1
|
Wang YM, Tang H, Tang YJ, Liu J, Yin YF, Tang YL, Feng YG, Gu HF. ASIC1/RIP1 accelerates atherosclerosis via disrupting lipophagy. J Adv Res 2024; 63:195-206. [PMID: 37931656 PMCID: PMC11379975 DOI: 10.1016/j.jare.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
INTRODUCTION Atherosclerosis, a major contributor to cardiovascular disease, remains a significant health concern worldwide. While previous research has shown that acid-sensing ion channel 1 (ASIC1) impedes macrophage cholesterol efflux, its precise role in atherogenesis and the underlying mechanisms have remained elusive. OBJECTIVES This study aimed to investigate the role of ASIC1 in atherosclerosis and its underlying mechanisms. METHODS First, data from a single-cell RNA sequencing (scRNA-seq) database were used to explore the relationships between ASIC1 differential expression and lipophagy in human atherosclerotic lesions. Finally, we validated the role of ASIC1/RIP1 signaling in lipophagy in vivo (human and mice) and in vitro (RAW264.7 and HTP-1 cells). RESULT Our results demonstrated a significant increase in ASIC1 protein levels within CD68+ macrophages in both human aortic lesions and AopE-/- mouse lesion areas compared to nonlesion regions. Concurrently, there was a notable decrease in lipophagy, a crucial process for lipid metabolism. In vitro assays further elucidated that ASIC1 interaction with RIP1 (receptor-interacting protein 1) promoted the phosphorylation of RIP1 at serine 166 and transcription factor EB (TFEB) at serine 142, leading to disrupted lipophagy and increased lipid accumulation. Intriguingly, all these events were reversed upon ASIC1 deficiency and RIP1 inhibition. Furthermore, in ApoE-/- mouse models of atherosclerosis, silencing ASIC1 expression or inhibiting RIP1 activation not only significantly attenuated atherogenesis but also restored TFEB-mediated lipophagy in aortic tissues. This was evidenced by reduced TFEB Ser-142 phosphorylation, decreased LC3II and LAMP1 protein expression, increased numbers of lipophagosomes, and a decrease in lipid droplets. CONCLUSION Our findings unveil the critical role of macrophage ASIC1 in interacting with RIP1 to inhibit lipophagy, thereby promoting atherogenesis. Targeting ASIC1 represents a promising therapeutic avenue for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yuan-Mei Wang
- Department of Physiology & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huang Tang
- Lhasa Guangsheng Hospital, 850000 Tibet, People's Republic of China
| | - Ya-Jie Tang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Juan Liu
- Department of Physiology & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Yu-Fang Yin
- Department of Neuroscience and Pharmacology, School of Medicine, Southern Illinois University Springfield, Illinois, United States
| | - Ya-Ling Tang
- Department of Physiology & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China.
| | - Yao-Guang Feng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, People's Republic of China.
| | - Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China.
| |
Collapse
|
2
|
He Z, Chen W, Hu K, Luo Y, Zeng W, He X, Li T, Ouyang J, Li Y, Xie L, Zhang Y, Xu Q, Yang S, Guo M, Zou W, Li Y, Huang L, Chen L, Zhang X, Saiding Q, Wang R, Zhang MR, Kong N, Xie T, Song X, Tao W. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. NATURE NANOTECHNOLOGY 2024; 19:1386-1398. [PMID: 38898135 DOI: 10.1038/s41565-024-01687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The buildup of plaques in atherosclerosis leads to cardiovascular events, with chronic unresolved inflammation and overproduction of reactive oxygen species (ROS) being major drivers of plaque progression. Nanotherapeutics that can resolve inflammation and scavenge ROS have the potential to treat atherosclerosis. Here we demonstrate the potential of black phosphorus nanosheets (BPNSs) as a therapeutic agent for the treatment of atherosclerosis. BPNSs can effectively scavenge a broad spectrum of ROS and suppress atherosclerosis-associated pro-inflammatory cytokine production in lesional macrophages. We also demonstrate ROS-responsive, targeted-peptide-modified BPNS-based carriers for the delivery of resolvin D1 (an inflammation-resolving lipid mediator) to lesional macrophages, which further boosts the anti-atherosclerotic efficacy. The targeted nanotherapeutics not only reduce plaque areas but also substantially improve plaque stability in high-fat-diet-fed apolipoprotein E-deficient mice. This study presents a therapeutic strategy against atherosclerosis, and highlights the potential of BPNS-based therapeutics to treat other inflammatory diseases.
Collapse
Affiliation(s)
- Zhongshan He
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kuan Hu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoyao Luo
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanqin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xi He
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Qin Xu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuping Yang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Guo
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zou
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanfei Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lingjing Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Sun T, Xiao X. Targeting ACAT1 in cancer: from threat to treatment. Front Oncol 2024; 14:1395192. [PMID: 38720812 PMCID: PMC11076747 DOI: 10.3389/fonc.2024.1395192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Altered cholesterol metabolism has been identified as a critical feature of cancers. Cholesterol functions as the main component of cell membrane, cholesterol and is required for sustaining membrane integrity and mediating signaling transduction for cell survival. The intracellular level of cholesterol is dynamically regulated. Excessive cholesterol could be converted to less toxic cholesteryl esters by acyl-coenzyme A:cholesterol acyltransferases (ACATs). While ACAT2 has limited value in cancers, ACAT1 has been found to be widely participated in tumor initiation and progression. Moreover, due to the important role of cholesterol metabolism in immune function, ACAT1 is also essential for regulating anti-tumor immunity. ACAT1 inhibition may be exploited as a potential strategy to enhance the anti-tumor immunity and eliminate tumors. Herein, a comprehensive understanding of the role of ACAT1 in tumor development and anti-tumor immunity may provide new insights for anti-tumor strategies.
Collapse
Affiliation(s)
| | - Xuan Xiao
- Department of Thyroid and Breast Surgery, People’s Hospital of China Medical University (Liaoning Provincial People’s Hospital), Shenyang, China
| |
Collapse
|
4
|
Hajjar S, Zhou X. pH sensing at the intersection of tissue homeostasis and inflammation. Trends Immunol 2023; 44:807-825. [PMID: 37714775 PMCID: PMC10543622 DOI: 10.1016/j.it.2023.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 09/17/2023]
Abstract
pH is tightly maintained at cellular, tissue, and systemic levels, and altered pH - particularly in the acidic range - is associated with infection, injury, solid tumors, and physiological and pathological inflammation. However, how pH is sensed and regulated and how it influences immune responses remain poorly understood at the tissue level. Applying conceptual frameworks of homeostatic and inflammatory circuitries, we categorize cellular and tissue components engaged in pH regulation, drawing parallels from established cases in physiology. By expressing various intracellular (pHi) and extracellular pH (pHe)-sensing receptors, the immune system may integrate information on tissue and cellular states into the regulation of homeostatic and inflammatory programs. We introduce the novel concept of resistance and adaptation responses to rationalize pH-dependent immunomodulation intertwined with homeostatic equilibrium and inflammatory control. We discuss emerging challenges and opportunities in understanding the immunological roles of pH sensing, which might reveal new strategies to combat inflammation and restore tissue homeostasis.
Collapse
Affiliation(s)
- Stephanie Hajjar
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, 300 Longwood Ave, Boston, MA 02115, USA
| | - Xu Zhou
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
6
|
Mahdinia E, Shokri N, Taheri AT, Asgharzadeh S, Elahimanesh M, Najafi M. Cellular crosstalk in atherosclerotic plaque microenvironment. Cell Commun Signal 2023; 21:125. [PMID: 37254185 DOI: 10.1186/s12964-023-01153-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Atherosclerosis is an underlying pathology of many vascular diseases as a result of cellular, structural and molecular dysfunctions within the sub-endothelial space. This review deals with the events involved in the formation, growth and remodeling of plaque, including the cell recruitment, cell polarization, and cell fat droplets. It also describes cross talking between endothelial cells, macrophages, and vascular smooth muscle cells, as well as the cellular pathways involved in plaque development in the plaque microenvironment. Finally, it describes the plaque structural components and the role of factors involved in the rupture and erosion of plaques in the vessel. Video Abstract.
Collapse
Affiliation(s)
- Elmira Mahdinia
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Asgharzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ghazvin University of Medical Sciences, Ghazvin, Iran
| | - Mohammad Elahimanesh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ediriweera MK. Use of cholesterol metabolism for anti-cancer strategies. Drug Discov Today 2022; 27:103347. [PMID: 36087905 DOI: 10.1016/j.drudis.2022.103347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
Irregularities in cholesterol metabolism occur in a range of human cancers. Cholesterol precursors and derivatives support tumorigenesis and weaken immune responses. Intriguing preclinical and clinical findings demonstrate that cholesterol biosynthesis inhibition achieved by targeting major events and metabolites in cholesterol metabolism is an ideal anti-tumor strategy. Investigations addressing the effects of β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR), 2,3-oxidosqualene cyclase (OSC), squalene synthase (SQS), liver X receptors (LXR), and cholesterol trafficking and esterification inhibition on cancer progression have shown encouraging results. Notably, manipulation of cholesterol metabolism strengthens the function of immune cells in the tumor microenvironment (TME). In this review, I discuss the role of cholesterol metabolism in cancer progression and the latest research related to cholesterol metabolism-based anti-cancer therapies and intend to bring this stylish biochemistry topic to the Sri Lankan research landscape.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| |
Collapse
|
8
|
Lee-Rueckert M, Lappalainen J, Kovanen PT, Escola-Gil JC. Lipid-Laden Macrophages and Inflammation in Atherosclerosis and Cancer: An Integrative View. Front Cardiovasc Med 2022; 9:777822. [PMID: 35237673 PMCID: PMC8882850 DOI: 10.3389/fcvm.2022.777822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic arterial plaques and malignant solid tumors contain macrophages, which participate in anaerobic metabolism, acidosis, and inflammatory processes inherent in the development of either disease. The tissue-resident macrophage populations originate from precursor cells derived from the yolk sac and from circulating bone marrow-derived monocytes. In the tissues, they differentiate into varying functional phenotypes in response to local microenvironmental stimulation. Broadly categorized, the macrophages are activated to polarize into proinflammatory M1 and anti-inflammatory M2 phenotypes; yet, noticeable plasticity allows them to dynamically shift between several distinct functional subtypes. In atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates within macrophages as cytoplasmic lipid droplets thereby generating macrophage foam cells, which are involved in all steps of atherosclerosis. The conversion of macrophages into foam cells may suppress the expression of given proinflammatory genes and thereby initiate their transcriptional reprogramming toward an anti-inflammatory phenotype. In this particular sense, foam cell formation can be considered anti-atherogenic. The tumor-associated macrophages (TAMs) may become polarized into anti-tumoral M1 and pro-tumoral M2 phenotypes. Mechanistically, the TAMs can regulate the survival and proliferation of the surrounding cancer cells and participate in various aspects of tumor formation, progression, and metastasis. The TAMs may accumulate lipids, but their type and their specific roles in tumorigenesis are still poorly understood. Here, we discuss how the phenotypic and functional plasticity of macrophages allows their multifunctional response to the distinct microenvironments in developing atherosclerotic lesions and in developing malignant tumors. We also discuss how the inflammatory reactions of the macrophages may influence the development of atherosclerotic plaques and malignant tumors, and highlight the potential therapeutic effects of targeting lipid-laden macrophages in either disease.
Collapse
Affiliation(s)
| | | | - Petri T. Kovanen
- Wihuri Research Institute, Helsinki, Finland
- *Correspondence: Petri T. Kovanen
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Joan Carles Escola-Gil
| |
Collapse
|
9
|
Wang YM, Tan MY, Zhang RJ, Qiu MY, Fu YS, Xie XJ, Gu HF. Acid-Sensing Ion Channel 1/Calpain1 Activation Impedes Macrophage ATP-Binding Cassette Protein A1-Mediated Cholesterol Efflux Induced by Extracellular Acidification. Front Physiol 2022; 12:777386. [PMID: 35126174 PMCID: PMC8811198 DOI: 10.3389/fphys.2021.777386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Background Extracellular acidification is a common feature of atherosclerotic lesions, and such an acidic microenvironment impedes ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux and promotes atherogenesis. However, the underlying mechanism is still unclear. Acid-sensing ion channel 1 (ASIC1) is a critical H+ receptor, which is responsible for the perception and transduction of extracellular acidification signals. Aim In this study, we explored whether or how ASIC1 influences extracellular acidification-induced ABCA1-mediated cholesterol efflux from macrophage-derived foam cells. Methods RAW 264.7 macrophages were cultured in an acidic medium (pH 6.5) to generate foam cells. Then the intracellular lipid deposition, cholesterol efflux, and ASIC1/calpain1/ABCA1 expressions were evaluated. Results We showed that extracellular acidification enhanced ASIC1 expression and translocation, promoted calpain1 expression and lipid accumulation, and decreased ABCA1 protein expression as well as ABCA1-mediated cholesterol efflux. Of note, inhibiting ASIC1 activation with amiloride or Psalmotoxin 1 (PcTx-1) not only lowered calpain1 protein level and lipid accumulation but also enhanced ABCA1 protein levels and ABCA1-mediated cholesterol efflux of macrophages under extracellular acidification conditions. Furthermore, similar results were observed in macrophages treated with calpain1 inhibitor PD150606. Conclusion Extracellular acidification declines cholesterol efflux via activating ASIC1 to promote calpain1-mediated ABCA1 degradation. Thus, ASIC1 may be a novel therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yuan-Mei Wang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment and Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Mo-Ye Tan
- Department of Zhongjing Theory, College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Rong-Jie Zhang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment and Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Ming-Yue Qiu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment and Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - You-Sheng Fu
- Hengyang Hospital of Traditional Chinese Medicine, Hengyang, China
| | - Xue-Jiao Xie
- Department of Zhongjing Theory, College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Xue-Jiao Xie,
| | - Hong-Feng Gu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment and Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
- Hong-Feng Gu,
| |
Collapse
|
10
|
Wang K, Gan C, Wang H, Ao M, Fan Y, Chen Y. AFM detects the effects of acidic condition on the size and biomechanical properties of native/oxidized low-density lipoprotein. Colloids Surf B Biointerfaces 2021; 208:112053. [PMID: 34438294 DOI: 10.1016/j.colsurfb.2021.112053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
Solution acidification exists under some physiological conditions (e.g. lysosomes in cells) and diseases (e.g. atherosclerosis, tumors, etc.). It is poorly understood whether and how acidification influences the size and biomechanical (stiffness and stickiness) properties of native Low-density lipoprotein (LDL) and its oxidized form (oxLDL) which plays a vital role in atherogenesis and tumorigenesis. Atomic force microscopy (AFM) evaluated that gradient acidification from pH 7.4 to pH 4.4 caused an expanding-first-and-then-shrinking decrease in size and a dramatic decrease in stiffness (but no statistically significant changes in stickiness) of LDL/oxLDL particles by influencing secondary/tertiary structures and lipid release detected by infrared spectral analysis and cholesterol detection, respectively. The smaller and softer characteristics of LDL/oxLDL at acidic conditions versus at the neutral pH partially explains the atherogenic role of acidification. The data may provide important information for a better understanding of LDL/oxLDL and some diseases (e.g. atherosclerosis and tumors).
Collapse
Affiliation(s)
- Kun Wang
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, PR China; School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi, PR China
| | - Chaoye Gan
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Huaying Wang
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Meiying Ao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330025, PR China
| | - Youlong Fan
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330025, PR China
| | - Yong Chen
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, PR China.
| |
Collapse
|