1
|
Gallo A, Le Goff W, Santos RD, Fichtner I, Carugo S, Corsini A, Sirtori C, Ruscica M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur J Clin Invest 2025; 55:e14326. [PMID: 39370572 PMCID: PMC11628670 DOI: 10.1111/eci.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
Collapse
Affiliation(s)
- Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Wilfried Le Goff
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Raul D. Santos
- Academic Research Organization Hospital Israelita Albert Einstein and Lipid Clinic Heart Institute (InCor)University of Sao Paulo Medical School HospitalSao PauloBrazil
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Stefano Carugo
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Cesare Sirtori
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
2
|
Vianou B, Royo J, Dechavanne S, Bertin GI, Yessoufou A, Houze S, Faucher JF, Aubouy A. Monocytes, particularly nonclassical ones, lose their opsonic and nonopsonic phagocytosis capacity during pediatric cerebral malaria. Front Immunol 2024; 15:1358853. [PMID: 38835780 PMCID: PMC11148436 DOI: 10.3389/fimmu.2024.1358853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Innate immunity is crucial to reducing parasite burden and contributing to survival in severe malaria. Monocytes are key actors in the innate response and, like macrophages, are plastic cells whose function and phenotype are regulated by the signals from the microenvironment. In the context of cerebral malaria (CM), monocyte response constitutes an important issue to understand. We previously demonstrated that decreased percentages of nonclassical monocytes were associated with death outcomes in CM children. In the current study, we postulated that monocyte phagocytosis function is impacted by the severity of malaria infection. Methods To study this hypothesis, we compared the opsonic and nonopsonic phagocytosis capacity of circulant monocytes from Beninese children with uncomplicated malaria (UM) and CM. For the CM group, samples were obtained at inclusion (D0) and 3 and 30 days after treatment (D3, D30). The phagocytosis capacity of monocytes and their subsets was characterized by flow cytometry and transcriptional profiling by studying genes known for their functional implication in infected-red blood cell (iRBC) elimination or immune escape. Results Our results confirm our hypothesis and highlight the higher capacity of nonclassical monocytes to phagocyte iRBC. We also confirm that a low number of nonclassical monocytes is associated with CM outcome when compared to UM, suggesting a mobilization of this subpopulation to the cerebral inflammatory site. Finally, our results suggest the implication of the inhibitory receptors LILRB1, LILRB2, and Tim3 in phagocytosis control. Discussion Taken together, these data provide a better understanding of the interplay between monocytes and malaria infection in the pathogenicity of CM.
Collapse
Affiliation(s)
- Bertin Vianou
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, Toulouse, France
- Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin
| | - Jade Royo
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, Toulouse, France
| | - Sébastien Dechavanne
- UMR261 Mère et Enfant en Milieu tropical (MERIT), Université Paris Cité, IRD, Paris, France
| | - Gwladys I Bertin
- UMR261 Mère et Enfant en Milieu tropical (MERIT), Université Paris Cité, IRD, Paris, France
| | - Akadiri Yessoufou
- Cell Biology and Physiology Laboratory, Abomey Calavi University (UAC), Abomey Calavi, Benin
| | - Sandrine Houze
- UMR261 Mère et Enfant en Milieu tropical (MERIT), Université Paris Cité, IRD, Paris, France
- French Malaria Reference Center, Assistance Publique - Hôpitaux de Paris (APHP), Bichat Hospital, Paris, France
- Parasitology Laboratory, Assistance Publique - Hôpitaux de Paris (APHP), Bichat-Claude-Bernard Hospital, Paris, France
| | - Jean-François Faucher
- Infectious Diseases and Tropical Medicine Department, Limoges University Hospital, Limoges, France
- Unité Mixte de Recherche (UMR) 1094 EpiMaCT, Inserm, Limoges University Hospital, Limoges University, Limoges, France
| | - Agnes Aubouy
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, Toulouse, France
- Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin
| |
Collapse
|
3
|
Domingo E, Marques P, Francisco V, Piqueras L, Sanz MJ. Targeting systemic inflammation in metabolic disorders. A therapeutic candidate for the prevention of cardiovascular diseases? Pharmacol Res 2024; 200:107058. [PMID: 38218355 DOI: 10.1016/j.phrs.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and disability worldwide. While many factors can contribute to CVD, atherosclerosis is the cardinal underlying pathology, and its development is associated with several metabolic risk factors including dyslipidemia and obesity. Recent studies have definitively demonstrated a link between low-grade systemic inflammation and two relevant metabolic abnormalities: hypercholesterolemia and obesity. Interestingly, both metabolic disorders are also associated with endothelial dysfunction/activation, a proinflammatory and prothrombotic phenotype of the endothelium that involves leukocyte infiltration into the arterial wall, one of the earliest stages of atherogenesis. This article reviews the current literature on the intricate relationship between hypercholesterolemia and obesity and the associated systemic inflammation and endothelial dysfunction, and discusses the effectiveness of present, emerging and in-development pharmacological therapies used to treat these metabolic disorders with a focus on their effects on the associated systemic inflammatory state and cardiovascular risk.
Collapse
Affiliation(s)
- Elena Domingo
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Vera Francisco
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| | - Maria-Jesus Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| |
Collapse
|
4
|
Motkowski R, Alifier M, Abramowicz P, Konstantynowicz J, Mikołuć B, Stasiak-Barmuta A. Innate and Acquired Cellular Immunity in Children with Familial Hypercholesterolemia Treated with Simvastatin. J Clin Med 2022; 11:2924. [PMID: 35629051 PMCID: PMC9147505 DOI: 10.3390/jcm11102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of this cross-sectional study was to assess the influence of simvastatin treatment in children with familial hypercholesterolemia (FH) on parameters of cellular immunity. Twenty-six children with FH were included, of which thirteen were treated with 10 mg simvastatin for at least 26 weeks, and thirteen were age- and sex-matched with a low-cholesterol diet only. Total WBC count and lipid profile were measured. Flow cytometry was used to identify lymphocyte subsets and determine the expression of adhesion molecules (AM) and toll-like receptors (TLRs) on leukocytes. No differences were found in the basic values of peripheral blood count and subpopulations of lymphocytes between groups. The percentage of granulocytes with the expression of AM was higher in those treated with statins. The TLR-2 expression on granulocytes and monocytes showed higher values, whereas the TLR-4 expression was lower on lymphocytes and granulocytes in simvastatin-treated children. Treatment with simvastatin in children with FH is not associated with alterations in the amounts of granulocytes and monocytes. There is no association between statin treatment and the pattern of peripheral blood lymphocyte subpopulations. The role of AM and TLRs needs further investigation, given the effect of statins on the innate immunity may be important for their efficacy and safety during growth.
Collapse
Affiliation(s)
- Radosław Motkowski
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Marek Alifier
- Department of Clinical Immunology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Paweł Abramowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Jerzy Konstantynowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Bożena Mikołuć
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Anna Stasiak-Barmuta
- Department of Clinical Immunology, Medical University of Bialystok, 15-274 Bialystok, Poland
| |
Collapse
|
5
|
Pinzon Grimaldos A, Bini S, Pacella I, Rossi A, Di Costanzo A, Minicocci I, D’Erasmo L, Arca M, Piconese S. The role of lipid metabolism in shaping the expansion and the function of regulatory T cells. Clin Exp Immunol 2021; 208:181-192. [PMID: 35020862 PMCID: PMC9188345 DOI: 10.1093/cei/uxab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic inflammation, defined as a chronic low-grade inflammation, is implicated in numerous metabolic diseases. In recent years, the role of regulatory T cells (Tregs) as key controllers of metabolic inflammation has emerged, but our comprehension on how different metabolic pathways influence Treg functions needs a deeper understanding. Here we focus on how circulating and intracellular lipid metabolism, in particular cholesterol metabolism, regulates Treg homeostasis, expansion, and functions. Cholesterol is carried through the bloodstream by circulating lipoproteins (chylomicrons, very low-density lipoproteins, low-density lipoproteins). Tregs are equipped with a wide array of metabolic sensors able to perceive and respond to changes in the lipid environment through the activation of different intracellular pathways thus conferring to these cells a crucial metabolic and functional plasticity. Nevertheless, altered cholesterol transport, as observed in genetic dyslipidemias and atherosclerosis, impairs Treg proliferation and function through defective cellular metabolism. The intracellular pathway devoted to the cholesterol synthesis is the mevalonate pathway and several studies have shown that this pathway is essential for Treg stability and suppressive activity. High cholesterol concentrations in the extracellular environment may induce massive accumulation of cholesterol inside the cell thus impairing nutrients sensors and inhibiting the mevalonate pathway. This review summarizes the current knowledge regarding the role of circulating and cellular cholesterol metabolism in the regulation of Treg metabolism and functions. In particular, we will discuss how different pathological conditions affecting cholesterol transport may affect cellular metabolism in Tregs.
Collapse
Affiliation(s)
| | | | - Ilenia Pacella
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandra Rossi
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Laura D’Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Silvia Piconese
- Correspondence: Silvia Piconese, Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Christensen JJ, Narverud I, Ruuth M, Heier M, Jauhiainen M, Ulven SM, Bogsrud MP, Kovanen PT, Halvorsen B, Oda MN, Wium C, Retterstøl K, Öörni K, Holven KB. Children with familial hypercholesterolemia display changes in LDL and HDL function: A cross-sectional study. J Intern Med 2021; 290:1083-1097. [PMID: 34506681 DOI: 10.1111/joim.13383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The functional status of lipoprotein particles contributes to atherogenesis. The tendency of plasma low-density lipoprotein (LDL) particles to aggregate and the ability of igh-density lipoprotein (HDL) particles to induce and mediate reverse cholesterol transport associate with high and low risk for cardiovascular disease in adult patients, respectively. However, it is unknown whether children with familial hypercholesterolemia (FH) display lipoprotein function alterations. HYPOTHESIS We hypothesized that FH children had disrupted lipoprotein functions. METHODS We analyzed LDL aggregation susceptibility and HDL-apoA-I exchange (HAE), and activity of four proteins that regulate lipoprotein metabolism (cholesteryl ester transfer protein, lecithin-cholesterol acyltransferase, phospholipid transfer protein, and paraoxonase-1) in plasma samples derived from children with FH (n = 47) and from normocholesterolemic children (n = 56). Variation in lipoprotein functions was further explored using an nuclear magnetic resonance-based metabolomics profiling approach. RESULTS LDL aggregation was higher, and HAE was lower in FH children than in normocholesterolemic children. LDL aggregation associated positively with LDL cholesterol (LDL-C) and negatively with triglycerides, and HAE/apoA-I associated negatively with LDL-C. Generally, the metabolomic profile for LDL aggregation was opposite of that of HAE/apoA-I. CONCLUSIONS FH children displayed increased atherogenicity of LDL and disrupted HDL function. These newly observed functional alterations in LDL and HDL add further understanding of the risk for atherosclerotic cardiovascular disease in FH children.
Collapse
Affiliation(s)
- Jacob J Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingunn Narverud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.,Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Martin Heier
- Department of Pediatric, Oslo University Hospital Ullevaal, Oslo, Norway.,Oslo Diabetes Research Centre, Oslo, Norway
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Helsinki, Finland
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Michael N Oda
- Seer BioLogics, Inc., Fairfield, California, United States
| | - Cecilie Wium
- The Lipid Clinic, Oslo University Hospital, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,The Lipid Clinic, Oslo University Hospital, Oslo, Norway
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kirsten B Holven
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Blinc L, Mlinaric M, Battelino T, Groselj U. High-Sensitivity C-Reactive Protein and Carotid Intima Media Thickness as Markers of Subclinical Inflammation and Atherosclerosis in Pediatric Patients with Hypercholesterolemia. Molecules 2020; 25:E5118. [PMID: 33158028 PMCID: PMC7663751 DOI: 10.3390/molecules25215118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Hypercholesterolemia is a major cause of atherosclerosis development and premature cardiovascular disease (CVD). It leads to inflammation, which further accelerates atherosclerosis progression. Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by elevated serum LDL-c from birth, due to a disease-causing variant in one of the causative genes (LDLR, APOB, PCSK9). In polygenic hypercholesterolemia (PH), the disease-causing genetic variant is absent; it is likely the cumulative result of multiple single nucleotide polymorphisms in LDL metabolism-related genes and other factors, such as lifestyle and environment. In high risk groups, such as patients with FH, an effective primary prevention of CVD must begin in childhood. High-sensitivity C-reactive protein (hsCRP) and carotid intima media thickness (cIMT) are two potential minimally invasive correlates of inflammation and subclinical atherosclerosis progression. hsCRP and cIMT have been shown to be significantly increased in patients with FH and PH relative to healthy controls, with some studies yielding conflicting results. In this review, we aim to summarize current knowledge and recent findings regarding the applicability of hsCRP and cIMT as markers of low-grade inflammation and subclinical atherosclerosis, focusing especially on children and adolescents with hypercholesterolemia.
Collapse
Affiliation(s)
- Lana Blinc
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (L.B.); (T.B.)
| | - Matej Mlinaric
- University Children’s Hospital, University Medical Center Ljubljana, Bohoriceva ulica 20, 1000 Ljubljana, Slovenia;
| | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (L.B.); (T.B.)
- University Children’s Hospital, University Medical Center Ljubljana, Bohoriceva ulica 20, 1000 Ljubljana, Slovenia;
| | - Urh Groselj
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (L.B.); (T.B.)
- University Children’s Hospital, University Medical Center Ljubljana, Bohoriceva ulica 20, 1000 Ljubljana, Slovenia;
| |
Collapse
|
8
|
Christensen JJ, Ulven SM, Thoresen M, Westerman K, Holven KB, Andersen LF. Associations between dietary patterns and gene expression pattern in peripheral blood mononuclear cells: A cross-sectional study. Nutr Metab Cardiovasc Dis 2020; 30:2111-2122. [PMID: 32807640 DOI: 10.1016/j.numecd.2020.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Diet may alter gene expression in immune cells involved in atherosclerotic cardiovascular disease susceptibility. However, we still lack a robust understanding of the association between diet and immune cell-related gene expression in humans. Therefore, we examined associations between dietary patterns (DPs) and gene expression profiles in peripheral blood mononuclear cells (PBMCs) in a population of healthy, Norwegian adults (n = 130 women and 105 men). METHODS AND RESULTS We used factor analysis to define a posteriori DPs from food frequency questionnaire-based dietary assessment data. In addition, we derived interpretable features from microarray-based gene expression data (13 967 transcripts) using two algorithms: CIBERSORT for estimation of cell subtype proportions, and weighted gene co-expression network analysis (WGCNA) for cluster discovery. Finally, we associated DPs with either CIBERSORT-predicted PBMC leukocyte distribution or WGCNA gene clusters using linear regression models. We detected three DPs that broadly reflected Western, Vegetarian, and Low carbohydrate diets. CIBERSORT-predicted percentage of monocytes associated negatively with the Vegetarian DP. For women, the Vegetarian DP associated with a large gene cluster consisting of 600 genes mainly involved in regulation of DNA transcription, whereas for men, the Western DP inversely associated with a smaller cluster of 36 genes mainly involved in regulation of metabolic and inflammatory processes. A subsequent protein-protein interaction network analysis suggested that genes within these clusters might physically interact in biological networks. CONCLUSIONS Although the present findings are exploratory, our analysis pipeline serves as a useful framework for studying the association between diet and gene expression.
Collapse
Affiliation(s)
- Jacob J Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373 Oslo, Norway; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway.
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Kenneth Westerman
- Clinical and Translation Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kirsten B Holven
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373 Oslo, Norway; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Lene F Andersen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| |
Collapse
|
9
|
Narverud I, Christensen JJ, Bakke SS, Ulven SM, Rundblad A, Aukrust P, Espevik T, Bogsrud MP, Retterstøl K, Ueland T, Halvorsen B, Holven KB. Profiling of immune-related gene expression in children with familial hypercholesterolaemia. J Intern Med 2020; 287:310-321. [PMID: 31631426 DOI: 10.1111/joim.13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Innate and adaptive immune responses are pivotal in atherosclerosis, but their association with early-stage atherosclerosis in humans is incompletely understood. In this regard, untreated children with familial hypercholesterolaemia may serve as a human model to investigate the effect of elevated low-density lipoprotein (LDL)-cholesterol. OBJECTIVES We aimed to study the immunological and inflammatory pathways involved in early atherosclerosis by examining mRNA molecules in peripheral blood mononuclear cells (PBMCs) from children with FH. METHODS We analysed the level of 587 immune-related mRNA molecules using state-of-the-art Nanostring technology in PBMCs from children with (n = 30) and without (n = 21) FH, and from FH children before and after statin therapy (n = 10). RESULTS 176 genes (30%) were differentially expressed between the FH and healthy children at P < 0.05. Compared to healthy children, the dysregulated pathways in FH children included the following: T cells (18/19); B cells (5/6); tumour necrosis factor super family (TNFSF) (6/8); cell growth, proliferation and differentiation (5/7); interleukins (5/9); toll-like receptors (2/5); apoptosis (3/7) and antigen presentation (1/7), where the ratio denotes higher expressed genes to total number of genes. Statin therapy reversed expression of thirteen of these mRNAs in FH children. CONCLUSION FH children display higher PBMC expression of immune-related genes mapped to several pathways, including T and B cells, and TNFSF than healthy children. Our results suggest that LDL-C plays an important role in modulating expression of different immune-related genes, and novel data on the involvement of these pathways in the early atherosclerosis may represent future therapeutic targets for prevention of atherosclerotic progression.
Collapse
Affiliation(s)
- I Narverud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - J J Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - S S Bakke
- Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - S M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - P Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - T Espevik
- Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - M P Bogsrud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - K Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - T Ueland
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen TREC, The Faculty of Health Sciences, The Arctic University of Tromsø, Tromsø, Norway
| | - B Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K B Holven
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Holven KB, Ulven SM, Bogsrud MP. Editorial Comment: Hyperlipidaemia and cardiovascular disease and impact of early cholesterol accumulation. Curr Opin Lipidol 2019; 30:490-493. [PMID: 31688171 DOI: 10.1097/mol.0000000000000646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Kirsten B Holven
- Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo
| | - Martin P Bogsrud
- Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital
- Department of Medical Genetics, Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Changes in monocyte subsets are associated with clinical outcomes in severe malarial anaemia and cerebral malaria. Sci Rep 2019; 9:17545. [PMID: 31772386 PMCID: PMC6879635 DOI: 10.1038/s41598-019-52579-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/18/2019] [Indexed: 01/17/2023] Open
Abstract
Monocytes are plastic heterogeneous immune cells involved in host-parasite interactions critical for malaria pathogenesis. Human monocytes have been subdivided into three populations based on surface expression of CD14 and CD16. We hypothesised that proportions and phenotypes of circulating monocyte subsets can be markers of severity or fatality in children with malaria. To address this question, we compared monocytes sampled in children with uncomplicated malaria, severe malarial anaemia, or cerebral malaria. Flow cytometry was used to distinguish and phenotype monocyte subsets through CD14, CD16, CD36 and TLR2 expression. Data were first analysed by univariate analysis to evaluate their link to severity and death. Second, multinomial logistic regression was used to measure the specific effect of monocyte proportions and phenotypes on severity and death, after adjustments for other variables unrelated to monocytes. Multivariate analysis demonstrated that decreased percentages of non-classical monocytes were associated with death, suggesting that this monocyte subset has a role in resolving malaria. Using univariate analysis, we also showed that the role of non-classical monocytes involves a mostly anti-inflammatory profile and the expression of CD16. Further studies are needed to decipher the functions of this sub-population during severe malaria episodes, and understand the underlying mechanisms.
Collapse
|
12
|
Montecucco F, Carbone F, Liberale L, Sahebkar A. Challenges in reducing atherosclerotic inflammation in patients with familial hypercholesterolemia. Eur J Prev Cardiol 2019; 27:2099-2101. [PMID: 31288540 DOI: 10.1177/2047487319862907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Italy.,Department of Internal Medicine, and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Italy.,Department of Internal Medicine, University of Genoa, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Italy.,Center for Molecular Cardiology, University of Zürich, Switzerland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Iran
| |
Collapse
|
13
|
High-Density Lipoprotein Reduction Differentially Modulates to Classical and Nonclassical Monocyte Subpopulations in Metabolic Syndrome Patients and in LPS-Stimulated Primary Human Monocytes In Vitro. J Immunol Res 2018; 2018:2737040. [PMID: 29850624 PMCID: PMC5903324 DOI: 10.1155/2018/2737040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/20/2018] [Accepted: 02/06/2018] [Indexed: 01/07/2023] Open
Abstract
The effect of metabolic syndrome on human monocyte subpopulations has not yet been studied. Our main goal was to examine monocyte subpopulations in metabolic syndrome patients, while also identifying the risk factors that could directly influence these cells. Eighty-six subjects were divided into metabolic syndrome patients and controls. Monocyte subpopulations were quantified by flow cytometry, and interleukin- (IL-) 1β secretion levels were measured by ELISA. Primary human monocytes were cultured in low or elevated concentrations of high-density lipoprotein (HDL) and stimulated with lipopolysaccharide (LPS). The nonclassical monocyte (NCM) percentage was significantly increased in metabolic syndrome patients as compared to controls, whereas classical monocytes (CM) were reduced. Among all metabolic syndrome risk factors, HDL reduction exhibited the most important correlation with monocyte subpopulations and then was studied in vitro. Low HDL concentration reduced the CM percentage, whereas it increased the NCM percentage and IL-1β secretion in LPS-treated monocytes. The LPS effect was abolished when monocytes were cultured in elevated HDL concentrations. Concurring with in vitro results, IL-1β serum values significantly increased in metabolic syndrome patients with low HDL levels as compared to metabolic syndrome patients without HDL reduction. Our data demonstrate that HDL directly modulates monocyte subpopulations in metabolic syndrome.
Collapse
|
14
|
Holven KB, Ulven SM, Bogsrud MP. Hyperlipidemia and cardiovascular disease with focus on familial hypercholesterolemia. Curr Opin Lipidol 2017; 28:445-447. [PMID: 28857860 DOI: 10.1097/mol.0000000000000449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Kirsten B Holven
- aNorwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity, and Preventive Medicine bDepartment of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
15
|
Abstract
Accumulation of foam cells — macrophages with intracellular lipid droplets — in arterial walls is a hallmark of atherosclerosis. Bernelot Moens and colleagues report increases in circulating monocytes with intracellular lipid accumulation, associated CCR2 expression, and enhanced monocyte migration in patients with familial hypercholesterolaemia. These changes could be reversed by PCSK9-inhibitor treatment.
Collapse
Affiliation(s)
- Huaizhu Wu
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, 6565 Fannin Street, MS A601, Houston, Texas 77030, USA
| | - Christie M Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, 6565 Fannin Street, MS A601, Houston, Texas 77030, USA
| |
Collapse
|
16
|
Christensen JJ, Osnes L, Halvorsen B, Retterstøl K, Bogsrud MP, Wium C, Svilaas A, Narverud I, Ulven SM, Aukrust P, Holven KB. Data on circulating leukocyte subpopulations and inflammatory proteins in children with familial hypercholesterolemia and healthy children. Data Brief 2016; 10:587-592. [PMID: 28070551 PMCID: PMC5219596 DOI: 10.1016/j.dib.2016.12.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/16/2022] Open
Abstract
The data in this relies on a previous publication: "Altered leukocyte distribution under hypercholesterolemia: a cross-sectional study in children with familial hypercholesterolemia" (Christensen et al. 2016) [1]. In the present paper, whole blood leukocyte distribution and plasma inflammatory proteins were measured for association with cholesterol concentration and CRP in children with familial hypercholesterolemia (FH) and healthy children.
Collapse
Affiliation(s)
- Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O box 1046 Blindern, Oslo 0317, Norway; The Lipid Clinic, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway
| | - Liv Osnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway; Institute of Clinical Medicine, University of Oslo, P.O box 1171 Blindern, Oslo 0318, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, P.O box 1171 Blindern, Oslo 0318, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O box 1046 Blindern, Oslo 0317, Norway; The Lipid Clinic, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway
| | - Martin P Bogsrud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway
| | - Cecilie Wium
- The Lipid Clinic, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway
| | - Arne Svilaas
- The Lipid Clinic, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway
| | - Ingunn Narverud
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O box 1046 Blindern, Oslo 0317, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O box 1046 Blindern, Oslo 0317, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway; Institute of Clinical Medicine, University of Oslo, P.O box 1171 Blindern, Oslo 0318, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, P.O box 1171 Blindern, Oslo 0318, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O box 1046 Blindern, Oslo 0317, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital Rikshospitalet, P.O box 4950 Nydalen, Oslo 0424, Norway
| |
Collapse
|