1
|
Ahmed S, Pande AH, Sharma SS. Therapeutic potential of ApoE-mimetic peptides in CNS disorders: Current perspective. Exp Neurol 2022; 353:114051. [DOI: 10.1016/j.expneurol.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
|
2
|
White CR, Palgunachari M, Wolkowicz P, Anantharamaiah GM. Peptides as Therapeutic Agents for Atherosclerosis. Methods Mol Biol 2022; 2419:89-110. [PMID: 35237960 DOI: 10.1007/978-1-0716-1924-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
More than three decades ago, as a test for the amphipathic helix theory, an 18 amino acid residue peptide and its analogs were designed with no sequence homology to any of the exchangeable apolipoproteins. Based on the apolipoprotein A-I (the major protein component of high density lipoproteins, HDL) mimicking properties, they were termed as ApoA-I mimicking peptides. Several laboratories around the world started studying such de novo-designed peptides for their antiatherogenic properties. The present chapter describes the efforts in bringing these peptides as therapeutic agents for atherosclerosis and several lipid-mediated disorders.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, UAB Medical Centre, Birmingham, AL, USA
| | | | - Paul Wolkowicz
- Department of Medicine, UAB Medical Centre, Birmingham, AL, USA
| | | |
Collapse
|
3
|
Montoliu-Gaya L, Mulder SD, Veerhuis R, Villegas S. Effects of an Aβ-antibody fragment on Aβ aggregation and astrocytic uptake are modulated by apolipoprotein E and J mimetic peptides. PLoS One 2017; 12:e0188191. [PMID: 29155887 PMCID: PMC5695774 DOI: 10.1371/journal.pone.0188191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/02/2017] [Indexed: 01/23/2023] Open
Abstract
Aβ-Immunotherapy has long been studied in the treatment of Alzheimer’s disease (AD), but not how other molecules involved in the disease can affect antibody performance. We previously designed an antibody fragment, scFv-h3D6, and showed that it precludes Aβ-induced cytotoxicity by withdrawing Aβ oligomers from the amyloid pathway towards a non-toxic, worm-like pathway. ScFv-h3D6 was effective at the behavioral, cellular, and molecular levels in the 3xTg-AD mouse model. Because scFv-h3D6 treatment restored apolipoprotein E (apoE) and J (apoJ) concentrations to non-pathological values, and Aβ internalization by glial cells was found to be decreased in the presence of these apolipoproteins, we now aimed to test the influence of scFv-h3D6 on Aβ aggregation and cellular uptake by primary human astrocytes in the presence of therapeutic apoE and apoJ mimetic peptides (MPs). Firstly, we demonstrated by CD and FTIR that the molecules used in this work were well folded. Next, interactions between apoE or apoJ-MP, scFv-h3D6 and Aβ were studied by CD. The conformational change induced by the interaction of Aβ with apoE-MP was much bigger than the induced with apoJ-MP, in line with the observed formation of protective worm-like fibrils by the scFv-h3D6/Aβ complex in the presence of apoJ-MP, but not of apoE-MP. ScFv-h3D6, apoJ-MP, and apoE-MP to a different extent reduced Aβ uptake by astrocytes, and apoE-MP partially interfered with the dramatic reduction by scFv-h3D6 while apoJ-MP had no effect on scFv-h3D6 action. As sustained Aβ uptake by astrocytes may impair their normal functions, and ultimately neuronal viability, this work shows another beneficence of scFv-h3D6 treatment, which is not further improved by the use of apoE or apoJ mimetic peptides.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra D. Mulder
- Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert Veerhuis
- Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
- Psychiatry Department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail: (RV); (SV)
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail: (RV); (SV)
| |
Collapse
|
4
|
Bell DA, Watts GF. Contemporary and Novel Therapeutic Options for Hypertriglyceridemia. Clin Ther 2015; 37:2732-50. [DOI: 10.1016/j.clinthera.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
|
5
|
Leman LJ. The potential of apolipoprotein mimetic peptides in the treatment of atherosclerosis. ACTA ACUST UNITED AC 2015; 10:215-217. [PMID: 27110290 DOI: 10.2217/clp.15.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luke J Leman
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States, phone: 858-784-2711, fax: 858-784-2798
| |
Collapse
|
6
|
Sahebkar A, Chew GT, Watts GF. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res 2014; 56:47-66. [PMID: 25083925 DOI: 10.1016/j.plipres.2014.07.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/10/2014] [Accepted: 07/18/2014] [Indexed: 12/20/2022]
Abstract
Elevated plasma triglyceride (TG) concentrations are associated with an increased risk of atherosclerotic cardiovascular disease (CVD), hepatic steatosis and pancreatitis. Existing pharmacotherapies, such as fibrates, n-3 polyunsaturated fatty acids (PUFAs) and niacin, are partially efficacious in correcting elevated plasma TG. However, several new TG-lowering agents are in development that can regulate the transport of triglyceride-rich lipoproteins (TRLs) by modulating key enzymes, receptors or ligands involved in their metabolism. Balanced dual peroxisome proliferator-activated receptor (PPAR) α/γ agonists, inhibitors of microsomal triglyceride transfer protein (MTTP) and acyl-CoA:diacylglycerol acyltransferase-1 (DGAT-1), incretin mimetics, and apolipoprotein (apo) B-targeted antisense oligonucleotides (ASOs) can all decrease the production and secretion of TRLs; inhibitors of cholesteryl ester transfer protein (CETP) and angiopoietin-like proteins (ANGPTLs) 3 and 4, monoclonal antibodies (Mabs) against proprotein convertase subtilisin/kexin type 9 (PCSK9), apoC-III-targeted ASOs, selective peroxisome proliferator-activated receptor modulators (SPPARMs), and lipoprotein lipase (LPL) gene replacement therapy (alipogene tiparvovec) enhance the catabolism and clearance of TRLs; dual PPAR-α/δ agonists and n-3 polyunsaturated fatty acids can lower plasma TG by regulating both TRL secretion and catabolism. Varying degrees of TG reduction have been reported with the use of these therapies, and for some agents such as CETP inhibitors and PCSK9 Mabs findings have not been consistent. Whether they reduce CVD events has not been established. Trials investigating the effect of CETP inhibitors (anacetrapib and evacetrapib) and PCSK9 Mabs (AMG-145 and REGN727/SAR236553) on CVD outcomes are currently in progress, although these agents also regulate LDL metabolism and, in the case of CETP inhibitors, HDL metabolism. Further to CVD risk reduction, these new treatments might also have a potential role in the management of diabetes and non-alcoholic fatty liver disease owing to their insulin-sensitizing action (PPAR-α/γ agonists) and potential capacity to decrease hepatic TG accumulation (PPAR-α/δ agonists and DGAT-1 inhibitors), but this needs to be tested in future trials. We summarize the clinical trial findings regarding the efficacy and safety of these novel therapies for hypertriglyceridemia.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Gerard T Chew
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Gerald F Watts
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
7
|
Nankar SA, Pande AH. Properties of apolipoprotein E derived peptide modulate their lipid-binding capacity and influence their anti-inflammatory function. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:620-9. [PMID: 24486429 DOI: 10.1016/j.bbalip.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/07/2013] [Accepted: 01/03/2014] [Indexed: 11/28/2022]
Abstract
Apolipoprotein-derived peptides are promising candidates for the treatment of various inflammatory conditions. The beneficial effects of these peptides are based on multiple mechanisms; prominent among them being high-affinity binding to pro-inflammatory oxidized phospholipids (Ox-PLs) and facilitating their sequestration/metabolism/clearance in the body. This indicates that peptides which can bind exclusively to Ox-PLs without recognizing normal, non-oxidized phospholipids (non-Ox-PLs) will be more potent anti-inflammatory agent than that of the peptides that bind to both Ox-PLs and non-Ox-PLs. In order to develop such Ox-PL-specific peptides, the knowledge about the properties (molecular determinants) of peptides that govern their Ox-PL preference is a must. In this study we have synthesized eleven peptides corresponding to the conserved regions of human apolipoprotein E and compared their biochemical properties, lipid-binding specificities, and anti-inflammatory properties. Our results show that these peptides exhibit considerably different specificities towards non-Ox-PL and different species of Ox-PLs. Some of these peptides bind exclusively to the Ox-PLs and inhibit the pro-inflammatory function of Ox-PLs in human blood. Biochemical characterization revealed that the peptides possess substantially different properties. Our results suggest that physicochemical properties of peptides play an important role in their lipid-binding specificity.
Collapse
Affiliation(s)
- Sunil A Nankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
8
|
Handattu SP, Monroe CE, Nayyar G, Palgunachari MN, Kadish I, van Groen T, Anantharamaiah GM, Garber DW. In vivo and in vitro effects of an apolipoprotein e mimetic peptide on amyloid-β pathology. J Alzheimers Dis 2014; 36:335-47. [PMID: 23603398 DOI: 10.3233/jad-122377] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Apolipoprotein E (ApoE) is the major apolipoprotein present in the high-density lipoprotein-like particles in the central nervous system (CNS). ApoE is involved in various protective functions in CNS including cholesterol transport, anti-inflammatory, and antioxidant effects. An ApoE peptide would be expected to exert protective effects on neuroinflammation. OBJECTIVE To determine the effects of an ApoE mimetic peptide Ac-hE18A-NH2 on amyloid-β pathology. METHOD Using human APP/PS1ΔE9 transgenic mice and in vitro studies, we have evaluated the effect of an ApoE mimetic peptide, Ac-hE18A-NH2, on amyloid plaque deposition and inflammation. RESULTS Administration of Ac-hE18A-NH2 to APP/PS1ΔE9 mice for 6 weeks (50 μg/mouse, 3 times a week) significantly improved cognition with a concomitant decrease in amyloid plaque deposition and reduced activated microglia and astrocytes, and increased brain ApoE levels. Oligomeric Aβ42 (oAβ42) and oxidized PAPC (ox-PAPC) inhibited secretion of ApoE in U251 cells, a human astrocyte cell line, and this effect was ameliorated in the presence of peptide Ac-hE18A-NH2. The peptide also increased Aβ42 uptake in a cell line of human macrophages. CONCLUSIONS Peptide Ac-hE18A-NH2 attenuates the effects of oxidative stress on ApoE secretion, inhibits amyloid plaque deposition, and thus could be beneficial in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Shaila P Handattu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sharifov OF, Nayyar G, Ternovoy VV, Palgunachari MN, Garber DW, Anantharamaiah G, Gupta H. Comparison of anti-endotoxin activity of apoE and apoA mimetic derivatives of a model amphipathic peptide 18A. Innate Immun 2013; 20:867-80. [PMID: 24323453 DOI: 10.1177/1753425913514621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Endotoxemia is a major cause of chronic inflammation, and is an important pathogenic factor in the development of metabolic syndrome and atherosclerosis. Human apolipoprotein E (apoE) and apoA-I are protein components of high-density lipoprotein, which have strong anti-endotoxin activity. Here, we compared anti-endotoxin activity of Ac-hE18A-NH2 and 4F peptides, modified from model amphipathic helical 18A peptide, to mimic, respectively, apoE and apoA-I properties. Ac-hE18A-NH2, stronger than 4F, inhibited endotoxin activity and disaggregated Escherichia coli 055:B5 (wild smooth serotype). Ac-hE18A-NH2 and 4F inhibited endotoxin activity of E. coli 026:B6 (rough-like serotype) to a similar degree. This suggests that Ac-hE18A-NH2 as a dual-domain molecule might interact with both the lipid A and headgroup of smooth LPS, whereas 4F binds lipid A. In C57BL/6 mice, Ac-hE18A-NH2 was superior to 4F in inhibiting the inflammatory responses mediated by E. coli 055:B5, but not E. coli 026:B6. However, in THP-1 cells, isolated human primary leukocytes, and whole human blood, Ac-hE18A-NH2 reduced responses more strongly than 4F to both E. coli serotypes either when peptides were pre-incubated or co-incubated with LPS, indicating that Ac-hE18A-NH2 also has strong anti-inflammatory effects independent of endotoxin-neutralizing properties. In conclusion, Ac-hE18A-NH2 is more effective than 4F in inhibiting LPS-mediated inflammation, which opens prospective clinical applications for Ac-hE18A-NH2.
Collapse
Affiliation(s)
- Oleg F Sharifov
- Department of Medicine, University of Alabama at Birmingham, AL, USA
| | - Gaurav Nayyar
- Department of Medicine, University of Alabama at Birmingham, AL, USA
| | | | | | - David W Garber
- Department of Medicine, University of Alabama at Birmingham, AL, USA
| | - Gm Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, AL, USA Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL, USA
| | - Himanshu Gupta
- Department of Medicine, University of Alabama at Birmingham, AL, USA VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
10
|
Leman LJ, Maryanoff BE, Ghadiri MR. Molecules that mimic apolipoprotein A-I: potential agents for treating atherosclerosis. J Med Chem 2013; 57:2169-96. [PMID: 24168751 DOI: 10.1021/jm4005847] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.
Collapse
Affiliation(s)
- Luke J Leman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
11
|
Sharifov OF, Nayyar G, Ternovoy VV, Mishra VK, Litovsky SH, Palgunachari MN, Garber DW, Anantharamaiah GM, Gupta H. Cationic peptide mR18L with lipid lowering properties inhibits LPS-induced systemic and liver inflammation in rats. Biochem Biophys Res Commun 2013; 436:705-10. [PMID: 23791744 DOI: 10.1016/j.bbrc.2013.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
The cationic single domain peptide mR18L has demonstrated lipid-lowering and anti-atherogenic properties in different dyslipidemic mouse models. Lipopolysaccharide (LPS)-mediated inflammation is considered as one of the potential triggers for atherosclerosis. Here, we evaluated anti-inflammatory effects of mR18L peptide against LPS-mediated inflammation. First, we tested the efficacy and tolerance of 1, 2.5 and 5mg/kg mR18L in normolipidemic rats stimulated with 5mg/kg LPS. LPS and then mR18L were injected in different intraperitoneal regions. By 2h post LPS, mR18L inhibited LPS-mediated plasma TNF-α elevation at all doses, with the effect being stronger for 2.5mg/kg (P<0.05 vs. 1mg/kg, non-significant vs. 5mg/kg). In a similar model, 2.5mg/kg mR18L reduced LPS-mediated inflammation in the liver, as assessed by microscopic examination of liver sections and measurements of iNOS expression in the liver tissue. In plasma, 2.5mg/kg mR18L decreased levels of TNF-α and IL-6, decreased endotoxin activity and enhanced HDL binding to LPS. In another similar experiment, mR18L administered 1h post LPS, prevented elevation of plasma triglycerides by 6h post LPS and increased plasma activity of anti-oxidant enzyme paraoxonase 1, along with noted trends in reducing plasma levels of endotoxin and IL-6. Surface plasmon resonance study revealed that mR18L readily binds LPS. We conclude that mR18L exerts anti-endotoxin activity at least in part due to direct LPS-binding and LPS-neutralizing effects. We suggest that anti-endotoxin activity of mR18L is an important anti-inflammatory property, which may increase anti-atherogenic potential of this promising orally active lipid-lowering peptide.
Collapse
Affiliation(s)
- Oleg F Sharifov
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35216, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reducing plasma cholesterol is not the end of the quest. Atherosclerosis 2013; 227:35-6. [DOI: 10.1016/j.atherosclerosis.2012.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022]
|
13
|
Hanson MS, Xu H, Flewelen TC, Holzhauer SL, Retherford D, Jones DW, Frei AC, Pritchard KA, Hillery CA, Hogg N, Wandersee NJ. A novel hemoglobin-binding peptide reduces cell-free hemoglobin in murine hemolytic anemia. Am J Physiol Heart Circ Physiol 2012; 304:H328-36. [PMID: 23125208 DOI: 10.1152/ajpheart.00500.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hemolysis can saturate the hemoglobin (Hb)/heme scavenging system, resulting in increased circulating cell-free Hb (CF-Hb) in hereditary and acquired hemolytic disease. While recent studies have suggested a central role for intravascular hemolysis and CF-Hb in the development of vascular dysfunction, this concept has stimulated considerable debate. This highlights the importance of determining the contribution of CF-Hb to vascular complications associated with hemolysis. Therefore, a novel Hb-binding peptide was synthesized and linked to a small fragment of apolipoprotein E (amino acids 141-150) to facilitate endocytic clearance. Plasma clearance of hE-Hb-b10 displayed a rapid phase t(1/2) of 16 min and slow phase t(1/2) of 10 h, trafficking primarily through the liver. Peptide hE-Hb-B10 decreased CF-Hb in mice treated with phenylhydrazine, a model of acute hemolysis. Administration of hE-Hb-B10 also attenuated CF-Hb in two models of chronic hemolysis: Berkeley sickle cell disease (SS) mice and mice with severe hereditary spherocytosis (HS). The hemolytic rate was unaltered in either chronic hemolysis model, supporting the conclusion that hE-Hb-B10 promotes CF-Hb clearance without affecting erythrocyte lysis. Interestingly, hE-Hb-B10 also decreased plasma ALT activity in SS and HS mice. Although acetylcholine-mediated facialis artery vasodilation was not improved by hE-Hb-B10 treatment, the peptide shifted vascular response in favor of NO-dependent vasodilation in SS mice. Taken together, these data demonstrate that hE-Hb-B10 decreases CF-Hb with a concomitant reduction in liver injury and changes in vascular response. Therefore, hE-Hb-B10 can be used to investigate the different roles of CF-Hb in hemolytic pathology and may have therapeutic benefit in the treatment of CF-Hb-mediated tissue damage.
Collapse
Affiliation(s)
- Madelyn S Hanson
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Handattu SP, Nayyar G, Garber DW, Palgunachari MN, Monroe CE, Keenum TD, Mishra VK, Datta G, Anantharamaiah GM. Two apolipoprotein E mimetic peptides with similar cholesterol reducing properties exhibit differential atheroprotective effects in LDL-R null mice. Atherosclerosis 2012; 227:58-64. [PMID: 23159231 DOI: 10.1016/j.atherosclerosis.2012.10.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE We investigated two apoE mimetic peptides with similar long-term plasma cholesterol reducing abilities for their effects on atherosclerotic lesions in Western diet-fed female LDL-receptor (LDL-R) null mice. METHODS AND RESULTS Single doses of peptides Ac-hE18A-NH(2) and mR18L were administered retro-orbitally to LDL-R null mice on Western diet and plasma cholesterol was measured at 10 min, 4 h, and 24 h post administration. Peptide mR18L and not Ac-hE18A-NH(2) reduced plasma cholesterol levels significantly at 4 h post administration. However, multiple administrations (100 μg/mouse twice weekly for 8 weeks) resulted in a similar reduction in plasma cholesterol. Only the plasma from the Ac-hE18A-NH(2) group had significantly reduced reactive oxygen species levels at the end of the treatment protocol. Both mR18L and Ac-hE18A-NH(2) showed reduced atherosclerotic lesion areas. However, peptide Ac-hE18A-NH(2) was significantly more effective in inhibiting atherosclerosis. Both peptides reduced total plaque macrophage load compared to the saline treated animals, with peptide Ac-hE18A-NH(2) having a greater reduction. Incubation of HepG2 cells and THP-1 monocyte-derived macrophages with both peptides in the presence of oxidized phospholipid showed that Ac-hE18A-NH(2) promotes the secretion of apoE from the cells whereas mR18L does not. CONCLUSIONS Despite similar reductions in plasma cholesterol levels, Ac-hE18A-NH(2) was more effective in inhibiting lesions than mR18L, possibly due to its ability to promote the secretion of apoE from hepatocytes and macrophages.
Collapse
Affiliation(s)
- Shaila P Handattu
- Department of Medicine and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Apolipoprotein E mimetic is more effective than apolipoprotein A-I mimetic in reducing lesion formation in older female apo E null mice. Atherosclerosis 2012; 224:326-31. [PMID: 22771190 DOI: 10.1016/j.atherosclerosis.2012.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/01/2012] [Accepted: 05/30/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The apolipoprotein E mimetic peptide Ac-hE18A-NH(2), capable of reducing plasma cholesterol and possessing anti-inflammatory properties, was compared with the well-studied anti-atherogenic apoA-I mimetic peptide 4F for reducing lesion formation in female apoE null mice with already existing lesions. METHODS AND RESULTS In initial experiments, Ac-hE18A-NH(2) was administered retro-orbitally two or three times weekly for 6-8 weeks, while peptide 4F was administered intraperitoneally every day for the same period. Age matched controls were injected with saline every day. At the end of the treatment period, plasma cholesterol levels of Ac-hE18A-NH(2) administered mice were significantly lower than in 4F and control mice. However, both 4F and Ac-hE18A-NH(2) showed reduced lesion areas in en face lesion analysis to a similar extent compared to the control group, while paraoxonase-1 (PON-1) activity was increased only in the Ac-hE18A-NH(2) group. In the third experiment, both peptides were administered at the same dose, frequency, and route of administration. The reduction in en face lesions with Ac-hE18A-NH(2) was significantly greater than the 4F and control groups, although lesions in 4F-treated mice were also significantly reduced compared with controls. Both peptide groups had significantly reduced plasma lipid hydroperoxides, but only the Ac-hE18A-NH(2) group had significantly reduced serum amyloid A levels. HDL and plasma inflammatory indices were significantly reduced in both peptide groups compared with controls. CONCLUSIONS Although both peptides had similar anti-inflammatory properties, Ac-hE18A-NH(2) was more effective in inhibiting lesions than 4F at the same dose, frequency, and route of administration, perhaps due to its cholesterol reducing properties.
Collapse
|
16
|
Targeted In Situ Gene Correction of Dysfunctional APOE Alleles to Produce Atheroprotective Plasma ApoE3 Protein. Cardiol Res Pract 2012; 2012:148796. [PMID: 22645694 PMCID: PMC3356902 DOI: 10.1155/2012/148796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/30/2012] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading worldwide cause of death. Apolipoprotein E (ApoE) is a 34-kDa circulating glycoprotein, secreted by the liver and macrophages with pleiotropic antiatherogenic functions and hence a candidate to treat hypercholesterolaemia and atherosclerosis. Here, we describe atheroprotective properties of ApoE, though also potential proatherogenic actions, and the prevalence of dysfunctional isoforms, outline conventional gene transfer strategies, and then focus on gene correction therapeutics that can repair defective APOE alleles. In particular, we discuss the possibility and potential benefit of applying in combination two technical advances to repair aberrant APOE genes: (i) an engineered endonuclease to introduce a double-strand break (DSB) in exon 4, which contains the common, but dysfunctional, ε2 and ε4 alleles; (ii) an efficient and selectable template for homologous recombination (HR) repair, namely, an adeno-associated viral (AAV) vector, which harbours wild-type APOE sequence. This technology is applicable ex vivo, for example to target haematopoietic or induced pluripotent stem cells, and also for in vivo hepatic gene targeting. It is to be hoped that such emerging technology will eventually translate to patient therapy to reduce CVD risk.
Collapse
|
17
|
Sharifov OF, Nayyar G, Garber DW, Handattu SP, Mishra VK, Goldberg D, Anantharamaiah GM, Gupta H. Apolipoprotein E mimetics and cholesterol-lowering properties. Am J Cardiovasc Drugs 2012; 11:371-81. [PMID: 22149316 DOI: 10.2165/11594190-000000000-00000] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Apolipoprotein E (apoE) is a ligand for clearance of lipoprotein remnants such as chylomicrons and very low-density lipoproteins. It has anti-atherogenic and anti-inflammatory properties. Therefore, there is extensive ongoing research to create peptides that can mimic properties of apoE. A number of synthetic peptides that encompass different regions of apoE have been studied for inhibiting inflammatory states, including Alzheimer disease. However, peptides that clear atherogenic lipoproteins, analogous to apoE, via enhanced hepatic uptake have not been previously reviewed. Toward this end, we describe the design and studies of a dual-domain apoE mimetic peptide, Ac-hE18A-NH(2). This peptide consists of residues 141-150, the putative receptor-binding region of human apoE, covalently linked to a well characterized class A amphipathic helix, 18A, which has no sequence homology to any other exchangeable apolipoprotein sequences. It demonstrates dramatic effects in reducing plasma cholesterol levels in dyslipidemic mouse and rabbit models. We discuss the scientific rationale and review the literature for the design and efficacy of the peptide. Analogous to apoE, this peptide bypasses the low-density lipoprotein receptor for the hepatic uptake of atherogenic lipoproteins via heparan sulfate proteoglycan (HSPG). ApoE mimetics such as Ac-hE18A-NH(2) may therefore restore or replace ligands in genetically induced hyperlipidemias to enable reduction in atherogenic lipoproteins via HSPG even in the absence of functional low-density lipoprotein receptors. Therefore, this and similar peptides may be useful in the treatment of dyslipidemic disorders such as familial hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Oleg F Sharifov
- Departments of Medicine, Biochemistry and Molecular Genetics and the Atherosclerosis Research Unit, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nayyar G, Mishra VK, Handattu SP, Palgunachari MN, Shin R, McPherson DT, Deivanayagam CCS, Garber DW, Segrest JP, Anantharamaiah GM. Sidedness of interfacial arginine residues and anti-atherogenicity of apolipoprotein A-I mimetic peptides. J Lipid Res 2012; 53:849-858. [PMID: 22377531 DOI: 10.1194/jlr.m019844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To test the hypothesis that sidedness of interfacial arginine (Arg) in apoA-I mimetic peptides, similar to that observed in apoA-I (Bashtovyy, D. et al. 2011. Sequence conservation of apolipoprotein A-I affords novel insights into HDL structure-function. J. Lipid Res. 52: 435-450.), may be important for biological activity, we compared properties of 4F and analogs, [K⁴,¹⁵>R]4F and [K⁹,¹³>R]4F, with Lys>Arg substitutions on the right and left side, respectively, of the 4F amphipathic helix. Intraperitoneal administration of these peptides into female apoE null mice (n = 13 in each group) reduced en face lesions significantly compared with controls; 4F and [K⁴,¹⁵>R]4F were equally effective whereas [K⁹,¹³>R]4F was less effective. Turnover experiments indicated that [K⁴,¹⁵>R]4F reached the highest, whereas [K⁹,¹³>R]4F had the lowest, plasma peak levels with a similar half life as the [K⁴,¹⁵>R]4F analog. The half life of 4F was two times longer than the other two peptides. The order in their abilities to associate with HDL in human plasma, generation of apoA-I particles with pre-β mobility from isolated HDL, lipid associating ability, and sensitivity of lipid complexes to trypsin digestion was: 4F>[K⁴,¹⁵,>R]4F>[K⁹,¹³>R]4F. These studies support our hypothesis that the sidedness of interfacial Arg residues in the polar face of apoA-I mimetics results in differential biological properties.
Collapse
Affiliation(s)
- Gaurav Nayyar
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Vinod K Mishra
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294.
| | - Shaila P Handattu
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mayakonda N Palgunachari
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ronald Shin
- Department of Biochemistry and Molecular Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David T McPherson
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Champion C S Deivanayagam
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David W Garber
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jere P Segrest
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Biochemistry and Molecular Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - G M Anantharamaiah
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Biochemistry and Molecular Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|