1
|
Kagohashi K, Sasaki Y, Ozawa K, Tsuchiya T, Kawahara S, Saitoh K, Ichii M, Toda J, Harada Y, Kubo M, Kitai Y, Muromoto R, Oritani K, Kashiwakura JI, Matsuda T. Role of Signal-Transducing Adaptor Protein-1 for T Cell Activation and Pathogenesis of Autoimmune Demyelination and Airway Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:951-961. [PMID: 38315039 DOI: 10.4049/jimmunol.2300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Signal-transducing adaptor protein (STAP)-1 is an adaptor protein that is widely expressed in T cells. In this article, we show that STAP-1 upregulates TCR-mediated T cell activation and T cell-mediated airway inflammation. Using STAP-1 knockout mice and STAP-1-overexpressing Jurkat cells, we found that STAP-1 enhanced TCR signaling, resulting in increased calcium mobilization, NFAT activity, and IL-2 production. Upon TCR engagement, STAP-1 binding to ITK promoted formation of ITK-LCK and ITK-phospholipase Cγ1 complexes to induce downstream signaling. Consistent with the results, STAP-1 deficiency reduced the severity of symptoms in experimental autoimmune encephalomyelitis. Single-cell RNA-sequencing analysis revealed that STAP-1 is essential for accumulation of T cells and Ifng and Il17 expression in spinal cords after experimental autoimmune encephalomyelitis induction. Th1 and Th17 development was also attenuated in STAP-1 knockout naive T cells. Taken together, STAP-1 enhances TCR signaling and plays a role in T cell-mediated immune disorders.
Collapse
Affiliation(s)
- Kota Kagohashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiyotaka Ozawa
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuya Tsuchiya
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shoya Kawahara
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kodai Saitoh
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Toda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuyo Harada
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Role of B Lymphocytes in the Pathogenesis of NAFLD: A 2022 Update. Int J Mol Sci 2022; 23:ijms232012376. [PMID: 36293233 PMCID: PMC9603875 DOI: 10.3390/ijms232012376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Non-alcoholic fatty liver disease and its related complications are becoming one of the most important health problems globally. The liver functions as both a metabolic and an immune organ. The crosstalk between hepatocytes and intrahepatic immune cells plays a key role in coordinating a dual function of the liver in terms of the protection of the host from antigenic overload as a result of receiving nutrients and gut microbiota antigenic stimulation via facilitating immunologic tolerance. B cells are the most abundant lymphocytes in the liver. The crucial role of intrahepatic B cells in energy metabolism under different immune conditions is now emerging in the literature. The accumulating evidence has demonstrated that the antibodies and cytokines produced by B cells in the microenvironment play key and distinct roles in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Herein, we have aimed to consolidate and update the current knowledge about the pathophysiological roles of B cells as well as the underlying mechanisms in energy metabolism. Understanding how B cells can exacerbate and suppress liver damage by exploiting the antibodies and cytokines they produce will be of great importance for designing B-cell targeting therapies to treat various liver diseases.
Collapse
|
3
|
Diabetes and Familial Hypercholesterolemia: Interplay between Lipid and Glucose Metabolism. Nutrients 2022; 14:nu14071503. [PMID: 35406116 PMCID: PMC9002616 DOI: 10.3390/nu14071503] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disease characterized by high low-density lipoprotein (LDL) cholesterol (LDL-c) concentrations that increase cardiovascular risk and cause premature death. The most frequent cause of the disease is a mutation in the LDL receptor (LDLR) gene. Diabetes is also associated with an increased risk of cardiovascular disease and mortality. People with FH seem to be protected from developing diabetes, whereas cholesterol-lowering treatments such as statins are associated with an increased risk of the disease. One of the hypotheses to explain this is based on the toxicity of LDL particles on insulin-secreting pancreatic β-cells, and their uptake by the latter, mediated by the LDLR. A healthy lifestyle and a relatively low body mass index in people with FH have also been proposed as explanations. Its association with superimposed diabetes modifies the phenotype of FH, both regarding the lipid profile and cardiovascular risk. However, findings regarding the association and interplay between these two diseases are conflicting. The present review summarizes the existing evidence and discusses knowledge gaps on the matter.
Collapse
|
4
|
Matsuda T, Oritani K. Possible Therapeutic Applications of Targeting STAP Proteins in Cancer. Biol Pharm Bull 2021; 44:1810-1818. [PMID: 34853263 DOI: 10.1248/bpb.b21-00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signal-transducing adaptor protein (STAP) family, including STAP-1 and STAP-2, contributes to a variety of intracellular signaling pathways. The proteins in this family contain typical structures for adaptor proteins, such as Pleckstrin homology in the N-terminal regions and SRC homology 2 domains in the central regions. STAP proteins bind to inhibitor of kappaB kinase complex, breast tumor kinase, signal transducer and activator of transcription 3 (STAT3), and STAT5, during tumorigenesis and inflammatory/immune responses. STAP proteins positively or negatively regulate critical steps in intracellular signaling pathways through individually unique mechanisms. This article reviews the roles of the novel STAP family and the possible therapeutic applications of targeting STAP proteins in cancer.
Collapse
Affiliation(s)
- Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare
| |
Collapse
|
5
|
Martín-Campos JM. Genetic Determinants of Plasma Low-Density Lipoprotein Cholesterol Levels: Monogenicity, Polygenicity, and "Missing" Heritability. Biomedicines 2021; 9:biomedicines9111728. [PMID: 34829957 PMCID: PMC8615680 DOI: 10.3390/biomedicines9111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in plasma low-density lipoprotein cholesterol (LDL-c) levels relate to a high risk of developing some common and complex diseases. LDL-c, as a quantitative trait, is multifactorial and depends on both genetic and environmental factors. In the pregenomic age, targeted genes were used to detect genetic factors in both hyper- and hypolipidemias, but this approach only explained extreme cases in the population distribution. Subsequently, the genetic basis of the less severe and most common dyslipidemias remained unknown. In the genomic age, performing whole-exome sequencing in families with extreme plasma LDL-c values identified some new candidate genes, but it is unlikely that such genes can explain the majority of inexplicable cases. Genome-wide association studies (GWASs) have identified several single-nucleotide variants (SNVs) associated with plasma LDL-c, introducing the idea of a polygenic origin. Polygenic risk scores (PRSs), including LDL-c-raising alleles, were developed to measure the contribution of the accumulation of small-effect variants to plasma LDL-c. This paper discusses other possibilities for unexplained dyslipidemias associated with LDL-c, such as mosaicism, maternal effect, and induced epigenetic changes. Future studies should consider gene-gene and gene-environment interactions and the development of integrated information about disease-driving networks, including phenotypes, genotypes, transcription, proteins, metabolites, and epigenetics.
Collapse
Affiliation(s)
- Jesús Maria Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IR-HSCSP)-Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Quintí 77-79, 08041 Barcelona, Spain
| |
Collapse
|
6
|
Futema M, Taylor-Beadling A, Williams M, Humphries SE. Genetic testing for familial hypercholesterolemia-past, present, and future. J Lipid Res 2021; 62:100139. [PMID: 34666015 PMCID: PMC8572866 DOI: 10.1016/j.jlr.2021.100139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 01/01/2023] Open
Abstract
In the early 1980s, the Nobel Prize winning cellular and molecular work of Mike Brown and Joe Goldstein led to the identification of the LDL receptor gene as the first gene where mutations cause the familial hypercholesterolemia (FH) phenotype. We now know that autosomal dominant monogenic FH can be caused by pathogenic variants of three additional genes (APOB/PCSK9/APOE) and that the plasma LDL-C concentration and risk of premature coronary heart disease differs according to the specific locus and associated molecular cause. It is now possible to use next-generation sequencing to sequence all exons of all four genes, processing 96 patient samples in one sequencing run, increasing the speed of test results, and reducing costs. This has resulted in the identification of not only many novel FH-causing variants but also some variants of unknown significance, which require further evidence to classify as pathogenic or benign. The identification of the FH-causing variant in an index case can be used as an unambiguous and rapid test for other family members. An FH-causing variant can be found in 20-40% of patients with the FH phenotype, and we now appreciate that in the majority of patients without a monogenic cause, a polygenic etiology for their phenotype is highly likely. Compared with those with a monogenic cause, these patients have significantly lower risk of future coronary heart disease. The use of these molecular genetic diagnostic methods in the characterization of FH is a prime example of the utility of precision or personalized medicine.
Collapse
Affiliation(s)
- Marta Futema
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom; Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Alison Taylor-Beadling
- Regional Molecular Genetics Laboratory, Great Ormond Street Hospital for Children, London, United Kingdom
| | | | - Steve E Humphries
- Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
7
|
Lamiquiz-Moneo I, Civeira F, Mateo-Gallego R, Laclaustra M, Moreno-Franco B, Tejedor MT, Palacios L, Martín C, Cenarro A. Diagnostic yield of sequencing familial hypercholesterolemia genes in individuals with primary hypercholesterolemia. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2021; 74:664-673. [PMID: 32660911 DOI: 10.1016/j.rec.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
INTRODUCTION AND OBJECTIVES Our objective was to approximate the prevalence of mutations in candidate genes for familial hypercholesterolemia (FH) in a middle-aged Spanish population and to establish the predictive value of criteria for clinical suspicion in the detection of causative mutations. METHODS Unrelated individuals aged ≥ 18 years from the Aragon Workers' Health Study (AWHS) with high low-density lipoprotein cholesterol (LDL-C) and clinical suspicion of FH (participants with LDL-C concentrations above the 95th percentile, participants with premature cardiovascular disease and/or participants with high LDL-C [130 mg/dL] under statin therapy), assuming that any participant with FH exhibits at leats 1 trait, were selected and the LDLR, APOB, PCSK9, APOE, STAP1 and LDLRAP1 genes were sequenced by next generation sequencing technology. RESULTS Of 5400 individuals from the AWHS, 4514 had complete data on lipid levels and lipid-lowering drugs, 255 participants (5.65%) met the criteria for suspicion of FH, 24 of them (9.41%) were diagnosed with hyperlipoproteinemia(a), and 16 (6.27% of those sequenced) were found to carry causative mutations in candidate genes: 12 participants carried 11 different pathogenic LDLR alleles and 4 participants carried 1 pathogenic mutation in PCSK9. LDL-C concentrations> 220 mg/dL and LDL-C> 130 mg/dL despite statin therapy showed the strongest association with the presence of mutations (P=.011). CONCLUSIONS Our results show that the prevalence of FH in Spain is 1:282 and suggest that the combination of high untreated LDL-C and high levels of LDL-C despite statin therapy are the best predictors of a positive FH genetic test.
Collapse
Affiliation(s)
- Itziar Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Zaragoza, Spain
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Zaragoza, Spain; Departamento de Medicina, Psiquiatría y Dermatología, Universidad de Zaragoza, Zaragoza, Spain.
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Zaragoza, Spain; Departamento de Fisiatría y Enfermería, Universidad de Zaragoza, Zaragoza, Spain
| | - Martín Laclaustra
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Zaragoza, Spain; Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza, Spain
| | - Belén Moreno-Franco
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain; Unidad de Prevención Cardiovascular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Teresa Tejedor
- Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, Zaragoza, Spain
| | - Lourdes Palacios
- Departamento de I+D, Progenika Biopharma, a Grifols Company, Derio, Vizcaya, Spain
| | - César Martín
- Instituto Biofisika (UPV/EHU, CSIC), Leioa, Vizcaya, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, UPV/EHU, Bilbao, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| |
Collapse
|
8
|
Khalil YA, Rabès JP, Boileau C, Varret M. APOE gene variants in primary dyslipidemia. Atherosclerosis 2021; 328:11-22. [PMID: 34058468 DOI: 10.1016/j.atherosclerosis.2021.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023]
Abstract
Apolipoprotein E (apoE) is a major apolipoprotein involved in lipoprotein metabolism. It is a polymorphic protein and different isoforms are associated with variations in lipid and lipoprotein levels and thus cardiovascular risk. The isoform apoE4 is associated with an increase in LDL-cholesterol levels and thus a higher cardiovascular risk compared to apoE3. Whereas, apoE2 is associated with a mild decrease in LDL-cholesterol levels. In the presence of other risk factors, apoE2 homozygotes could develop type III hyperlipoproteinemia (familial dysbetalipoproteinemia or FD), an atherogenic disorder characterized by an accumulation of remnants of triglyceride-rich lipoproteins. Several rare APOE gene variants were reported in different types of dyslipidemias including FD, familial combined hyperlipidemia (FCH), lipoprotein glomerulopathy and bona fide autosomal dominant hypercholesterolemia (ADH). ADH is characterized by elevated LDL-cholesterol levels leading to coronary heart disease, and due to molecular alterations in three main genes: LDLR, APOB and PCSK9. The identification of the APOE-p.Leu167del variant as the causative molecular element in two different ADH families, paved the way to considering APOE as a candidate gene for ADH. Due to non mendelian interacting factors, common genetic and environmental factors and perhaps epigenetics, clinical presentation of lipid disorders associated with APOE variants often strongly overlap. More studies are needed to determine the spectrum of APOE implication in each of the diseases, notably ADH, in order to improve clinical and genetic diagnosis, prognosis and patient management. The purpose of this review is to comment on these APOE variants and on the molecular and clinical overlaps between dyslipidemias.
Collapse
Affiliation(s)
- Yara Abou Khalil
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France; Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé (PTS), Saint-Joseph University, Beirut, Lebanon
| | - Jean-Pierre Rabès
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Laboratory of Biochemistry and Molecular Genetics, Centre Hospitalo-Universitaire Ambroise Paré, HUPIFO, AP-HP. Paris-Saclay, Boulogne-Billancourt, France; UFR Simone Veil-Santé, UVSQ, Montigny-Le-Bretonneux, France
| | - Catherine Boileau
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France; Genetics Department, AP-HP, CHU Xavier Bichat, Paris, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France.
| |
Collapse
|
9
|
Ishiura M, Kitai Y, Kashiwakura JI, Muromoto R, Toda J, Ichii M, Oritani K, Matsuda T. Positive interactions between STAP-1 and BCR-ABL influence chronic myeloid leukemia cell proliferation and survival. Biochem Biophys Res Commun 2021; 556:185-191. [PMID: 33845308 DOI: 10.1016/j.bbrc.2021.03.162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 01/14/2023]
Abstract
Chronic myeloid leukemia (CML) is a clonal disease characterized by the presence of the Philadelphia chromosome and its oncogenic product, BCR-ABL, which activates multiple pathways involved in cell survival, growth promotion, and disease progression. We recently reported that signal-transducing adaptor protein 1 (STAP-1) is upregulated in CML stem cells (LSCs) and functions to reduce the apoptosis of CML LSCs by upregulating the STAT5-downstream anti-apoptotic genes. In this study, we demonstrate the detailed molecular interactions among BCR-ABL, STAP-1, and signal transducer and activator of transcription 5 (STAT5). Studies with deletion mutants have revealed that STAP-1 interacts with BCR-ABL and STAT5a through its SH2 and PH domains, respectively, suggesting the possible role of STAP-1 as a scaffold protein. Furthermore, the binding of STAP-1 to BCR-ABL stabilizes the BCR-ABL protein in CML cells. Since STAP-1 is highly expressed in CML cells, we also analyzed the STAP-1 promoter activity using a luciferase reporter construct and found that NFATc1 is involved in activating the STAP-1 promoter and inducing STAP-1 mRNA expression. Our results demonstrate that STAP-1 contributes to the BCR-ABL/STAT5 and BCR-ABL/Ca2+/NFAT signals to induce proliferation and STAP-1 mRNA expression in CML cells, respectively.
Collapse
Affiliation(s)
- Marie Ishiura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Jun Toda
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, 4-3 Kouzunomori, Narita, Chiba, 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
10
|
Roa Garrido J, Carrasco Salas P, Toscano Pérez C, Arrobas Velilla T, Vázquez Rico I, Díaz Fernández JF. Genetics and biochemistry of familial hypercholesterolemia in Southwest of the Iberian Peninsula. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2021; 33:62-69. [PMID: 33069457 DOI: 10.1016/j.arteri.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
So far, most cases of hypercholesterolaemia (60-80%) are attributed to pathogenic variants in the LDLR gene. Only 1-5% of cases are caused by variants in the APOB gene, and 0-3% by variants in the PCSK9 gene. There is a large variety in known pathogenic mutations of the LDLR gene, while for those affecting the APOB gene, the highest incidence is p.Arg3527Gln, described predominantly in Central European and North American populations. In the Iberian Peninsula the predominant gene affected is that of the LDL receptor, similar to the rest of the world, with the involvement of the APOB gene being described in individuals from the northwest, and anecdotal in the rest of the territory. A genetics analysis was performed on the population attending the first year of a lipid clinic in southwestern Spain with a 6-point score from the Dutch lipid clinics. The genetic, biochemical and clinical findings are described. The first findings show indications of a possible higher prevalence of patients with mutation in the APOB gene compared to other territories. Historical evidence is presented that could give a possible explanation to this, thus supporting the assumption.
Collapse
Affiliation(s)
- Jessica Roa Garrido
- Unidad de Lípidos y Riesgo Cardiovascular, Servicio de Cardiología, Hospital Juan Ramón Jiménez, Huelva, España.
| | - Pilar Carrasco Salas
- Unidad de Genética, Servicio de Análisis Clínicos, Hospital Juan Ramón Jiménez, Huelva, España
| | - Clara Toscano Pérez
- Centro de Investigación en Patrimonio Histórico, Cultural y Natural (CIPHCN), Universidad de Huelva, Huelva, España
| | | | | | | |
Collapse
|
11
|
Jarauta E, Bea-Sanz AM, Marco-Benedi V, Lamiquiz-Moneo I. Genetics of Hypercholesterolemia: Comparison Between Familial Hypercholesterolemia and Hypercholesterolemia Nonrelated to LDL Receptor. Front Genet 2020; 11:554931. [PMID: 33343620 PMCID: PMC7744656 DOI: 10.3389/fgene.2020.554931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023] Open
Abstract
Severe hypercholesterolemia (HC) is defined as an elevation of total cholesterol (TC) due to the increase in LDL cholesterol (LDL-C) >95th percentile or 190 mg/dl. The high values of LDL-C, especially when it is maintained over time, is considered a risk factor for the development of atherosclerotic cardiovascular disease (ASCVD), mostly expressed as ischemic heart disease (IHD). One of the best characterized forms of severe HC, familial hypercholesterolemia (FH), is caused by the presence of a major variant in one gene (LDLR, APOB, PCSK9, or ApoE), with an autosomal codominant pattern of inheritance, causing an extreme elevation of LDL-C and early IHD. Nevertheless, an important proportion of serious HC cases, denominated polygenic hypercholesterolemia (PH), may be attributed to the small additive effect of a number of single nucleotide variants (SNVs), located along the whole genome. The diagnosis, prevalence, and cardiovascular risk associated with PH has not been fully established at the moment. Cascade screening to detect a specific genetic defect is advised in all first- and second-degree relatives of subjects with FH. Conversely, in the rest of cases of HC, it is only advised to screen high values of LDL-C in first-degree relatives since there is not a consensus for the genetic diagnosis of PH. FH is associated with the highest cardiovascular risk, followed by PH and other forms of HC. Early detection and initiation of high-intensity lipid-lowering treatment is proposed in all subjects with severe HC for the primary prevention of ASCVD, with an objective of LDL-C <100 mg/dl or a decrease of at least 50%. A more aggressive reduction in LDL-C is necessary in HC subjects who associate personal history of ASCVD or other cardiovascular risk factors.
Collapse
Affiliation(s)
- Estíbaliz Jarauta
- Hospital Universitario Miguel Servet, Instituto de Investigacion Sanitaria Aragon (IIS Aragn), Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Psychiatry a Dermatology, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Ma Bea-Sanz
- Hospital Universitario Miguel Servet, Instituto de Investigacion Sanitaria Aragon (IIS Aragn), Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Marco-Benedi
- Hospital Universitario Miguel Servet, Instituto de Investigacion Sanitaria Aragon (IIS Aragn), Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar Lamiquiz-Moneo
- Hospital Universitario Miguel Servet, Instituto de Investigacion Sanitaria Aragon (IIS Aragn), Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Psychiatry a Dermatology, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
12
|
Kanuri B, Fong V, Haller A, Hui DY, Patel SB. Mice lacking global Stap1 expression do not manifest hypercholesterolemia. BMC MEDICAL GENETICS 2020; 21:234. [PMID: 33228548 PMCID: PMC7685646 DOI: 10.1186/s12881-020-01176-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022]
Abstract
Background Autosomal dominant familial hypercholesterolemia (ADH; MIM#143890) is one of the most common monogenic disorders characterized by elevated circulatory LDL cholesterol. Initial studies in humans with ADH identified a potential relationship with variants of the gene encoding signal transducing adaptor family member protein 1 (STAP1; MIM#604298). However, subsequent studies have been contradictory. In this study, mice lacking global Stap1 expression (Stap1−/−) were characterized under standard chow and a 42% kcal western diet (WD). Methods Mice were studied for changes in different metabolic parameters before and after a 16-week WD regime. Growth curves, body fats, circulatory lipids, parameters of glucose homeostasis, and liver architecture were studied for comparisons. Results Surprisingly, Stap1−/− mice fed the 16-week WD demonstrated no marked differences in any of the metabolic parameters compared to Stap1+/+ mice. Furthermore, hepatic architecture and cholesterol content in FPLC-isolated lipoprotein fractions also remained comparable to wild-type mice. Conclusion These results strongly suggest that STAP1 does not alter lipid levels, that a western diet did not exacerbate a lipid disorder in Stap1 deficient mice and support the contention that it is not causative for hyperlipidemia in ADH patients. These results support other published studies also questioning the role of this locus in human hypercholesterolemia. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01176-x.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Vincent Fong
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - April Haller
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - David Y Hui
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - Shailendra B Patel
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Expression of signal-transducing adaptor protein-1 attenuates experimental autoimmune hepatitis via down-regulating activation and homeostasis of invariant natural killer T cells. PLoS One 2020; 15:e0241440. [PMID: 33175848 PMCID: PMC7657518 DOI: 10.1371/journal.pone.0241440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Signal-transducing adaptor protein (STAP) family members function as adaptor molecules and are involved in several events during immune responses. Notably however, the biological functions of STAP-1 in other cells are not known. We aimed to investigate the functions of STAP-1 in invariant natural killer T (iNKT) cells and iNKT cell-dependent hepatitis. Methods We employed concanavalin A (Con A)-induced hepatitis and α-galactosylceramide (α-GalCer)-induced hepatitis mouse models, both are models of iNKT cell-dependent autoimmune hepatitis, and STAP-1 overexpressing 2E10 cells to investigate the role of STAP-1 in iNKT cell activation in vivo an in vitro, respectively. Results After Con A- or α-GalCer-injection, hepatocyte necrotic areas and plasma alanine aminotransferase elevation were more severe in STAP-1 knockout (S1KO) mice and milder in lymphocyte-specific STAP-1 transgenic (S1Tg) mice, as compared to wild-type (WT) mice. Two events that may be related to Con A-induced and/or α-GalCer-induced hepatitis were influenced by STAP-1 manipulation. One is that iNKT cell populations in the livers and spleens were increased in S1KO mice and were decreased in S1Tg mice. The other is that Con A-induced interleukin-4 and interferon-γ production was attenuated by STAP-1 overexpression. These effects of STAP-1 were confirmed using 2E10 cells overexpressing STAP-1 that showed impairment of interleukin-4 and interferon-γ production as well as phosphorylation of Akt and mitogen-activated protein kinases in response to Con A stimulation. Conclusions These results conclude that STAP-1 regulates iNKT cell maintenance/activation, and is involved in the pathogenesis of autoimmune hepatitis.
Collapse
|
14
|
Guo Q, Feng X, Zhou Y. PCSK9 Variants in Familial Hypercholesterolemia: A Comprehensive Synopsis. Front Genet 2020; 11:1020. [PMID: 33173529 PMCID: PMC7538608 DOI: 10.3389/fgene.2020.01020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023] Open
Abstract
Autosomal dominant familial hypercholesterolemia (FH) affects approximately 1/250, individuals and potentially leads to elevated blood cholesterol and a significantly increased risk of atherosclerosis. Along with improvements in detection and the increased early diagnosis and treatment, the serious burden of FH on families and society has become increasingly apparent. Since FH is strongly associated with proprotein convertase subtilisin/kexin type 9 (PCSK9), increasing numbers of studies have focused on finding effective diagnostic and therapeutic methods based on PCSK9. At present, as PCSK9 is one of the main pathogenic FH genes, its contribution to FH deserves more explorative research.
Collapse
Affiliation(s)
- Qianyun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| | - Xunxun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| | - Yujie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Lamiquiz-Moneo I, Civeira F, Mateo-Gallego R, Laclaustra M, Moreno-Franco B, Tejedor MT, Palacios L, Martín C, Cenarro A. Rendimiento diagnóstico de la secuenciación de genes de hipercolesterolemia familiar en sujetos con hipercolesterolemia primaria. Rev Esp Cardiol (Engl Ed) 2020. [DOI: 10.1016/j.recesp.2020.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Mohebi R, Chen Q, Hegele RA, Rosenson RS. Failure of cosegregation between a rare STAP1 missense variant and hypercholesterolemia. J Clin Lipidol 2020; 14:636-638. [PMID: 32828708 DOI: 10.1016/j.jacl.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
Autosomal dominant familial hypercholesterolemia (FH) is characterized by elevated low-density lipoprotein cholesterol levels and an increased risk for atherosclerotic cardiovascular disease. Although rare pathogenic variants in genes encoding the low-density lipoprotein receptor, apolipoprotein B, proprotein convertase subtilisin/kexin 9 are found in more than 80% of molecularly defined patients with FH, a few rare minor causative genes have been proposed, including the gene encoding signal-transducing adaptor family member 1 (STAP1). Here, we describe a patient with hypercholesterolemia and the rare heterozygous missense variant p.D207N in STAP1. However, extending the pedigree showed failure of the variant to cosegregate with hypercholesterolemia, as both his sons were carriers of the variant and both were also normolipidemic. The findings add to the evidence against STAP1 as a genetic locus for FH.
Collapse
Affiliation(s)
- Reza Mohebi
- Cardiometabolics Unit, Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qinzhong Chen
- Cardiometabolics Unit, Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert S Rosenson
- Cardiometabolics Unit, Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Affiliation(s)
- Robert A. Hegele
- From the Departments of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.)
| | - Joshua W. Knowles
- Department of Internal Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University, Palo Alto, CA (J.W.K.)
| | - Jay D. Horton
- Departments of Internal Medicine and Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas (J.D.H.)
| |
Collapse
|