 0.47, P = 0.03) and the decrease of triglycerides in large HDL subclasses (r = 0.48, P = 0.03). Although there were no significant differences in restenosis parameters between the two groups, low CET activity significantly correlated with the inhibition of neointimal hyperplasia (r = 0.56, P = 0.01). Conclusions Fenofibrate inhibited CET activity and thereby improved atherogenic lipoprotein profiles, and reduced intimal hyperplasia after coronary stenting.
Collapse
Affiliation(s)
- Tetsuro Miyazaki
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Desouza CV, Rentschler L, Fonseca V. Peroxisome proliferator-activated receptors as stimulants of angiogenesis in cardiovascular disease and diabetes. Diabetes Metab Syndr Obes 2009; 2:165-72. [PMID: 21437130 PMCID: PMC3048019 DOI: 10.2147/dmsott.s4170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The incidence of diabetes is directly related to the incidence of obesity, which is at epidemic proportions in the US. Cardiovascular disease is a common complication of diabetes, which results in high morbidity and mortality. Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear hormone receptors that regulate lipid and glucose metabolism. PPAR-α agonists such as fenofibrate and PPAR-γ agonists such as the thiozolidinediones have been used to treat dyslipidemia and insulin resistance in diabetes. Over the past few years research has discovered the role of PPARs in the regulation of inflammation, proliferation, and angiogenesis. Clinical trials looking at the effect of PPAR agonists on cardiovascular outcomes have produced controversial results. Studies looking at angiogenesis and proliferation in various animal models and cell lines have shown a wide variation in results. This may be due to the differential effects of PPARs on proliferation and angiogenesis in various tissues and pathologic states. This review discusses the role of PPARs in stimulating angiogenesis. It also reviews the settings in which stimulation of angiogenesis may be either beneficial or harmful.
Collapse
Affiliation(s)
- Cyrus V Desouza
- University of Nebraska Medical Center, Omaha, NE, USA
- Omaha VA Medical Center, Omaha, NE, USA
- Correspondence: Cyrus Desouza, Associate Professor, Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha VA Medical Center, Department of Medicine (111), 4101 Woolworth Avenue, Omaha NE, 68105, USA, Tel +1 402 995 5506, Fax +1 402 977 5602, Email
| | | | - Vivian Fonseca
- Scott & White Medical Clinic/Texas A & M College of Medicine, Temple, TX, USA
| |
Collapse
|
15
|
The Role of PPARs in the Endothelium: Implications for Cancer Therapy. PPAR Res 2008; 2008:904251. [PMID: 19043612 PMCID: PMC2586817 DOI: 10.1155/2008/904251] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/28/2008] [Accepted: 09/09/2008] [Indexed: 12/18/2022] Open
Abstract
The growth and metastasis of cancers intimately involve the vasculature and in particular the endothelial cell layer. Tumours require new blood vessel formation via angiogenesis to support growth. In addition, inflammation, coagulation, and platelet activation are common signals in the growth and metastasis of tumour cells. The endothelium plays a central role in the homeostatic control of inflammatory cell recruitment, regulating platelet activation and coagulation pathways. PPARalpha, -beta/delta, and -gamma are all expressed in endothelial cells. This review will discuss the roles of PPARs in endothelial cells in relation to angiogenesis, inflammation, coagulation, and platelet control pathways. In particular, we will discuss the recent evidence that supports the hypothesis that PPARalpha and PPARgamma are antiangiogenic receptors, while PPARbeta/delta is proangiogenic.
Collapse
|
16
|
Miyauchi K, Kasai T, Yokayama T, Aihara K, Kurata T, Kajimoto K, Okazaki S, Ishiyama H, Daida H. Effectiveness of statin-eluting stent on early inflammatory response and neointimal thickness in a porcine coronary model. Circ J 2008; 72:832-838. [PMID: 18441467 DOI: 10.1253/circj.72.832] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
BACKGROUND Drug-eluting stent (DES) implantation is routine during coronary revascularization because DES significantly reduce rates of restenosis and target lesion revascularization compared with bare metal stent (BMS). However, available DES have limitations, such as late thrombosis because of delayed healing with poorer endothelialization and persistent local inflammation. Statins can inhibit cell proliferation, inflammation, and restore endothelial function. The present study evaluated the ability of stent-based cerivastatin delivery to reduce stent-induced inflammatory responses and adverse effects on endothelial function, and to inhibit neointimal hyperplasia in a porcine coronary model. METHODS AND RESULTS Pigs were randomized into groups in which the coronary arteries (9 pigs, 18 coronaries in each group) had either a cerivastatin-eluting stent (CES) or a BMS. All animals survived without any adverse effects. Inflammatory cell infiltration evaluated using scanning electron microscopy on day 3 after stenting was significantly decreased in the treated vessels (inflammation score: 1.15+/-0.12 vs 2.43+/-0.34, p<0.0001). At day 28, endothelial function with intracoronary infusion of bradykinin was preserved in both the CES and BMS groups. Volumetric intravascular ultrasound images revealed decreased intimal volume in the CES group (28.3+/-5.4 vs 75.9+/-4.2 mm3, p<0.0001). Histomorphometric analysis showed reduced neointimal area (1.74+/-0.45 vs 3.83+/-0.51 mm2, p<0.0001) in the CES group despite similar injury scores (1.77+/-0.30 vs 1.77+/-0.22, p=0.97). CONCLUSION In porcine coronary arteries CES significantly decreased neointimal hyperplasia with a decreased early inflammatory response and without endothelial dysfunction.
Collapse
Affiliation(s)
- Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kasai T, Miyauchi K, Yokoyama T, Kajimoto K, Sumiyoshi K, Kubota N, Ikeda E, Daida H. Pioglitazone attenuates neointimal thickening via suppression of the early inflammatory response in a porcine coronary after stenting. Atherosclerosis 2008; 197:612-619. [PMID: 17950297 DOI: 10.1016/j.atherosclerosis.2007.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 11/22/2022]
Abstract
Enhanced early inflammatory response accelerated the neointimal hyperplasia after vascular injury. Pioglitazone has antiatherogenic property through the inhibition of inflammation. Thus, we hypothesized that pioglitazone might inhibit the early inflammatory response, resulting in reduced neointimal hyperplasia in porcine coronary stenting model. Pioglitazone (5mg/kg/day) or placebo was administered orally to 10 pigs (20 coronaries) in each, from 7 days before stenting until the time of euthanasia at 3 or 28 days after stenting. The coronary artery of the pigs was injured with an oversized bare metal stent. Early inflammatory cell infiltration on the vessel surface was evaluated by scanning electron microscopy and was significantly suppressed in pioglitazone-treated group comparing with the control (% of site occurring greater infiltration: 40.8% versus 60.9%; P=0.002). Immunohistochemistry revealed that activated NF-kappaB and MCP-1 expression in the vessel was of significantly less in the pioglitazone-treated group. On day 28, morphometric assessment of stent-section showed significant reduction of neointimal thickness in the pioglitazone-treated group comparing with the control (neointimal thickness: 386.5+/-78.2mm versus 591.7+/-238.6mm; P=0.0051), whereas there was no difference in the injury score between two groups. Pioglitazone inhibited neointimal hyperplasia after stenting through a reduction of early inflammatory response.
Collapse
Affiliation(s)
- Takatoshi Kasai
- Department of Cardiology, Juntendo University, School of Medicine, 2-1-1 Hongo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci U S A 2008; 105:985-90. [PMID: 18199835 DOI: 10.1073/pnas.0711281105] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Angiogenesis and inflammation are central processes through which the tumor microenvironment influences tumor growth. We have demonstrated recently that peroxisome proliferator-activated receptor (PPAR)alpha deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of thrombospondin (TSP)-1 and prevents tumor growth. Hence, we speculated that pharmacologic activation of PPARalpha would promote tumor growth. Surprisingly, the PPARalpha agonist fenofibrate potently suppressed primary tumor growth in mice. This effect was not mediated by cancer-cell-autonomous antiproliferative mechanisms but by the inhibition of angiogenesis and inflammation in the host tissue. Although PPARalpha-deficient tumors were still susceptible to fenofibrate, absence of PPARalpha in the host animal abrogated the potent antitumor effect of fenofibrate. In addition, fenofibrate suppressed endothelial cell proliferation and VEGF production, increased TSP-1 and endostatin, and inhibited corneal neovascularization. Thus, both genetic abrogation of PPARalpha as well as its activation by ligands cause tumor suppression via overlapping antiangiogenic pathways. These findings reveal the potential utility of the well tolerated PPARalpha agonists beyond their use as lipid-lowering drugs in anticancer therapy. Our results provide a mechanistic rationale for evaluating the clinical benefits of PPARalpha agonists in cancer treatment, alone and in combination with other therapies.
Collapse
|
19
|
Michalik L, Wahli W. Involvement of PPAR nuclear receptors in tissue injury and wound repair. J Clin Invest 2006; 116:598-606. [PMID: 16511592 PMCID: PMC1386118 DOI: 10.1172/jci27958] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tissue damage resulting from chemical, mechanical, and biological injury, or from interrupted blood flow and reperfusion, is often life threatening. The subsequent tissue response involves an intricate series of events including inflammation, oxidative stress, immune cell recruitment, and cell survival, proliferation, migration, and differentiation. In addition, fibrotic repair characterized by myofibroblast transdifferentiation and the deposition of ECM proteins is activated. Failure to initiate, maintain, or stop this repair program has dramatic consequences, such as cell death and associated tissue necrosis or carcinogenesis. In this sense, inflammation and oxidative stress, which are beneficial defense processes, can become harmful if they do not resolve in time. This repair program is largely based on rapid and specific changes in gene expression controlled by transcription factors that sense injury. PPARs are such factors and are activated by lipid mediators produced after wounding. Here we highlight advances in our understanding of PPAR action during tissue repair and discuss the potential for these nuclear receptors as therapeutic targets for tissue injury.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Centre Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|