1
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
2
|
Wang J, Lu B, Yin G, Liu L, Yang P, Huang N, Zhao A. Design and Fabrication of Environmentally Responsive Nanoparticles for the Diagnosis and Treatment of Atherosclerosis. ACS Biomater Sci Eng 2024; 10:1190-1206. [PMID: 38343186 DOI: 10.1021/acsbiomaterials.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cardiovascular disease poses a significant threat to human health in today's society. A major contributor to cardiovascular disease is atherosclerosis (AS). The development of plaque in the affected areas involves a complex pathological environment, and the disease progresses rapidly. Nanotechnology, combined with emerging diagnostic and treatment methods, offers the potential for the management of this condition. This paper presents the latest advancements in environment-intelligent responsive controlled-release nanoparticles designed specifically for the pathological environment of AS, which includes characteristics such as low pH, high reactive oxygen species levels, high shear stress, and multienzymes. Additionally, the paper summarizes the applications and features of nanotechnology in interventional therapy for AS, including percutaneous transluminal coronary angioplasty and drug-eluting stents. Furthermore, the application of nanotechnology in the diagnosis of AS shows promising real-time, accurate, and continuous effects. Lastly, the paper explores the future prospects of nanotechnology, highlighting the tremendous potential in the diagnosis and treatment of atherosclerotic diseases, especially with the ongoing development in nano gas, quantum dots, and Metal-Organic Frameworks materials.
Collapse
Affiliation(s)
- Jingyue Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Bingyang Lu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ge Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Li Liu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
3
|
Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene 2024; 895:148027. [PMID: 38000704 DOI: 10.1016/j.gene.2023.148027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The Kruppel-Like Factor family of regulatory proteins, which has 18 members, is transcription factors. This family contains zinc finger proteins, regulates the activation and suppression of transcription, and binds to DNA, RNA, and proteins. Klfs related to the immune system are Klf1, Klf2, Klf3, Klf4, Klf6, and Klf14. Klfs related to adipose tissue development and/or glucose metabolism are Klf3, Klf7, Klf9, Klf10, Klf11, Klf14, Klf15, and Klf16. Klfs related to cancer are Klf3, Klf4, Klf5, Klf6, Klf7, Klf8, Klf9, Klf10, Klf11, Klf12, Klf13, Klf14, Klf16, and Klf17. Klfs related to the cardiovascular system are Klf4, Klf5, Klf10, Klf13, Klf14, and Klf15. Klfs related to the nervous system are Klf4, Klf7, Klf8, and Klf9. Klfs are associated with diseases such as carcinogenesis, oxidative stress, diabetes, liver fibrosis, thalassemia, and the metabolic syndrome. The aim of this review is to provide information about the relationship of Klfs with some diseases and physiological events and to guide future studies.
Collapse
Affiliation(s)
- Kemal Yuce
- Selcuk University, Medicine Faculty, Department of Basic Medical Sciences, Physiology, Konya, Turkiye.
| | - Ahmet Ismail Ozkan
- Artvin Coruh University, Medicinal-Aromatic Plants Application and Research Center, Artvin, Turkiye.
| |
Collapse
|
4
|
Deng WY, Zhou CL, Zeng MY. Gypenoside XVII inhibits ox-LDL-induced macrophage inflammatory responses and promotes cholesterol efflux through activating the miR-182-5p/HDAC9 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117070. [PMID: 37625608 DOI: 10.1016/j.jep.2023.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The deposition of lipids in macrophages and the subsequent formation of foam cells significantly increase the risk of developing atherosclerosis (As). Targeting ATP-binding cassette transporter A1/G1 (ABCA1/ABCG1)-mediated reverse cholesterol transport is crucial for regulating foam cell formation. Therefore, the search for natural chemical components with the ability to regulate ABCA1/G1 is a potential drug target to combat the development of atherosclerosis. Gypenoside XVII (GP-17), a gypenoside monomer extracted from gynostemma pentaphyllum, presents an efficient anti-atherosclerosis function. However, the suppressed formation mechanism of foam cells by GP-17 remains elusive. AIM OF STUDY To explore the protective activities of GP-17 in ox-LDL-induced THP-1 macrophage-derived foam cells through modulating the promotion of cholesterol efflux and alleviation of inflammation. MATERIALS AND METHODS MTT was used to detect cell viability. Bodipy493/503 and oil red O staining were performed to measure cell lipid deposition. Enzymatic assay was used to measure intracellular cholesterol measurement. Cholesterol efflux/uptake were determined by cholesterol efflux assay and Dil-ox-LDL uptake assay. Inflammatory cytokines were measured by ELISA. Bioinformatics prediction and dual luciferase reporter assay were performed to validate miR-182-5p targeting HDAC9. Relative protein levels were evaluated by immunoblotting and relative gene levels were determined by quantitative real-time PCR. RESULTS Our results showed that GP-17 upregulated the expression of ABCA1, ABCG1 and miR-182-5p, but reduced HDAC9 expression levels in lipid-loaded macrophages, which promoted cholesterol efflux and inhibited lipid deposition. Additionally, GP-17 promoted the M2 phenotype of the macrophage and suppressed the inflammatory response in THP-1 macrophage-derived foam cells. Overexpression of HDAC9 or suppression of miR-182-5p eliminated the effects of ABCA1/G1 expression, lipid deposition and pro-inflammatory response. CONCLUSION These findings suggest that GP-17 exerts a beneficial effect on macrophage lipid deposition and inflammation responses through activating the miR-182-5p/HDAC9 signaling pathway.
Collapse
Affiliation(s)
- Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Cheng-Long Zhou
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, Guangdong, PR China
| | - Meng-Ya Zeng
- Cardiovascular Disease Clinical Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China.
| |
Collapse
|
5
|
Xie P, Luo HT, Pei WJ, Xiao MY, Li FF, Gu YL, Piao XL. Saponins derived from Gynostemma pentaphyllum regulate triglyceride and cholesterol metabolism and the mechanisms: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117186. [PMID: 37722515 DOI: 10.1016/j.jep.2023.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) can be used for both medicinal and tea and has lipid-lowering properties. Modern research has shown that its main bioactive components are flavonoids and saponins. It has many beneficial effects such as hypolipidemic, anti-cancer, cardioprotective, hepatoprotective, neuroprotective, anti-diabetic and anti-inflammatory. AIMS OF THE REVIEW This review aimed to summarize its anti-glycolipid metabolic models and mechanisms are reviewed to facilitate a deeper understanding of the mechanism in lowering lipids. MATERIALS AND METHODS Information related to lipid lowering in G. pentaphyllum was collated by reviewing the relevant literature in the PubMed database from 1985 to 2023. RESULTS Only 101 G. pentaphyllum compounds have been initially explored for their hypolipidemic activity. There are cell models, animal models and human subjects for lipid-lowering of it. It reduced triglyceride level via PPAR/UCP-1/PGC-1α/PRDM16 and (SREBP-1c)-ACC/FAS-CPT1 signal pathways. Cholesterol-lowering effects via (SREBP-2)-HMGCR, PCSK9-LDLR and bile acid biosynthetic pathways. Activation of adenosine 5'-monophosphate-activated protein kinase (AMPK) is a key factor in the regulation of glycolipid metabolism in G. pentaphyllum. Other pathways of action of G. pentaphyllum in regulating glucolipid metabolism are also discussed in this paper. CONCLUSION To date, more than 328 saponins have been isolated and identified in Gynostemma. Further studies on these components, including molecular mechanisms and in vivo metabolic regulation, need to be further confirmed. G. pentaphyllum has the potential to be developed into drugs or functional foods, but further research is needed.
Collapse
Affiliation(s)
- Peng Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Hao-Tian Luo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
6
|
Mao X, Li Y, Zhong Y, Chen R, Wang K, Huang D, Luo X. Kruppel-like factor 14 ameliorated obesity and related metabolic disorders by promoting adipose tissue browning. Am J Physiol Endocrinol Metab 2023; 325:E744-E754. [PMID: 37938176 DOI: 10.1152/ajpendo.00226.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Obesity has been identified as a serious and debilitating disease that threatens human health, but the current treatment strategies still have some shortcomings. Exercise and dieting are difficult for many people to adhere to, and a series of surgical risks and pain brought about by volume reduction have made it difficult for the current weight loss effect to meet human expectations. In this study, we first found that mice with overexpression of the transcription factor Kruppel-like factor 14 (KLF14) in subcutaneous adipose tissue gained weight more slowly while consuming a high-fat diet than did control mice, and these mice also showed reduced insulin resistance and liver lipid deposition abnormalities. Mechanistically, the browning of white adipose tissue was promoted in adipose tissue with KLF14 overexpression; therefore, we preliminarily concluded that KLF14 can improve obesity by promoting the browning of white adipose tissue and energy consumption, thus ameliorating obesity and related metabolic disturbances. In summary, our results revealed that KLF14 may promote white adipose tissue browning, thus ameliorating high-fat diet-induced obesity and hepatic steatosis, as well as serum lipid levels and insulin resistance, thereby achieving a positive effect on metabolism.NEW & NOTEWORTHY Our study first explored the role of KLF14 in the development and progression of HFD-induced obesity in male mice. Its beneficial effect on adipose browning and metabolic disorders suggests that KLF14 may provide us a new therapeutic strategy for obesity and related metabolic complications. This health problem is of global concern and needs to be addressed.
Collapse
Affiliation(s)
- Xiaoxiang Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuanxiang Li
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yi Zhong
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ru Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kun Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dandan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xi Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Chen X, Shi W, Xie Y, Wang Y, Yao Q, Ke H, Xu X, Liu H, Liu P, Zhou X. Hepatic Krüppel-like factor 14 regulates lipid metabolism in nonalcoholic steatohepatitis mice. FASEB J 2023; 37:e23070. [PMID: 37389939 DOI: 10.1096/fj.202300448r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Excessive lipid accumulation is a critical characteristic in the development of nonalcoholic steatohepatitis (NASH). The underlying molecular mechanism, however, is unclear. In this study, we explored whether and how Krüppel-like factor 14 (KLF14) affects hepatic lipid metabolism in NASH. KLF14 expression was detected in NASH patients and mice fed a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). Adeno-associated viruses and adenoviruses were used to alter hepatic KLF14 expression in vivo or in vitro to investigate how KLF14 functions in lipid regulation. The molecular mechanisms were explored using RNA-seq, luciferase reporter, and ChIP assays. The fatty liver phenotype was analyzed histopathologically, and serum and hepatocyte biochemical parameters were measured. The NASH mouse model developed quickly in C57BL/6J mice fed a CDAHFD for 8 weeks. We found that KLF14 expression was decreased in NASH patients and CDAHFD mice. Oleic acid and palmitic acid treatment also reduced KLF14 levels in hepatocytes. KLF14 knockdown downregulated the genes involved in fatty acid oxidation, promoting the progression of hepatic steatosis. In contrast, hepatic KLF14 overexpression alleviated lipid accumulation and oxidative stress in CDAHFD mice. These effects resulted from direct activation of the PPARα signaling pathway. PPARα inhibition diminished the KLF14 overexpression-reduced protective effects against steatosis in OA&PA-treated MPHs and AAV-KLF14-infected CDAHFD mice. These data reveal that hepatic KLF14 regulates lipid accumulation and oxidative stress through the KLF14-PPARα pathway as NASH progresses. KLF14 may be a novel therapeutic target for hepatic steatosis.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
| | - Wenjie Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
| | - Yunwu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Yao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
| | - Huajing Ke
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
| | - Hui Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, China
| | - Pi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The People's Hospital of Longhua, Shenzhen, China
| | - Xiaojiang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Chen XZ, He WX, Luo RG, Xia GJ, Zhong JX, Chen QJ, Huang YY, Guan YX. KLF14/miR-1283/TFAP2C axis inhibits HER2-positive breast cancer progression via declining tumor cell proliferation. Mol Carcinog 2023; 62:532-545. [PMID: 36752341 DOI: 10.1002/mc.23505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 02/09/2023]
Abstract
MiR-1283 has been identified as a tumor suppressor in some malignancies. Whereas, the role of miR-1283 in HER2-positive (HER2+) breast cancer, particularly its role in regulating cell proliferation, one of the most significant features of tumor progression, is unclear. The related microRNA screened by the breast cancer sample GSE131599 dataset were detected in HER2+ breast cancer tissues and cell lines. Then, the obtained miR-1283 was overexpressed in SKBR3 and BT-474 cells followed by relevant functional assays concerning cell proliferation and apoptosis. The xenograft mouse model was induced and the effect of miR-1283 on tumor growth and cell proliferation was examined. The target of miR-1283 and the transcription factor regulating miR-1283 were predicted and identified. Finally, the influence of transcription factor KLF14 on cell proliferation and apoptosis was investigated. An integrated analysis confirmed that miR-1283 expression was significantly decreased in HER2+ breast cancer tissues. Also, by q-RT-PCR detection, miR-1283 expression was markedly reduced in HER2+ breast cancer tissues and cell lines. The miR-1283 overexpression prevented the proliferation and enhanced apoptosis of HER2+ breast cancer cells, as well as inhibited tumor growth. Mechanistically, miR-1283 inhibited TFAP2C expression by targeting the 3'-untranslated regions of TFAP2C messenger RNA, and the KLF14 enhanced miR-1283 level via binding to its promoter. The result subsequently confirmed the KLF14/miR-1283 signaling suppressed cell proliferation in HER2+ breast cancer. Our results suggested that the KLF14/miR-1283/TFAP2C axis inhibited HER2+ breast cancer progression, which might provide novel insight into mechanical exploration for this disease.
Collapse
Affiliation(s)
- Xue-Zhong Chen
- Department of Nuclear Medicine/Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Xing He
- Department of Nuclear Medicine/Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong-Guang Luo
- Department of Nuclear Medicine/Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guo-Jin Xia
- Department of Nuclear Medicine/Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin-Xiu Zhong
- Department of Breast Cancer Center/Nuclear Medicine, The Affiliated Cancer Hospital of Nanchang University, Nanchang, China
| | - Qing-Jie Chen
- Department of Nuclear Medicine/Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Ying Huang
- Department of Nuclear Medicine/Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Xing Guan
- Department of Nuclear Medicine/Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Advances in the Bioactivities of Phytochemical Saponins in the Prevention and Treatment of Atherosclerosis. Nutrients 2022; 14:nu14234998. [PMID: 36501028 PMCID: PMC9735883 DOI: 10.3390/nu14234998] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by hardening and narrowing of arteries. AS leads to a number of arteriosclerotic vascular diseases including cardiovascular diseases, cerebrovascular disease and peripheral artery disease, which pose a big threat to human health. Phytochemicals are a variety of intermediate or terminal low molecular weight secondary metabolites produced during plant energy metabolism. Phytochemicals from plant foods (vegetables, fruits, whole grains) and traditional herb plants have been shown to exhibit multiple bioactivities which are beneficial for prevention and treatment against AS. Many types of phytochemicals including polyphenols, saponins, carotenoids, terpenoids, organic sulfur compounds, phytoestrogens, phytic acids and plant sterols have already been identified, among which saponins are a family of glycosidic compounds consisting of a hydrophobic aglycone (sapogenin) linked to hydrophilic sugar moieties. In recent years, studies have shown that saponins exhibit a number of biological activities such as anti-inflammation, anti-oxidation, cholesterol-lowering, immunomodulation, anti-platelet aggregation, etc., which are helpful in the prevention and treatment of AS. This review aims to summarize the recent advances in the anti-atherosclerotic bioactivities of saponins such as ginsenoside, soyasaponin, astra-galoside, glycyrrhizin, gypenoside, dioscin, saikosaponin, etc.
Collapse
|
10
|
Ru L, Wang XM, Niu JQ. The miR-23-27-24 cluster: an emerging target in NAFLD pathogenesis. Acta Pharmacol Sin 2022; 43:1167-1179. [PMID: 34893685 PMCID: PMC9061717 DOI: 10.1038/s41401-021-00819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing globally, being the most widespread form of chronic liver disease in the west. NAFLD includes a variety of disease states, the mildest being non-alcoholic fatty liver that gradually progresses to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Small non-coding single-stranded microRNAs (miRNAs) regulate gene expression at the miRNA or translational level. Numerous miRNAs have been shown to promote NAFLD pathogenesis and progression through increasing lipid accumulation, oxidative stress, mitochondrial damage, and inflammation. The miR-23-27-24 clusters, composed of miR-23a-27a-24-2 and miR-23b-27b-24-1, have been implicated in various biological processes as well as many diseases. Herein, we review the current knowledge on miR-27, miR-24, and miR-23 in NAFLD pathogenesis and discuss their potential significance in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Lin Ru
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiao-mei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| | - Jun-qi Niu
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
11
|
Wang H, Guo Y, Lu H, Luo Y, Hu W, Liang W, Garcia-Barrio MT, Chang L, Schwendeman A, Zhang J, Chen YE. Krüppel-like factor 14 deletion in myeloid cells accelerates atherosclerotic lesion development. Cardiovasc Res 2022; 118:475-488. [PMID: 33538785 PMCID: PMC8803076 DOI: 10.1093/cvr/cvab027] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
AIMS Atherosclerosis is the dominant pathologic basis of many cardiovascular diseases. Large genome-wide association studies have identified that single-nucleotide polymorphisms proximal to Krüppel-like factor 14 (KLF14), a member of the zinc finger family of transcription factors, are associated with higher cardiovascular risks. Macrophage dysfunction contributes to atherosclerosis development and has been recognized as a potential therapeutic target for treating many cardiovascular diseases. Herein, we address the biologic function of KLF14 in macrophages and its role during the development of atherosclerosis. METHODS AND RESULTS KLF14 expression was markedly decreased in cholesterol loaded foam cells, and overexpression of KLF14 significantly increased cholesterol efflux and inhibited the inflammatory response in macrophages. We generated myeloid cell-selective Klf14 knockout (Klf14LysM) mice in the ApoE-/- background for the atherosclerosis study. Klf14LysMApoE-/- and litter-mate control mice (Klf14fl/flApoE-/-) were placed on the Western Diet for 12 weeks to induce atherosclerosis. Macrophage Klf14 deficiency resulted in increased atherosclerosis development without affecting the plasma lipid profiles. Klf14-deficient peritoneal macrophages showed significantly reduced cholesterol efflux resulting in increased lipid accumulation and exacerbated inflammatory response. Mechanistically, KLF14 upregulates the expression of a key cholesterol efflux transporter, ABCA1 (ATP-binding cassette transporter A1), while it suppresses the expression of several critical components of the inflammatory cascade. In macrophages, activation of KLF14 by its activator, perhexiline, a drug clinically used to treat angina, significantly inhibited the inflammatory response and increased cholesterol efflux in a KLF14-dependent manner in macrophages without triggering hepatic lipogenesis. CONCLUSIONS This study provides insights into the anti-atherosclerotic effects of myeloid KLF14 through promoting cholesterol efflux and suppressing the inflammatory response. Activation of KLF14 may represent a potential new therapeutic approach to prevent or treat atherosclerosis.
Collapse
Affiliation(s)
- Huilun Wang
- Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yonghong Luo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wenting Hu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| |
Collapse
|