1
|
Martínez-Beamonte R, Barranquero C, Gascón S, Mariño J, Arnal C, Estopañán G, Rodriguez-Yoldi MJ, Surra JC, Martín-Belloso O, Odriozola-Serrano I, Orman I, Segovia JC, Osada J, Navarro MÁ. Effect of virgin olive oil as spreadable preparation on atherosclerosis compared to dairy butter in Apoe-deficient mice. J Physiol Biochem 2024; 80:671-683. [PMID: 38787512 PMCID: PMC11502577 DOI: 10.1007/s13105-024-01029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Olive oil is the main source of lipid energy in the Mediterranean diet and there is strong evidence of its health benefits. The effect of extra virgin olive oil (EVOO) in the form of a preparation of spreadable virgin olive oil (S-VO) on the progression of atheroma plaques was investigated in Apoe-deficient mice, a model of accelerated atherosclerosis. METHODS Two isocaloric Western purified diets containing 20% fat, either as S-VO or as dairy butter, were used to feed 28 males and 16 females of two-month-old Apoe-deficient mice for 12 weeks. S-VO was prepared by blending more than 75% virgin olive oil with other vegetal natural fat to obtain a solid fat. Plasma total cholesterol, triglycerides and HDL cholesterol were measured. Hepatic lipid droplets were analyzed. Areas of atherosclerotic aortic lesions were quantified in cross-sectional images of the proximal aorta and en face analysis of the whole aorta. RESULTS Total plasma cholesterol was increased in mice on the butter-supplemented diet in both female and male mice compared to S-VO, and the ratio of TC/HDL-cholesterol was significantly lower in S-VO than in the butter diet, although only in males, and no differences in plasma triglycerides were observed. No significant differences in hepatic lipid droplets were observed between diets in either sex. Aortic lesion areas were significantly higher in mice consuming the butter versus the S-VO diet in both sexes. CONCLUSION Extra virgin olive oil prepared in spreadable form maintained the delay in atheroma plaque progression compared to butter.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013, Saragossa, Spain.
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain.
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Oliberus, Campus Iberus, Zaragoza, Spain.
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013, Saragossa, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sonia Gascón
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013, Saragossa, Spain
- Illes Balears, Instituto de Medicina Legal de Las Islas Baleares, E-07003, Palma, Spain
| | - Juan Mariño
- Las Arbequinas de Rosalía, Monesma de San Juan, 22415, Huesca, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Saragossa, Spain
- Oliberus, Campus Iberus, Zaragoza, Spain
| | - Gloria Estopañán
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Saragossa, Spain
| | - María Jesús Rodriguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departamento de Farmacología , Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013, Saragossa, Spain
- Oliberus, Campus Iberus, Zaragoza, Spain
| | - Joaquín Carlos Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Instituto de Investigación Sanitaria de Aragón, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, 50013, Saragossa, Spain
- Oliberus, Campus Iberus, Zaragoza, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- Agrotecnio-CERCA Center, Av. Rovira Roure, 191, 25198, Lleida, Spain
- Alimentos Funcionales, Campus Iberus, Zaragoza, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- Agrotecnio-CERCA Center, Av. Rovira Roure, 191, 25198, Lleida, Spain
- Alimentos Funcionales, Campus Iberus, Zaragoza, Spain
| | - Israel Orman
- Cell Technology Division. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIEMAT/CIBERER, Madrid, Spain
- Advanced Cell Therapy Unit., Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Jose Carlos Segovia
- Cell Technology Division. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIEMAT/CIBERER, Madrid, Spain
- Advanced Cell Therapy Unit., Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013, Saragossa, Spain.
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain.
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - María Ángeles Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013, Saragossa, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013, Saragossa, Spain
- CIBER de Fisiopatología de La Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Oliberus, Campus Iberus, Zaragoza, Spain
| |
Collapse
|
2
|
Martínez-Beamonte R, Sánchez-Marco J, Gómez M, Lázaro G, Barco M, Herrero-Continente T, Serrano-Megías M, Botaya D, Arnal C, Barranquero C, Surra JC, Manso-Alonso JA, Osada J, Navarro MA. Dietary proteins modulate high-density lipoprotein characteristics in a sex-specific way in Apoe-deficient mice. Nutrition 2023; 116:112211. [PMID: 37812855 DOI: 10.1016/j.nut.2023.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVES The type and amount of dietary protein have become a topic of renewed interest, considering their involvement in several diseases. However, little attention has been devoted to the effect of avian proteins despite their wide human consumption. In a previous study, we saw that compared with soybean protein, the consumption of avian proteins, depending on sex, resulted in similar or lower atherosclerosis with a higher paraoxonase 1 activity, an antioxidant enzyme carried by high-density lipoproteins (HDL). This suggests that under these conditions, the HDL lipoproteins may undergo important changes. The aim of this research was to study the influence of soybean, chicken, and turkey proteins on the characteristics of HDL. METHODS Male and female Apoe-deficient mice were fed purified Western diets based on the AIN-93 diet, differing only in the protein source, for 12 wk. After this period, blood and liver samples were taken for analysis of HDL composition and hepatic expression of genes related to HDL metabolism (Abca1, Lcat, Pltp, Pon1, and Scarb1). Depending on sex, these genes define a different network of interactions. Females consuming the turkey protein-containing diet showed decreased atherosclerotic foci, which can be due to larger very-low-density lipoproteins (VLDLs) calculated by molar ratio triacylglycerols/VLDL cholesterol and higher expression of Lcat. In contrast, in males, a higher ratio of paraoxonase1 to apolipoprotein A1 decreased the oxidative status of the different lipoproteins, and augmented Abca1 expression was observed. CONCLUSIONS The source of protein has an effect on the development of atherosclerosis depending on sex by modifying HDL characteristics and the expression of genes involved in their properties.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Gómez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Gonzalo Lázaro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - María Barco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Serrano-Megías
- Departamento de Ciencias de la Salud, Universidad San Jorge, Autovía A-23 Zaragoza-Huesca Km. 299.50.830, Zaragoza, Spain
| | - David Botaya
- Aves Nobles y Derivados-Aldelis, Zaragoza, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Huesca, Spain
| | | | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Martínez-Beamonte R, Sánchez-Marco J, Lázaro G, Barco M, Herrero-Continente T, Serrano-Megías M, Botaya D, Arnal C, Barranquero C, Surra JC, Osada J, Navarro MA. Dietary Avian Proteins Are Comparable to Soybean Proteins on the Atherosclerosis Development and Fatty Liver Disease in Apoe-Deficient Mice. Nutrients 2021; 13:nu13061838. [PMID: 34072167 PMCID: PMC8227708 DOI: 10.3390/nu13061838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/05/2022] Open
Abstract
Background and aim: The type and amount of dietary protein has become a topic of renewed interest in light of their involvement in metabolic diseases, atherosclerosis and thrombosis. However, little attention has been devoted to the effect of avian proteins despite their wide human consumption. The aim was to investigate the influence of chicken and turkey as sources of protein compared with that of soybean on atherosclerosis and fatty liver disease. Methods and results: To this purpose, male and female Apoe-deficient were fed purified Western diets differing in their protein sources for 12 weeks. After this period, blood, liver, aortic tree and heart base samples were taken for analyses of plasma lipids and atherosclerosis. Plasma triglycerides, non-esterified fatty acids, esterified cholesterol levels and radical oxygen species in lipoproteins changed depending on the diet and sex. Females consuming the turkey protein-containing diet showed decreased atherosclerotic foci, as evidenced by the en face atherosclerosis analyses. The presence of macrophages and smooth muscle cells in plaques were not modified, and no changes were observed in hepatic lipid droplets in the studied groups either. Paraoxonase activity was higher in the group consuming turkey protein without sex differences, but only in females, it was significantly associated with aortic lesion areas. Conclusions: Compared to soybean protein, the consumption of avian proteins depending on sex resulted in similar or lower atherosclerosis development and comparable hepatic steatosis.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (R.M.-B.); (J.S.-M.); (G.L.); (M.B.); (T.H.-C.); (C.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.A.); (J.C.S.)
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (R.M.-B.); (J.S.-M.); (G.L.); (M.B.); (T.H.-C.); (C.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.A.); (J.C.S.)
| | - Gonzalo Lázaro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (R.M.-B.); (J.S.-M.); (G.L.); (M.B.); (T.H.-C.); (C.B.); (M.A.N.)
| | - María Barco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (R.M.-B.); (J.S.-M.); (G.L.); (M.B.); (T.H.-C.); (C.B.); (M.A.N.)
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (R.M.-B.); (J.S.-M.); (G.L.); (M.B.); (T.H.-C.); (C.B.); (M.A.N.)
| | | | - David Botaya
- Aves Nobles y Derivados-Aldelis, E-50197 Zaragoza, Spain; (M.S.-M.); (D.B.)
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.A.); (J.C.S.)
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (R.M.-B.); (J.S.-M.); (G.L.); (M.B.); (T.H.-C.); (C.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.A.); (J.C.S.)
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joaquín C. Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.A.); (J.C.S.)
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-22071 Huesca, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (R.M.-B.); (J.S.-M.); (G.L.); (M.B.); (T.H.-C.); (C.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.A.); (J.C.S.)
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Veterinary School, University of Zaragoza, Miguel Servet, 177, E-50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-761644
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (R.M.-B.); (J.S.-M.); (G.L.); (M.B.); (T.H.-C.); (C.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (C.A.); (J.C.S.)
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
4
|
Longo A, Veiga GB, Cousen MIS, Karpinski C, Schneider A, Weber B, Bertoldi EG, Borges LR, Bertacco RTA. Factors associated to serum paraoxonase 1 activity in patients with cardiovascular disease. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:676-683. [PMID: 33844899 PMCID: PMC10065381 DOI: 10.20945/2359-3997000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Paraoxonase 1 (PON1) is an enzyme that has antioxidant potential, which confers a protective effect against the atherosclerotic process. However, studies associating genetics, dietary patterns and PON1 activity in individuals with cardiovascular disease (CVD) are scarce. Thus, the aim of the current study was to evaluate the influence of dietary factors on serum PON1 in CVD patients. METHODS Cross-sectional, sub-study of the BALANCE Program Trial. All patients aged 45 years or older and had evidence of established atherosclerotic disease in the preceding 10 years. Body weight, height, waist circumference, blood pressure, lipid profile and fasting glucose were collected. Food intake was assessed with 24-h dietary recall. Data was analyzed using SAS University Edition and a P value ≤ 0.05 was considered statistically significant. Sample was divided into three groups, according to the PON1 T(-107)C genotype (CC, CT and TT) and serum PON1 activity (Low, Medium, High). RESULTS There were no genotype differences for major factors. However, the systolic blood pressure was lower for CT individuals (p<0.05). Intake of cholesterol, saturated fatty acids (SFA) and monounsaturated fatty acids (MUFAS) was higher in patients with lower PON1 activity. Lipid ingestion tended to be higher in patients with lower PON1 activity (p=0.08). In the multivariate logistic regression model, SFA intake (P=0.03), genotype (P=0.09), gender (P=0.04), age (P=0.07) and carbohydrate intake (P=0.16) contributed the most to the serum PON1 activity. CONCLUSION Based on these findings, nutritional guidance for these patients becomes essential, since dietary components interact with serum PON1 activity more than genotype.
Collapse
|
5
|
Franconi F, Campesi I, Romani A. Is Extra Virgin Olive Oil an Ally for Women's and Men's Cardiovascular Health? Cardiovasc Ther 2020; 2020:6719301. [PMID: 32454893 PMCID: PMC7212338 DOI: 10.1155/2020/6719301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Noncommunicable diseases are long-lasting and slowly progressive and are the leading causes of death and disability. They include cardiovascular diseases (CVD) and diabetes mellitus (DM) that are rising worldwide, with CVD being the leading cause of death in developed countries. Thus, there is a need to find new preventive and therapeutic approaches. Polyphenols seem to have cardioprotective properties; among them, polyphenols and/or minor polar compounds of extra virgin olive oil (EVOO) are attracting special interest. In consideration of numerous sex differences present in CVD and DM, in this narrative review, we applied "gender glasses." Globally, it emerges that olive oil and its derivatives exert some anti-inflammatory and antioxidant effects, modulate glucose metabolism, and ameliorate endothelial dysfunction. However, as in prescription drugs, also in this case there is an important gender bias because the majority of the preclinical studies are performed on male animals, and the sex of donors of cells is not often known; thus a sex/gender bias characterizes preclinical research. There are numerous clinical studies that seem to suggest the benefits of EVOO and its derivatives in CVD; however, these studies have numerous limitations, presenting also a considerable heterogeneity across the interventions. Among limitations, one of the most relevant in the era of personalized medicine, is the non-attention versus women that are few and, also when they are enrolled, sex analysis is lacking. Therefore, in our opinion, it is time to perform more long, extensive and lessheterogeneous trials enrolling both women and men.
Collapse
Affiliation(s)
- Flavia Franconi
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy
| | - Ilaria Campesi
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy
- Dipartimento di Scienze Biomediche, Università Degli Studi di Sassari, 07100 Sassari, Italy
| | - Annalisa Romani
- Laboratorio PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis), DiSIA Università Degli Studi di Firenze, 50019 Florence, Italy
- Laboratorio di Qualità Delle Merci e Affidabilità di Prodotto, Università Degli Studi di Firenze, 59100 Florence, Italy
| |
Collapse
|
6
|
Harari A, Leikin Frenkel A, Barshack I, Sagee A, Cohen H, Kamari Y, Harats D, Kandel Kfir M, Shaish A. Addition of fish oil to atherogenic high fat diet inhibited atherogenesis while olive oil did not, in LDL receptor KO mice. Nutr Metab Cardiovasc Dis 2020; 30:709-716. [PMID: 32007335 DOI: 10.1016/j.numecd.2019.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/18/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Mediterranean diet has been associated with decreased cardiovascular morbidity and mortality. Both fish and olive oil are key components of this diet. Therefore, we compared their effects on nonalcoholic fatty liver disease (NAFLD) and atherogenesis in a mouse model, fed a high fat diet. METHODS AND RESULTS Forty nine, female LDL receptor knockout (LDLR KO) mice were allocated into 3 groups and fed an atherogenic high fat (HF) diet for 9 weeks. The HF group was fed a high fat diet alone. A HF + OO group was fed a HF diet with added olive oil (60 ml/kg feed), and the third group (HF + FO) was fed a HF diet with added fish oil (60 ml/kg feed). Both additions of fish and olive oil, significantly decreased plasma cholesterol elevation compared to HF diet. Nevertheless, only fish oil addition reduced significantly atherosclerotic lesion area by 51% compared to HF group. Liver levels of eicosapentenoic (EPA) and docosahexaenoic (DHA) acids were several folds higher in HF + FO group than in HF and HF + OO groups. Liver levels of oleic acid were higher in HF + OO compared to the other groups. Moreover, Fish oil addition significantly decreased NAFLD scores related to steatosis and inflammation and lowered the expression of the inflammatory genes interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP1). CONCLUSION These results suggest that fish oil addition on top of an atherogenic, HF diet, is beneficial, while olive oil is not, in its effect on plaque formation and NAFLD in LDLR KO mice.
Collapse
Affiliation(s)
- Ayelet Harari
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel.
| | - Alicia Leikin Frenkel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Institute of Pathology, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat-Gan, Israel
| | - Aviv Sagee
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel
| | - Hofit Cohen
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yehuda Kamari
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dror Harats
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Michal Kandel Kfir
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, 5265601, Ramat Gan, Israel; Achva Academic College, Israel
| |
Collapse
|
7
|
Farràs M, Canyelles M, Fitó M, Escolà-Gil JC. Effects of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on Lipoprotein Atherogenicity. Nutrients 2020; 12:nu12030601. [PMID: 32110861 PMCID: PMC7146215 DOI: 10.3390/nu12030601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
The atherogenicity of low-density lipoprotein (LDL) and triglyceride-rich lipoproteins (TRLs) may be more significant than LDL cholesterol levels. Clinical trials which have led to increased high-density lipoprotein (HDL) cholesterol have not always seen reductions in cardiovascular disease (CVD). Furthermore, genetic variants predisposing individuals to high HDL cholesterol are not associated with a lower risk of suffering a coronary event, and therefore HDL functionality is considered to be the most relevant aspect. Virgin olive oil (VOO) is thought to play a protective role against CVD. This review describes the effects of VOO and phenol-enriched VOOs on lipoprotein atherogenicity and HDL atheroprotective properties. The studies have demonstrated a decrease in LDL atherogenicity and an increase in the HDL-mediated macrophage cholesterol efflux capacity, HDL antioxidant activity, and HDL anti-inflammatory characteristics after various VOO interventions. Moreover, the expression of cholesterol efflux-related genes was enhanced after exposure to phenol-enriched VOOs in both post-prandial and sustained trials. Improvements in HDL antioxidant properties were also observed after VOO and phenol-enriched VOO interventions. Furthermore, some studies have demonstrated improved characteristics of TRL atherogenicity under postprandial conditions after VOO intake. Large-scale, long-term randomized clinical trials, and Mendelian analyses which assess the lipoprotein state and properties, are required to confirm these results.
Collapse
Affiliation(s)
- Marta Farràs
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-935537595
| | - Marina Canyelles
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
| | - Joan Carles Escolà-Gil
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Treatment of cigarette smoke extract and condensate differentially potentiates palmitic acid-induced lipotoxicity and steatohepatitis in vitro. Toxicol In Vitro 2018; 52:33-40. [DOI: 10.1016/j.tiv.2018.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
|
9
|
Luque-Sierra A, Alvarez-Amor L, Kleemann R, Martín F, Varela LM. Extra-Virgin Olive Oil with Natural Phenolic Content Exerts an Anti-Inflammatory Effect in Adipose Tissue and Attenuates the Severity of Atherosclerotic Lesions in Ldlr-/-.Leiden Mice. Mol Nutr Food Res 2018; 62:e1800295. [PMID: 29763526 DOI: 10.1002/mnfr.201800295] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/21/2018] [Indexed: 12/14/2022]
Abstract
SCOPE The present study investigates the effect of olive oils with different phenolic content in high-fat diets (HFDs) on hypertrophy and inflammation in adipose tissue and associated atherosclerosis, in the context of obesity. METHODS AND RESULTS Ldlr-/-.Leiden mice were fed three different HFDs for 32 weeks and were compared with mice fed the standard low-fat diet (LFD). The different fats provided in the HFDs were lard (HFD-L), extra-virgin olive oil (EVOO; 79 mg kg-1 of phenolic compounds, HFD-EVOO), or EVOO rich in phenolic compounds (OL, 444 mg kg-1 of phenolic compounds, HFD-OL). All HFD-fed mice became obese, but only HFD-L-induced adipocyte hypertrophy. HFD-EVOO mice exhibited the greatest levels of Adiponectin in adipose tissue and presented atherosclerotic lesions similar to the LFD group, with a very low count of monocyte/macrophage compared with HFD-L and HFD-OL mice. Enrichment of the phenolic content of olive oil reduced the secretion of nitrites/nitrates in the aorta, but atherosclerosis was not attenuated in HFD-OL mice compared to other HFD mice. CONCLUSION Consumption of olive oil with a natural content of phenolic compounds attenuates adipose tissue hypertrophy and inflammation and exerts antiatherosclerotic effects in mice. A higher phenolic content of olive oil did not provide further benefits in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Amparo Luque-Sierra
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-CSIC, Seville, 41092, Spain
| | - Leticia Alvarez-Amor
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-CSIC, Seville, 41092, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Madrid, 28029, Spain
| | - Robert Kleemann
- Netherlands Organisation for Applied Scientific Research (TNO), Leiden, 2301 CE, The Netherlands.,Leiden University Medical Centre, Leiden, 2333 ZA, The Netherlands
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-CSIC, Seville, 41092, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Madrid, 28029, Spain
| | - Lourdes M Varela
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-CSIC, Seville, 41092, Spain
| |
Collapse
|
10
|
Ganesan K, Sukalingam K, Xu B. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA CLINICAL 2017; 8:66-77. [PMID: 28936395 PMCID: PMC5597817 DOI: 10.1016/j.bbacli.2017.07.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Abstract
Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The functional capacities of high-density lipoproteins (HDLs) reflect the physiological role of the particle better than the quantity of HDL cholesterol. Owing to its phenolic compounds, the consumption of virgin olive oil has emerged as a promising therapy to promote these capacities. This review highlights the human studies that explain these benefits and explores some possible mechanisms. RECENT FINDINGS The consumption of olive oil phenolic compounds increased the ability of HDLs to pick up cholesterol excess in peripheral cells (the cholesterol efflux capacity). Olive oil phenolic compounds have also been shown to improve HDL antioxidant capacities and some anti-inflammatory traits. These changes respond to an improvement of HDL oxidative status and composition. SUMMARY Novel strategies to increase HDL functional capacities are in demand from clinicians. The attainment of a fully-functional HDL through dietary or lifestyle changes is a priority in cardiovascular research. Within this context, the consumption of virgin olive oil, because of its phenolic compounds, may be a relevant protective approach. Further studies in large-scale, randomized controlled trials are, however, required to confirm these effects in HDL functionality.
Collapse
Affiliation(s)
- Alvaro Hernáez
- aCardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona bCIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN), Instituto de Salud Carlos III, Madrid cPh.D Program of Food Science and Nutrition, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
13
|
Lou-Bonafonte JM, Gabás-Rivera C, Navarro MA, Osada J. PON1 and Mediterranean Diet. Nutrients 2015; 7:4068-92. [PMID: 26024295 PMCID: PMC4488773 DOI: 10.3390/nu7064068] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022] Open
Abstract
The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1) has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity.
Collapse
Affiliation(s)
- José M Lou-Bonafonte
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de la Salud y del Deporte, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, E-22002, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
| | - Clara Gabás-Rivera
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain.
| | - María A Navarro
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain.
| | - Jesús Osada
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain.
| |
Collapse
|
14
|
Effects of Dietary Brazilian Palm Oil (Mauritia flexuosa L.) on Cholesterol Profile and Vitamin A and E Status of Rats. Molecules 2015; 20:9054-70. [PMID: 25996211 PMCID: PMC6272516 DOI: 10.3390/molecules20059054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
In vitro studies have been carried out to establish the nutritional differences between crude and refined vegetable oils; however, the impact of the consumption of these foods on metabolism, in particular the effect of buriti oil, needs to be further evaluated. The aim of this study was to evaluate the biochemical and murine parameters and the vitamin A and E status in young rats fed with diets supplemented with crude or refined buriti oil. The animals (n = 30) were randomized into three groups receiving diet added of soybean oil (control), crude buriti oil (CBO) and refined buriti oil (RBO) for 28 days. Rats fed with diet added of refined buriti oil (RBO) showed reduced total cholesterol (up to 60.27%), LDL (64.75%), triglycerides (55.47%) and enzyme aspartate transaminase (21.57%) compared to those fed with diet added of crude oil. Serum and hepatic retinol and tocopherol were higher by two to three times in CBO and RBO groups compared to the control group, but no differences were observed for murine parameters. The results indicate that buriti oil is an important source of the antioxidant vitamins A and E, and refined buriti oil is suggested as alternative to improve the lipid profile of healthy rats.
Collapse
|
15
|
Structural, mechanical and myogenic properties of small mesenteric arteries from ApoE KO mice: Characterization and effects of virgin olive oil diets. Atherosclerosis 2015; 238:55-63. [DOI: 10.1016/j.atherosclerosis.2014.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/18/2014] [Accepted: 11/18/2014] [Indexed: 01/19/2023]
|
16
|
Gabás-Rivera C, Barranquero C, Martínez-Beamonte R, Navarro MA, Surra JC, Osada J. Dietary squalene increases high density lipoprotein-cholesterol and paraoxonase 1 and decreases oxidative stress in mice. PLoS One 2014; 9:e104224. [PMID: 25117703 PMCID: PMC4130590 DOI: 10.1371/journal.pone.0104224] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/25/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Squalene, the main hydrocarbon in the unsaponifiable fraction of virgin olive oil, is involved in cholesterol synthesis and it has been reported to own antiatherosclerotic and antiesteatosic effects. However, the squalene's role on lipid plasma parameters and the influence of genotype on this effect need to be addressed. EXPERIMENTAL APPROACHES Three male mouse models (wild-type, Apoa1- and Apoe- deficient) were fed chow semisynthetic diets enriched in squalene to provide a dose of 1 g/kg during 11 weeks. After this period, their plasma parameters and lipoprotein profiles were analyzed. KEY RESULTS Squalene administration at a dose of 1 g/kg showed decreased reactive oxygen species in lipoprotein fractions independently of the animal background and caused an specific increase in high density lipoprotein (HDL)-cholesterol levels, accompanied by an increase in phosphatidylcholine and paraoxonase 1 and no changes in apolipoproteins A1 and A4 in wild-type mice. In these mice, the cholesterol increase was due to its esterified form and associated with an increased hepatic expression of Lcat. These effects were not observed in absence of apolipoprotein A1. The increases in HDL- paraoxonase 1 were translated into decreased plasma malondialdehyde levels depending on the presence of Apolipoprotein A1. CONCLUSIONS AND IMPLICATIONS Dietary squalene promotes changes in HDL- cholesterol and paraoxonase 1 and decreases reactive oxygen species in lipoproteins and plasma malondialdehyde levels, providing new benefits of its intake that might contribute to explain the properties of virgin olive oil, although the phenotype related to apolipoproteins A1 and E may be particularly relevant.
Collapse
Affiliation(s)
- Clara Gabás-Rivera
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Martínez-Beamonte
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María A. Navarro
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín C. Surra
- Departamento de Producción Animal, Escuela Politécnica Superior de Huesca, Huesca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Osada
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
In comparison with palm oil, dietary nut supplementation delays the progression of atherosclerotic lesions in female apoE-deficient mice. Br J Nutr 2012; 109:202-9. [PMID: 23302442 DOI: 10.1017/s000711451200092x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epidemiological studies have demonstrated the benefits of nut consumption on cardiovascular risk factors and CHD, attributed to their fatty acid profile, rich in unsaturated fatty acids, and also to other nutrients. The effect of nuts on atherosclerotic lesions was studied in female and male apoE-knockout mice fed a diet supplemented with 3 % (w/w) mixed nuts (mix: almonds, hazelnuts and walnuts in a proportion of 0.25:0·25:0.50, respectively), and compared with mice receiving an isoenergetic diet of similar fat content provided as palm oil. After 12 weeks, plasma lipid parameters and aortic lesions were measured. Males receiving nuts had lower plasma cholesterol than the palm oil group, and both sex groups had lower plasma non-HDL-cholesterol and lower content of reactive oxygen species in LDL than mice receiving the palm oil diet, the latter decrease being more pronounced in females than in males. Females consuming the nut diet showed a smaller aortic lesion area than those consuming palm oil, whereas no differences were observed in males. In females, hepatic paraoxonase 2 (Pon2) mRNA increased, and no change was observed in prenylcysteine oxidase 1 (Pcyox1) expression after the consumption of the nut-containing diet. In addition, aortic atherosclerotic lesions correlated directly with total plasma cholesterol and inversely with hepatic Pon2 expression. The results suggest that the beneficial effect of nut intake in female apoE-deficient mice may be attributed to reduced non-HDL-cholesterol levels and enhanced PON2 antioxidant activity.
Collapse
|
18
|
Lou-Bonafonte JM, Arnal C, Navarro MA, Osada J. Efficacy of bioactive compounds from extra virgin olive oil to modulate atherosclerosis development. Mol Nutr Food Res 2012; 56:1043-57. [DOI: 10.1002/mnfr.201100668] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Alkhouri N, Tamimi TAR, Yerian L, Lopez R, Zein NN, Feldstein AE. The inflamed liver and atherosclerosis: a link between histologic severity of nonalcoholic fatty liver disease and increased cardiovascular risk. Dig Dis Sci 2010; 55:2644-50. [PMID: 19960252 DOI: 10.1007/s10620-009-1075-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/25/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world. It encompasses a spectrum of disease ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). Growing evidence links NAFLD to cardiovascular (CV) disease; however, the association between the histologic severity of NAFLD and CV risk remains poorly understood. AIM To assess the relationship between severity of liver injury and CV risk markers in a large, well-characterized group of patients with biopsy-proven NAFLD. METHODS Our cohort consisted of 83 consecutive patients undergoing liver biopsy for clinical suspicion of NAFLD. Patients were subsequently divided into three groups: normal biopsy (n=11) simple steatosis (n=36), and NASH (n=36). CV risk markers included: triglyceride/high-density lipoprotein (HDL), total cholesterol/HDL, and low-density lipoprotein/HDL ratios. RESULTS All lipid ratios were found to be significantly associated with NAFLD (p<0.05) after adjusting for age and gender. More importantly, there was a stepwise, statistically significant increase in lipid ratios from patients with normal biopsies to patients with simple steatosis to those with NASH (p<0.05). A positive correlation was found between the lipid ratios and NAFLD activity score (NAS) as well as the individual histological features of the NAS (steatosis, inflammation, and ballooning) with the strongest correlation being with NAS (rho (95% CI) 0.41 (0.21, 0.62), p<0.001). CONCLUSION In patients with NAFLD, the histologic severity of liver injury and inflammation is strongly associated with an increased CV risk and an atherogenic lipid profile.
Collapse
Affiliation(s)
- Naim Alkhouri
- Department of Pediatric Gastroenterology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Oxidative stress, an emerging risk factor for premature atherosclerosis and cardiovascular disease, mediates the formation of proinflammatory, pro-atherogenic oxidized low-density lipoprotein (oxLDL) in the arterial intima. Circulating HDL particles, and particularly small, dense, protein-rich HDL3, may provide potent protection of LDL in vivo from oxidative damage by free radicals in the arterial intima, resulting in the inhibition of the generation of proinflammatory oxidized lipids, primarily lipid hydroperoxides (LOOH) but also short-chain oxidized phospholipids (oxPL). HDL-mediated inactivation of LOOH involves initial transfer of phospholipid hydroperoxides (PLOOH) from LDL to HDL3, which is governed by the rigidity of the surface monolayer of HDL, and subsequent reduction of PLOOH by redox-active Met residues of apolipoprotein A-I (apoA-I) with the formation of phospholipid hydroxides (PLOH) and methionine sulphoxides. HDL-associated enzymes may in turn contribute to the hydrolytic inactivation of short-chain oxPL. Mounting evidence suggests that the integrated antioxidative activity of HDL appear to be defective in atherogenic dyslipidaemias involving low HDL-cholesterol levels; anomalies in the proteome and lipidome of HDL particles in dyslipidaemic patients may underlie such functional deficiency. Pharmacological normalization of HDL metabolism concomitantly with correction of circulating levels, composition and biological activities of HDL particles, with enrichment in apoA-I and reduction in HDL surface rigidity, may constitute an efficacious therapeutic approach to attenuate atherosclerosis in dyslipidaemic patients at high cardiovascular risk.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), Dyslipidemia, Inflammation and Atherosclerosis Research Unit (UMR 939), Paris, France.
| | | |
Collapse
|
21
|
Massaro M, Scoditti E, Carluccio MA, De Caterina R. Nutraceuticals and Prevention of Atherosclerosis: Focus on ω-3 Polyunsaturated Fatty Acids and Mediterranean Diet Polyphenols. Cardiovasc Ther 2010; 28:e13-9. [DOI: 10.1111/j.1755-5922.2010.00211.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Nobili V, Alkhouri N, Bartuli A, Manco M, Lopez R, Alisi A, Feldstein AE. Severity of liver injury and atherogenic lipid profile in children with nonalcoholic fatty liver disease. Pediatr Res 2010; 67:665-70. [PMID: 20496475 DOI: 10.1203/pdr.0b013e3181da4798] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. The aim of this study was to assess the relationship between severity of liver injury and atherogenic lipid profile in a large group of children with NAFLD. A total of 118 consecutive children with biopsy-proven NAFLD were included. Patients underwent extensive metabolic profiling. The NAFLD activity and fibrosis scores showed a significant positive correlation with triglyceride/HDL, total cholesterol/HDL, and LDL/HDL ratios (p<0.05) but not with apolipoprotein B/apolipoprotein A-1 ratio (p=0.58). After adjusting for BMI, homeostatic model assessment, impaired glucose tolerance, and presence of metabolic syndrome, both the NAFLD activity score and stage of fibrosis remained independent predictors of proatherogenic lipid profile. All lipid ratios, except for apolipoprotein B/apolipoprotein A-1, were found to be markedly higher in children with nonalcoholic steatohepatitis compared with those with simple steatosis or borderline disease (p<0.05). This study shows for the first time that in children with NAFLD, the severity of liver injury is strongly associated with the presence of a more atherogenic lipid profile, having potential significant diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Valerio Nobili
- Liver Unit, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Olive Oils Modulate Fatty Acid Content and Signaling Protein Expression in Apolipoprotein E Knockout Mice Brain. Lipids 2009; 45:53-61. [DOI: 10.1007/s11745-009-3370-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 10/19/2009] [Indexed: 02/02/2023]
|
24
|
Guillén N, Acín S, Navarro MA, Carlos Surra J, Arnal C, Manuel Lou-Bonafonte J, Muniesa P, Victoria Martínez-Gracia M, Osada J. Knowledge of the Biological Actions of Extra Virgin Olive Oil Gained From Mice Lacking Apolipoprotein E. ACTA ACUST UNITED AC 2009; 62:294-304. [DOI: 10.1016/s1885-5857(09)71560-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Guillén N, Acín S, Navarro MÁ, Carlos Surra J, Arnal C, Manuel Lou-Bonafonte J, Muniesa P, Victoria Martínez-Gracia M, Osada J. Conocimiento de la acción biológica del aceite de oliva virgen extra mediante el uso del ratón carente de la apolipoproteína E. Rev Esp Cardiol 2009. [DOI: 10.1016/s0300-8932(09)70374-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Nitric oxide-releasing agent, LA419, reduces atherogenesis in apolipoprotein E-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:489-500. [DOI: 10.1007/s00210-008-0377-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/10/2008] [Indexed: 12/20/2022]
|
27
|
Bibliography. Current world literature. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2008; 19:525-35. [PMID: 18769235 DOI: 10.1097/mol.0b013e328312bffc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Bibliography. Current world literature. Lipid metabolism. Curr Opin Lipidol 2008; 19:314-21. [PMID: 18460925 DOI: 10.1097/mol.0b013e328303e27e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Simvastatin reverses the hypertension of heterozygous mice lacking cystathionine beta-synthase and apolipoprotein A-I. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:35-43. [PMID: 18224302 DOI: 10.1007/s00210-007-0247-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
Double heterozygous mice lacking Apoa1 and Cbs genes show mild hyperhomocysteinemia in combination with hypoalphalipoproteinemia. This situation leads to a moderate hypertension associated with a dysregulation in nitric oxide metabolism. The aim of this study was to investigate the potential beneficial effects of statin treatment in these mice. After 4 weeks of simvastatin administration, plasma parameters; apolipoproteins A-I, A-II and A-IV; lipid profile; and blood pressure were assessed, Western blotting was performed in the aorta of these mice to measure endothelial nitric oxide synthase and caveolin-1 content. The high blood pressure level present in the double heterozygous group was corrected down to that of the wild-type group after simvastatin treatment (124+/-7.7 vs. 109+/-11.2 mmHg, p<0.01). Concomitant with this effect, an increase in nitric oxide levels was observed in these double heterozygous mice receiving simvastatin treatment probably mediated in part by a decrease in caveolin-1 levels. Blood pressure changes appeared to be independent of the arylesterase activity of paraoxonase or the lipid content. Another remarkable result was the significant increase in apoA-IV content in animals receiving simvastatin, an effect considered to be protective for the endothelium. In conclusion, the results of this study demonstrate that the use of simvastatin can improve blood pressure control in mice with elevated homocysteinemia and low levels of apoA-I, and this effect is mediated by mechanisms independent of plasma lipids and related to nitric oxide levels.
Collapse
|
30
|
Brown JM, Shelness GS, Rudel LL. Monounsaturated fatty acids and atherosclerosis: opposing views from epidemiology and experimental animal models. Curr Atheroscler Rep 2007; 9:494-500. [PMID: 18377790 DOI: 10.1007/s11883-007-0066-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A substantial body of epidemiologic data has shed light on the potential protective effects of the Mediterranean diet against atherosclerosis in humans. Many believe the reason the Mediterranean diet is atheroprotective is the elevated consumption of olive oil, an oil poor in saturated fatty acids (SFA) and highly enriched in monounsaturated fatty acids (MUFA). Based on human feeding studies, the American Heart Association and the US Food and Drug Administration have advocated for the consumption of MUFA as a more healthy replacement for SFA. However, using experimental animal models in which extent of atherosclerosis can be directly measured following dietary intervention, it has been demonstrated that MUFA-enriched diets are not atheroprotective when compared with SFA-enriched diets. Hence, the current body of experimental evidence refutes the idea that MUFAs per se are atheroprotective; therefore much additional work is needed to determine which aspects of the Mediterranean diet are indeed heart healthy.
Collapse
Affiliation(s)
- J Mark Brown
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA
| | | | | |
Collapse
|