1
|
Guinn MT, Fernandez R, Lau S, Loor G. Transcriptomic Signatures in Lung Allografts and Their Therapeutic Implications. Biomedicines 2024; 12:1793. [PMID: 39200257 PMCID: PMC11351513 DOI: 10.3390/biomedicines12081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Ex vivo lung perfusion (EVLP) is a well-established method of lung preservation in clinical transplantation. Transcriptomic analyses of cells and tissues uncover gene expression patterns which reveal granular molecular pathways and cellular programs under various conditions. Coupling EVLP and transcriptomics may provide insights into lung allograft physiology at a molecular level with the potential to develop targeted therapies to enhance or repair the donor lung. This review examines the current landscape of transcriptional analysis of lung allografts in the context of state-of-the-art therapeutics that have been developed to optimize lung allograft function.
Collapse
Affiliation(s)
- Michael Tyler Guinn
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Ramiro Fernandez
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
| | - Sean Lau
- Department of Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gabriel Loor
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (M.T.G.)
| |
Collapse
|
2
|
Iskender I. Technical Advances Targeting Multiday Preservation of Isolated Ex Vivo Lung Perfusion. Transplantation 2024; 108:1319-1332. [PMID: 38499501 DOI: 10.1097/tp.0000000000004992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Indications for ex vivo lung perfusion (EVLP) have evolved from assessment of questionable donor lungs to treatment of some pathologies and the logistics. Yet up to 3 quarters of donor lungs remain discarded across the globe. Multiday preservation of discarded human lungs on EVLP platforms would improve donor lung utilization rates via application of sophisticated treatment modalities, which could eventually result in zero waitlist mortality. The purpose of this article is to summarize advances made on the technical aspects of the protocols in achieving a stable multiday preservation of isolated EVLP. Based on the evidence derived from large animal and/or human studies, the following advances have been considered important in achieving this goal: ability to reposition donor lungs during EVLP; perfusate adsorption/filtration modalities; perfusate enrichment with plasma and/or donor whole blood, nutrients, vitamins, and amino acids; low-flow, pulsatile, and subnormothermic perfusion; positive outflow pressure; injury specific personalized ventilation strategies; and negative pressure ventilation. Combination of some of these advances in an automatized EVLP device capable of managing perfusate biochemistry and ventilation would likely speed up the processes of achieving multiday preservation of isolated EVLP.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Cardiac Surgery, East Limburg Hospital, Genk, Belgium
| |
Collapse
|
3
|
Ladowski JM, Sudan DL. Normothermic Preservation of the Intestinal Allograft. Gastroenterol Clin North Am 2024; 53:221-231. [PMID: 38719374 PMCID: PMC11346631 DOI: 10.1016/j.gtc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Intestinal allotransplantation was first described in the 1960s and successfully performed in the 1980s. Since that time, less progress has been made in the preservation of the allograft before transplantation and static cold storage remains the current standard. Normothermic machine perfusion represents an opportunity to simultaneously preserve, assess, and recondition the organ for transplantation and improve the procurement radius for allografts. The substantial progress made in the field during the last 60 years, coupled with the success of the preclinical animal model of machine perfusion-preserved intestinal transplantation, suggest we are approaching the point of clinical application.
Collapse
Affiliation(s)
- Joseph M Ladowski
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Debra L Sudan
- Division Chief of Abdominal Transplant in the Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Nykänen AI, Keshavjee S, Liu M. Creating superior lungs for transplantation with next-generation gene therapy during ex vivo lung perfusion. J Heart Lung Transplant 2024; 43:838-848. [PMID: 38310996 DOI: 10.1016/j.healun.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/23/2023] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Engineering donor organs to better tolerate the harmful non-immunological and immunological responses inherently related to solid organ transplantation would improve transplant outcomes. Our enhanced knowledge of ischemia-reperfusion injury, alloimmune responses and pathological fibroproliferation after organ transplantation, and the advanced toolkit available for gene therapies, have brought this goal closer to clinical reality. Ex vivo organ perfusion has evolved rapidly especially in the field of lung transplantation, where clinicians routinely use ex vivo lung perfusion (EVLP) to confirm the quality of marginal donor lungs before transplantation, enabling safe transplantation of organs originally considered unusable. EVLP would also be an attractive platform to deliver gene therapies, as treatments could be administered to an isolated organ before transplantation, thereby providing a window for sophisticated organ engineering while minimizing off-target effects to the recipient. Here, we review the status of lung transplant first-generation gene therapies that focus on inducing transgene expression in the target cells. We also highlight recent advances in next-generation gene therapies, that enable gene editing and epigenetic engineering, that could be used to permanently change the donor organ genome and to induce widespread transcriptional gene expression modulation in the donor lung. In a future vision, dedicated organ repair and engineering centers will use gene editing and epigenetic engineering, to not only increase the donor organ pool, but to create superior organs that will function better and longer in the recipient.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
García-Villegas R, Arni S. Hemoadsorption in Organ Preservation and Transplantation: A Narrative Review. Life (Basel) 2023; 14:65. [PMID: 38255680 PMCID: PMC10817660 DOI: 10.3390/life14010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cytokine adsorption can resolve different complications characteristic of transplantation medicine, such as cytokine storm activation and blood ABO and immune incompatibilities. Cytokine adsorption is also performed for the treatment of various life-threatening conditions, such as endotoxic septic shock, acute respiratory distress syndrome, and cardiogenic shock, all potentially leading to adverse clinical outcomes during transplantation. After surgery, dysmetabolism and stress response limit successful graft survival and can lead to primary or secondary graft dysfunction. In this clinical context, and given that a major problem in transplant medicine is that the demand for organs far exceeds the supply, a technological innovation such as a hemoadsorption system could greatly contribute to increasing the number of usable organ donors. The objectives of this review are to describe the specific advantages and disadvantages of the application of cytokine adsorption in the context of transplantation and examine, before and/or after organ transplantation, the benefits of the addition of a cytokine adsorption therapy protocol.
Collapse
Affiliation(s)
- Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F., Mexico City 07360, Mexico;
| | - Stephan Arni
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
6
|
Jeon JE, Huang L, Zhu Z, Wong A, Keshavjee S, Liu M. Acellular ex vivo lung perfusate silences pro-inflammatory signaling in human lung endothelial and epithelial cells. J Transl Med 2023; 21:729. [PMID: 37845763 PMCID: PMC10580637 DOI: 10.1186/s12967-023-04601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury is a key complication following lung transplantation. The clinical application of ex vivo lung perfusion (EVLP) to assess donor lung function has significantly increased the utilization of "marginal" donor lungs with good clinical outcomes. The potential of EVLP on improving organ quality and ameliorating ischemia-reperfusion injury has been suggested. METHODS To determine the effects of ischemia-reperfusion and EVLP on gene expression in human pulmonary microvascular endothelial cells and epithelial cells, cell culture models were used to simulate cold ischemia (4 °C for 18 h) followed by either warm reperfusion (DMEM + 10% FBS) or EVLP (acellular Steen solution) at 37 °C for 4 h. RNA samples were extracted for bulk RNA sequencing, and data were analyzed for significant differentially expressed genes and pathways. RESULTS Endothelial and epithelial cells showed significant changes in gene expressions after ischemia-reperfusion or EVLP. Ischemia-reperfusion models of both cell types showed upregulated pro-inflammatory and downregulated cell metabolism pathways. EVLP models, on the other hand, exhibited downregulation of cell metabolism, without any inflammatory signals. CONCLUSION The commonly used acellular EVLP perfusate, Steen solution, silenced the activation of pro-inflammatory signaling in both human lung endothelial and epithelial cells, potentially through the lack of serum components. This finding could establish the basic groundwork of studying the benefits of EVLP perfusate as seen from current clinical practice.
Collapse
Affiliation(s)
- Jamie E Jeon
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lei Huang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyuan Zhu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Otolaryngology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Aaron Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Boffini M, Marro M, Simonato E, Scalini F, Costamagna A, Fanelli V, Barbero C, Solidoro P, Brazzi L, Rinaldi M. Cytokines Removal During Ex-Vivo Lung Perfusion: Initial Clinical Experience. Transpl Int 2023; 36:10777. [PMID: 37645241 PMCID: PMC10460908 DOI: 10.3389/ti.2023.10777] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Ex Vivo Lung Perfusion (EVLP) can be potentially used to manipulate organs and to achieve a proper reconditioning process. During EVLP pro-inflammatory cytokines have been shown to accumulate in perfusate over time and their production is correlated with poor outcomes of the graft. Aim of the present study is to investigate the feasibility and safety of cytokine adsorption during EVLP. From July 2011 to March 2020, 54 EVLP procedures have been carried out, 21 grafts treated with an adsorption system and 33 without. Comparing the grafts perfused during EVLP with or without cytokine adsorption, the use of a filter significantly decreased the levels of IL10 and GCSFat the end of the procedure. Among the 38 transplanted patients, the adsorption group experienced a significant decreased IL6, IL10, MCP1 and GCSF concentrations and deltas compared to the no-adsorption group, with a lower in-hospital mortality (p = 0.03) and 1-year death rate (p = 0.01). This interventional study is the first human experience suggesting the safety and efficacy of a porous polymer beads adsorption device in reducing the level of inflammatory mediators during EVLP. Clinical impact of cytokines reduction during EVLP must be evaluated in further studies.
Collapse
Affiliation(s)
- Massimo Boffini
- Cardiac Surgery Division, Surgical Sciences Department, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Matteo Marro
- Cardiac Surgery Division, Surgical Sciences Department, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Erika Simonato
- Cardiac Surgery Division, Surgical Sciences Department, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Fabrizio Scalini
- Cardiac Surgery Division, Surgical Sciences Department, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Andrea Costamagna
- Anesthesiology and Intensive Care Division, Surgical Sciences Department, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Vito Fanelli
- Anesthesiology and Intensive Care Division, Surgical Sciences Department, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Cristina Barbero
- Cardiac Surgery Division, Surgical Sciences Department, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Paolo Solidoro
- Pulmonology Division, Medical Sciences Department, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Luca Brazzi
- Anesthesiology and Intensive Care Division, Surgical Sciences Department, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Mauro Rinaldi
- Cardiac Surgery Division, Surgical Sciences Department, Città della Salute e della Scienza, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Braithwaite SA, van Hooijdonk E, van der Kaaij NP. Ventilation during ex vivo lung perfusion, a review. Transplant Rev (Orlando) 2023; 37:100762. [PMID: 37099887 DOI: 10.1016/j.trre.2023.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Evidence suggests that ventilation during ex vivo lung perfusion (EVLP) with a 'one-size-fits-all' strategy has the potential to cause lung injury which may only become clinically relevant in marginal lung allografts. EVLP induced- or accelerated lung injury is a dynamic and cumulative process reflecting the interplay of a number of factors. Stress and strain in lung tissue caused by positive pressure ventilation may be exacerbated by the altered properties of lung tissue in an EVLP setting. Any pre-existing injury may alter the ability of lung allografts to accommodate set ventilation and perfusion techniques on EVLP leading to further injury. This review will examine the effects of ventilation on donor lungs in the setting of EVLP. A framework for developing a protective ventilation technique will be proposed.
Collapse
Affiliation(s)
- Sue A Braithwaite
- Department of Anesthesiology, University Medical Center Utrecht, Q04.2.317, Postbus 85500, Utrecht 3508, GA, the Netherlands.
| | - Elise van Hooijdonk
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Room E03.511, Heidelberglaan 100, Utrecht 3584, CX, the Netherlands
| | - Niels P van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Room E03.511, Heidelberglaan 100, Utrecht 3584, CX, the Netherlands
| |
Collapse
|
9
|
Ali A, Nykanen AI, Beroncal E, Brambate E, Mariscal A, Michaelsen V, Wang A, Kawashima M, Ribeiro RVP, Zhang Y, Fan E, Brochard L, Yeung J, Waddell T, Liu M, Andreazza AC, Keshavjee S, Cypel M. Successful 3-day lung preservation using a cyclic normothermic ex vivo lung perfusion strategy. EBioMedicine 2022; 83:104210. [PMID: 35952495 PMCID: PMC9385559 DOI: 10.1016/j.ebiom.2022.104210] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
Affiliation(s)
- Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Antti I Nykanen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Erika Beroncal
- Departments of Pharmacology & Toxicology and Psychiatry, The Canada Mitochondrial Network, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Edson Brambate
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrea Mariscal
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Vinicius Michaelsen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aizhou Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mitsuaki Kawashima
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Rafaela V P Ribeiro
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Yu Zhang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Eddy Fan
- Divisions of Respirology and Critical Care Medicine, University Health Network, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Laurent Brochard
- Divisions of Respirology and Critical Care Medicine, University Health Network, University of Toronto, Toronto, ON M5B 1W8, Canada; Keenan Research Centre, St Michael's Hospital, Unity Health Toronto and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Jonathan Yeung
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, ON M5G 2C4, Canada
| | - Tom Waddell
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, ON M5G 2C4, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, ON M5G 2C4, Canada
| | - Ana C Andreazza
- Departments of Pharmacology & Toxicology and Psychiatry, The Canada Mitochondrial Network, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, ON M5G 2C4, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto Lung Transplant Program, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
10
|
Ghaidan H, Stenlo M, Niroomand A, Mittendorfer M, Hirdman G, Gvazava N, Edström D, Silva IAN, Broberg E, Hallgren O, Olm F, Wagner DE, Pierre L, Hyllén S, Lindstedt S. Reduction of primary graft dysfunction using cytokine adsorption during organ preservation and after lung transplantation. Nat Commun 2022; 13:4173. [PMID: 35882835 PMCID: PMC9325745 DOI: 10.1038/s41467-022-31811-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Despite improvements, lung transplantation remains hampered by both a scarcity of donor organs and by mortality following primary graft dysfunction (PGD). Since acute respiratory distress syndrome (ARDS) limits donor lungs utilization, we investigated cytokine adsorption as a means of treating ARDS donor lungs. We induced mild to moderate ARDS using lipopolysaccharide in 16 donor pigs. Lungs were then treated with or without cytokine adsorption during ex vivo lung perfusion (EVLP) and/or post-transplantation using extracorporeal hemoperfusion. The treatment significantly decreased cytokine levels during EVLP and decreased levels of immune cells post-transplantation. Histology demonstrated fewer signs of lung injury across both treatment periods and the incidence of PGD was significantly reduced among treated animals. Overall, cytokine adsorption was able to restore lung function and reduce PGD in lung transplantation. We suggest this treatment will increase the availability of donor lungs and increase the tolerability of donor lungs in the recipient. Lung transplantation is hindered by the scarcity of organs and by mortality following primary graft dysfunction. Here, the authors show that cytokine absorption can be used in donor lungs during ex vivo lung perfusion and post-transplant, and leads to restored lung function and reduced primary graft dysfunction in animal models.
Collapse
Affiliation(s)
- Haider Ghaidan
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martin Stenlo
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Rutgers Robert University, New Brunswick, NJ, USA
| | - Margareta Mittendorfer
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Gabriel Hirdman
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Nika Gvazava
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Dag Edström
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Iran A N Silva
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Ellen Broberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Oskar Hallgren
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Franziska Olm
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Darcy E Wagner
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Leif Pierre
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Snejana Hyllén
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Sandra Lindstedt
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden. .,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden. .,Department of Clinical Sciences, Lund University, Lund, Sweden. .,Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Lee ACH, Edobor A, Wigakumar T, Lysandrou M, Johnston LK, McMullen P, Mirle V, Diaz A, Piech R, Rose R, Jendrisak M, di Sabato D, Shanmugarajah K, Fung J, Donington J, Madariaga ML. Donor leukocyte trafficking during human ex vivo lung perfusion. Clin Transplant 2022; 36:e14670. [PMID: 35396887 PMCID: PMC9540615 DOI: 10.1111/ctr.14670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Background Ex vivo lung perfusion (EVLP) is used to assess and preserve lungs prior to transplantation. However, its inherent immunomodulatory effects are not completely understood. We examine perfusate and tissue compartments to determine the change in immune cell composition in human lungs maintained on EVLP. Methods Six human lungs unsuitable for transplantation underwent EVLP. Tissue and perfusate samples were obtained during cold storage and at 1‐, 3‐ and 6‐h during perfusion. Flow cytometry, immunohistochemistry, and bead‐based immunoassays were used to measure leukocyte composition and cytokines. Mean values between baseline and time points were compared by Student's t test. Results During the 1st hour of perfusion, perfusate neutrophils increased (+22.2 ± 13.5%, p < 0.05), monocytes decreased (−77.5 ± 8.6%, p < 0.01) and NK cells decreased (−61.5 ± 22.6%, p < 0.01) compared to cold storage. In contrast, tissue neutrophils decreased (−22.1 ± 12.2%, p < 0.05) with no change in monocytes and NK cells. By 6 h, perfusate neutrophils, NK cells, and tissue neutrophils were similar to baseline. Perfusate monocytes remained decreased, while tissue monocytes remained unchanged. There was no significant change in B cells or T cell subsets. Pro‐inflammatory cytokines (IL‐1b, G‐CSF, IFN‐gamma, CXCL2, CXCL1 granzyme A, and granzyme B) and lymphocyte activating cytokines (IL‐2, IL‐4, IL‐6, IL‐8) increased during perfusion. Conclusions Early mobilization of innate immune cells occurs in both perfusate and tissue compartments during EVLP, with neutrophils and NK cells returning to baseline and monocytes remaining depleted after 6 h. The immunomodulatory effect of EVLP may provide a therapeutic window to decrease the immunogenicity of lungs prior to transplantation.
Collapse
Affiliation(s)
| | - Arianna Edobor
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - Maria Lysandrou
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Laura K Johnston
- Office of Shared Research Facilities, University of Chicago, Chicago, Illinois, USA
| | - Phillip McMullen
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Vikranth Mirle
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Ashley Diaz
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Ryan Piech
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Rebecca Rose
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - Diego di Sabato
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - John Fung
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Jessica Donington
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
12
|
Hatami S, Hefler J, Freed DH. Inflammation and Oxidative Stress in the Context of Extracorporeal Cardiac and Pulmonary Support. Front Immunol 2022; 13:831930. [PMID: 35309362 PMCID: PMC8931031 DOI: 10.3389/fimmu.2022.831930] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Extracorporeal circulation (ECC) systems, including cardiopulmonary bypass, and extracorporeal membrane oxygenation have been an irreplaceable part of the cardiothoracic surgeries, and treatment of critically ill patients with respiratory and/or cardiac failure for more than half a century. During the recent decades, the concept of extracorporeal circulation has been extended to isolated machine perfusion of the donor organ including thoracic organs (ex-situ organ perfusion, ESOP) as a method for dynamic, semi-physiologic preservation, and potential improvement of the donor organs. The extracorporeal life support systems (ECLS) have been lifesaving and facilitating complex cardiothoracic surgeries, and the ESOP technology has the potential to increase the number of the transplantable donor organs, and to improve the outcomes of transplantation. However, these artificial circulation systems in general have been associated with activation of the inflammatory and oxidative stress responses in patients and/or in the exposed tissues and organs. The activation of these responses can negatively affect patient outcomes in ECLS, and may as well jeopardize the reliability of the organ viability assessment, and the outcomes of thoracic organ preservation and transplantation in ESOP. Both ECLS and ESOP consist of artificial circuit materials and components, which play a key role in the induction of these responses. However, while ECLS can lead to systemic inflammatory and oxidative stress responses negatively affecting various organs/systems of the body, in ESOP, the absence of the organs that play an important role in oxidant scavenging/antioxidative replenishment of the body, such as liver, may make the perfused organ more susceptible to inflammation and oxidative stress during extracorporeal circulation. In the present manuscript, we will review the activation of the inflammatory and oxidative stress responses during ECLP and ESOP, mechanisms involved, clinical implications, and the interventions for attenuating these responses in ECC.
Collapse
Affiliation(s)
- Sanaz Hatami
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H. Freed
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Darren H. Freed,
| |
Collapse
|
13
|
Hernández-Jiménez C, Olmos-Zúñiga JR, Baltazares-Lipp M, Jasso-Victoria R, Polo-Jerez A, Pérez-López MT, Vázquez-Justiniano LF, Díaz-Martínez NE, Gaxiola-Gaxiola M, Romero-Romero L, Guzmán-Cedillo AE, Baltazares-Lipp ME, Vázquez-Minero JC, Gutiérrez-González LH, Alonso-Gómez M, Silva-Martínez M. Endothelin-Converting Enzyme 1 and Vascular Endothelial Growth Factor as Potential Biomarkers during Ex Vivo Lung Perfusion with Prolonged Hypothermic Lung-Sparing. DISEASE MARKERS 2022; 2022:6412238. [PMID: 35178130 PMCID: PMC8844163 DOI: 10.1155/2022/6412238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/18/2022]
Abstract
Lung transplantation requires optimization of donor's organ use through ex vivo lung perfusion (EVLP) to avoid primary graft dysfunction. Biomarkers can aid in organ selection by providing early evidence of suboptimal lungs during EVLP and thus avoid high-risk transplantations. However, predictive biomarkers of pulmonary graft function such as endothelin-converting enzyme (ECE-1) and vascular endothelial growth factor (VEGF) have not been described under EVLP with standard prolonged hypothermic preservation, which are relevant in situations where lung procurement is difficult or far from the transplantation site. Therefore, this study is aimed at quantifying ECE-1 and VEGF, as well as determining their association with hemodynamic, gasometric, and mechanical ventilatory parameters in a swine model of EVLP with standard prolonged hypothermic preservation. Using a protocol with either immediate (I-) or delayed (D-) initiation of EVLP, ECE-1 levels over time were found to remain constant in both study groups (p > 0.05 RM-ANOVA), while the VEGF protein was higher after prolonged preservation, but it decreased throughout EVLP (p > 0.05 RM-ANOVA). Likewise, hemodynamic, gasometric, mechanical ventilatory, and histological parameters had a tendency to better results after 12 hours of hypothermic preservation in the delayed infusion group.
Collapse
Affiliation(s)
- Claudia Hernández-Jiménez
- Department of Surgical Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - J. Raúl Olmos-Zúñiga
- Experimental Lung Transplant Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Matilde Baltazares-Lipp
- Department of Surgical Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Rogelio Jasso-Victoria
- Department of Surgical Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Adrián Polo-Jerez
- Department of Surgical Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - María Teresa Pérez-López
- Nursing Research Coordination, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Néstor Emmanuel Díaz-Martínez
- Laboratory of Cellular Reprogramming and Tissue Engineering, Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C, Mexico City, Mexico
| | - Miguel Gaxiola-Gaxiola
- Laboratory of Morphology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Laura Romero-Romero
- Department of Pathology, School of Veterinary Medicine and Zootechnics, UNAM, Mexico City, Mexico
| | - Axel Edmundo Guzmán-Cedillo
- Department of Surgical Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Mario Enrique Baltazares-Lipp
- Hemodynamics and Echocardiography Service, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Juan Carlos Vázquez-Minero
- Cardiothoracic Surgery Service, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Marcelino Alonso-Gómez
- Department of Surgical Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Mariana Silva-Martínez
- Experimental Lung Transplant Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
14
|
Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells 2021; 11:cells11010091. [PMID: 35011653 PMCID: PMC8750486 DOI: 10.3390/cells11010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 02/06/2023] Open
Abstract
Since its advent in the 1990′s, ex vivo lung perfusion (EVLP) has been studied and implemented as a tool to evaluate the quality of a donor organ prior to transplantation. It provides an invaluable window of opportunity for therapeutic intervention to render marginal lungs viable for transplantation. This ultimately aligns with the need of the lung transplant field to increase the number of available donor organs given critical shortages. As transplantation is the only option for patients with end-stage lung disease, advancements in technology are needed to decrease wait-list time and mortality. This review summarizes the results from the application of EVLP as a therapeutic intervention and focuses on the use of the platform with regard to cell therapies, cell product therapies, and cytokine filtration among other technologies. This review will summarize both the clinical and translational science being conducted in these aspects and will highlight the opportunities for EVLP to be developed as a powerful tool to increase the donor lung supply.
Collapse
|
15
|
Strategies to prolong homeostasis of ex vivo perfused lungs. J Thorac Cardiovasc Surg 2021; 161:1963-1973. [DOI: 10.1016/j.jtcvs.2020.07.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 01/08/2023]
|
16
|
Walweel K, Skeggs K, Boon AC, See Hoe LE, Bouquet M, Obonyo NG, Pedersen SE, Diab SD, Passmore MR, Hyslop K, Wood ES, Reid J, Colombo SM, Bartnikowski NJ, Wells MA, Black D, Pimenta LP, Stevenson AK, Bisht K, Marshall L, Prabhu DA, James L, Platts DG, Macdonald PS, McGiffin DC, Suen JY, Fraser JF. Endothelin receptor antagonist improves donor lung function in an ex vivo perfusion system. J Biomed Sci 2020; 27:96. [PMID: 33008372 PMCID: PMC7532654 DOI: 10.1186/s12929-020-00690-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A lung transplant is the last resort treatment for many patients with advanced lung disease. The majority of donated lungs come from donors following brain death (BD). The endothelin axis is upregulated in the blood and lung of the donor after BD resulting in systemic inflammation, lung damage and poor lung graft outcomes in the recipient. Tezosentan (endothelin receptor blocker) improves the pulmonary haemodynamic profile; however, it induces adverse effects on other organs at high doses. Application of ex vivo lung perfusion (EVLP) allows the development of organ-specific hormone resuscitation, to maximise and optimise the donor pool. Therefore, we investigate whether the combination of EVLP and tezosentan administration could improve the quality of donor lungs in a clinically relevant 6-h ovine model of brain stem death (BSD). METHODS After 6 h of BSD, lungs obtained from 12 sheep were divided into two groups, control and tezosentan-treated group, and cannulated for EVLP. The lungs were monitored for 6 h and lung perfusate and tissue samples were processed and analysed. Blood gas variables were measured in perfusate samples as well as total proteins and pro-inflammatory biomarkers, IL-6 and IL-8. Lung tissues were collected at the end of EVLP experiments for histology analysis and wet-dry weight ratio (a measure of oedema). RESULTS Our results showed a significant improvement in gas exchange [elevated partial pressure of oxygen (P = 0.02) and reduced partial pressure of carbon dioxide (P = 0.03)] in tezosentan-treated lungs compared to controls. However, the lungs hematoxylin-eosin staining histology results showed minimum lung injuries and there was no difference between both control and tezosentan-treated lungs. Similarly, IL-6 and IL-8 levels in lung perfusate showed no difference between control and tezosentan-treated lungs throughout the EVLP. Histological and tissue analysis showed a non-significant reduction in wet/dry weight ratio in tezosentan-treated lung tissues (P = 0.09) when compared to control. CONCLUSIONS These data indicate that administration of tezosentan could improve pulmonary gas exchange during EVLP.
Collapse
Affiliation(s)
- K Walweel
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| | - K Skeggs
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - A C Boon
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L E See Hoe
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - M Bouquet
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - N G Obonyo
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,Initiative to Develop African Research Leaders, KEMRI-Wellcome, Trust Research Programme, Kilifi, Kenya
| | - S E Pedersen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - S D Diab
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - M R Passmore
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - K Hyslop
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - E S Wood
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - J Reid
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - S M Colombo
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,University of Milan, Milan, Italy
| | | | - M A Wells
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,School of Medical Science, Griffith University, Brisbane, Australia
| | - D Black
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L P Pimenta
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - A K Stevenson
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - K Bisht
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia
| | - L Marshall
- The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - D A Prabhu
- The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L James
- Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - D G Platts
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - P S Macdonald
- Cardiac Mechanics Research Laboratory, St. Vincent's Hospital and the Victor Chang Cardiac Research Institute, Victoria Street, Darlinghurst, Sydney, NSW, 2061, Australia
| | - D C McGiffin
- Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Australia
| | - J Y Suen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| | - J F Fraser
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| |
Collapse
|
17
|
Leligdowicz A, Ross JT, Nesseler N, Matthay MA. The endogenous capacity to produce proinflammatory mediators by the ex vivo human perfused lung. Intensive Care Med Exp 2020; 8:56. [PMID: 32955627 PMCID: PMC7505905 DOI: 10.1186/s40635-020-00343-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background The ex vivo human perfused lung model has enabled optimizing donor lungs for transplantation and delineating mechanisms of lung injury. Perfusate and airspace biomarkers are a proxy of the lung response to experimental conditions. However, there is a lack of studies evaluating biomarker kinetics during perfusion and after exposure to stimuli. In this study, we analyzed the ex vivo-perfused lung response to three key perturbations: exposure to the perfusion circuit, exogenous fresh whole blood, and bacteria. Results Ninety-nine lungs rejected for transplantation underwent ex vivo perfusion. One hour after reaching experimental conditions, fresh whole blood was added to the perfusate (n = 55). Two hours after reaching target temperature, Streptococcus pneumoniae was added to the perfusate (n = 42) or to the airspaces (n = 17). Perfusate and airspace samples were collected at baseline (once lungs were equilibrated for 1 h, but before blood or bacteria were added) and 4 h later. Interleukin (IL)-6, IL-8, angiopoietin (Ang)-2, and soluble tumor necrosis factor receptor (sTNFR)-1 were quantified. Baseline perfusate and airspace biomarker levels varied significantly, and this was not related to pre-procurement PaO2:FiO2 ratio, cold ischemia time, and baseline alveolar fluid clearance (AFC). After 4 h of ex vivo perfusion, the lung demonstrated a sustained production of proinflammatory mediators. The change in biomarker levels was not influenced by baseline donor lung characteristics (cold ischemia time, baseline AFC) nor was it associated with measures of experimental epithelial (final AFC) or endothelial (percent weight gain) injury. In the presence of exogenous blood, the rise in biomarkers was attenuated. Lungs exposed to intravenous (IV) bacteria relative to control lungs demonstrated a significantly higher rise in perfusate IL-6. Conclusions The ex vivo-perfused lung has a marked endogenous capacity to produce inflammatory mediators over the course of short-term perfusion that is not significantly influenced by donor lung characteristics or the presence of exogenous blood, and only minimally affected by the introduction of systemic bacteremia. The lack of association between biomarker change and donor lung cold ischemia time, final alveolar fluid clearance, and experimental percent weight gain suggests that the maintained ability of the human lung to produce biomarkers is not merely a marker of lung epithelial or endothelial injury, but may support the function of the lung as an immune cell reservoir.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - James T Ross
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicolas Nesseler
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.,Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, Rennes, France.,Univ Rennes, CHU de Rennes, Inra, Inserm, Institut NUMECAN-UMR_A 1341, UMR_S 1241, 35000, Rennes, France.,Univ Rennes, CHU Rennes, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), 35000, Rennes, France
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.,Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA.,Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Jin Z, Hana Z, Alam A, Rajalingam S, Abayalingam M, Wang Z, Ma D. Review 1: Lung transplant-from donor selection to graft preparation. J Anesth 2020; 34:561-574. [PMID: 32476043 PMCID: PMC7261511 DOI: 10.1007/s00540-020-02800-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
For various end-stage lung diseases, lung transplantation remains one of the only viable treatment options. While the demand for lung transplantation has steadily risen over the last few decades, the availability of donor grafts is limited, which have resulted in progressively longer waiting lists. In the early years of lung transplantation, only the 'ideal' donor grafts are considered for transplantation. Due to the donor shortages, there is ongoing discussion about the safe use of 'suboptimal' grafts to expand the donor pool. In this review, we will discuss the considerations around donor selection, donor-recipient matching, graft preparation and graft optimisation.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Zac Hana
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Azeem Alam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Shamala Rajalingam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Mayavan Abayalingam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Zhiping Wang
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.
| |
Collapse
|
19
|
Abstract
Although lung transplant remains the only option for patients suffering from end-stage lung failure, donor supply is insufficient to meet demand. Static cold preservation is the most common method to preserve lungs in transport to the recipient; however, this method does not improve lung quality and only allows for 8 h of storage. This results in lungs which become available for donation but cannot be used due to failure to meet physiologic criteria or an inability to store them for a sufficient time to find a suitable recipient. Therefore, lungs lost due to failure to meet physiological or compatibility criteria may be mitigated through preservation methods which improve lung function and storage durations. Ex situ lung perfusion (ESLP) is a recently developed method which allows for longer storage times and has been demonstrated to improve lung function such that rejected lungs can be accepted for donation. Although greater use of ESLP will help to improve donor lung utilization, the ability to cryopreserve lungs would allow for organ banking to better utilize donor lungs. However, lung cryopreservation research remains underrepresented in the literature despite its unique advantages for cryopreservation over other organs. Therefore, this review will discuss the current techniques for lung preservation, static cold preservation and ESLP, and provide a review of the cryopreservation challenges and advantages unique to lungs.
Collapse
|
20
|
Iskender I, Arni S, Maeyashiki T, Citak N, Sauer M, Rodriguez JM, Frauenfelder T, Opitz I, Weder W, Inci I. Perfusate adsorption during ex vivo lung perfusion improves early post-transplant lung function. J Thorac Cardiovasc Surg 2020; 161:e109-e121. [PMID: 32201002 DOI: 10.1016/j.jtcvs.2019.12.128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Improvement in ex vivo lung perfusion protocols could increase the number of donors available for transplantation and protect the lungs from primary graft dysfunction. We hypothesize that perfusate adsorption during ex vivo lung perfusion reconditions the allograft to ischemia-reperfusion injury after lung transplantation. METHODS Donor pig lungs were preserved for 24 hours at 4°C, followed by 6 hours of ex vivo lung perfusion according to the Toronto protocol. The perfusate was additionally adsorbed through a CytoSorb adsorber (CytoSorbents, Berlin, Germany) in the treatment group, whereas control lungs were perfused according to the standard protocol (n = 5, each). Ex vivo lung perfusion physiology and biochemistry were monitored. Upon completion of ex vivo lung perfusion, a left single lung transplantation was performed. Oxygenation function and lung mechanics were assessed during a 4-hour reperfusion period. The inflammatory response was determined during ex vivo lung perfusion and reperfusion. RESULTS The cytokine concentrations in the perfusate were markedly lower with the adsorber, resulting in improved ex vivo lung perfusion physiology and biochemistry during the 6-hour perfusion period. Post-transplant dynamic lung compliance was markedly better during the 4-hour reperfusion period in the treatment group. Isolated allograft oxygenation function and dynamic compliance continued to be superior in the adsorber group at the end of reperfusion, accompanied by a markedly decreased local inflammatory response. CONCLUSIONS Implementation of an additional cytokine adsorber has refined the standard ex vivo lung perfusion protocol. Furthermore, cytokine removal during ex vivo lung perfusion improved immediate post-transplant graft function together with a less intense inflammatory response to reperfusion in pigs. Further studies are warranted to understand the beneficial effects of perfusate adsorption during ex vivo lung perfusion in the clinical setting.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Stephan Arni
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Tatsuo Maeyashiki
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Necati Citak
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Mareike Sauer
- Department of Surgical Research, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | | | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Ilhan Inci
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Commentary: Double, double, toil, and trouble: Removing evil humours during ex vivo lung perfusion. J Thorac Cardiovasc Surg 2020; 161:e125-e126. [PMID: 31959451 DOI: 10.1016/j.jtcvs.2019.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 11/21/2022]
|
22
|
Hozain AE, Tipograf Y, Pinezich MR, Cunningham KM, Donocoff R, Queen D, Fung K, Marboe CC, Guenthart BA, O'Neill JD, Vunjak-Novakovic G, Bacchetta M. Multiday maintenance of extracorporeal lungs using cross-circulation with conscious swine. J Thorac Cardiovasc Surg 2019; 159:1640-1653.e18. [PMID: 31761338 PMCID: PMC7094131 DOI: 10.1016/j.jtcvs.2019.09.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Objectives Lung remains the least-utilized solid organ for transplantation. Efforts to recover donor lungs with reversible injuries using ex vivo perfusion systems are limited to <24 hours of support. Here, we demonstrate the feasibility of extending normothermic extracorporeal lung support to 4 days using cross-circulation with conscious swine. Methods A swine behavioral training program and custom enclosure were developed to enable multiday cross-circulation between extracorporeal lungs and recipient swine. Lungs were ventilated and perfused in a normothermic chamber for 4 days. Longitudinal analyses of extracorporeal lungs (ie, functional assessments, multiscale imaging, cytokine quantification, and cellular assays) and recipient swine (eg, vital signs and blood and tissue analyses) were performed. Results Throughout 4 days of normothermic support, extracorporeal lung function was maintained (arterial oxygen tension/inspired oxygen fraction >400 mm Hg; compliance >20 mL/cm H2O), and recipient swine were hemodynamically stable (lactate <3 mmol/L; pH, 7.42 ± 0.05). Radiography revealed well-aerated lower lobes and consolidation in upper lobes of extracorporeal lungs, and bronchoscopy showed healthy airways without edema or secretions. In bronchoalveolar lavage fluid, granulocyte-macrophage colony-stimulating factor, interleukin (IL) 4, IL-6, and IL-10 levels increased less than 6-fold, whereas interferon gamma, IL-1α, IL-1β, IL-1ra, IL-2, IL-8, IL-12, IL-18, and tumor necrosis factor alpha levels decreased from baseline to day 4. Histologic evaluations confirmed an intact blood–gas barrier and outstanding preservation of airway and alveolar architecture. Cellular viability and metabolism in extracorporeal lungs were confirmed after 4 days. Conclusions We demonstrate feasibility of normothermic maintenance of extracorporeal lungs for 4 days by cross-circulation with conscious swine. Cross-circulation approaches could support the recovery of damaged lungs and enable organ bioengineering to improve transplant outcomes.
Collapse
Affiliation(s)
- Ahmed E Hozain
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY
| | - Yuliya Tipograf
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY; Departments of Thoracic and Cardiac Surgery, Vanderbilt University, Nashville, Tenn
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Katherine M Cunningham
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Rachel Donocoff
- Institute of Comparative Medicine, Columbia University Medical Center, Columbia University, New York, NY
| | - Dawn Queen
- Vagelos College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY
| | - Kenmond Fung
- Department of Clinical Perfusion, Columbia University Medical Center, Columbia University, New York, NY
| | - Charles C Marboe
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, NY
| | - Brandon A Guenthart
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - John D O'Neill
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY.
| | - Matthew Bacchetta
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Departments of Thoracic and Cardiac Surgery, Vanderbilt University, Nashville, Tenn.
| |
Collapse
|
23
|
Transplant Suitability of Rejected Human Donor Lungs With Prolonged Cold Ischemia Time in Low-Flow Acellular and High-Flow Cellular Ex Vivo Lung Perfusion Systems. Transplantation 2019; 103:1799-1808. [DOI: 10.1097/tp.0000000000002667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Weathington NM, Álvarez D, Sembrat J, Radder J, Cárdenes N, Noda K, Gong Q, Wong H, Kolls J, D'Cunha J, Mallampalli RK, Chen BB, Rojas M. Ex vivo lung perfusion as a human platform for preclinical small molecule testing. JCI Insight 2018; 3:95515. [PMID: 30282819 DOI: 10.1172/jci.insight.95515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) causes an estimated 70,000 US deaths annually. Multiple pharmacologic interventions for ARDS have been tested and failed. An unmet need is a suitable laboratory human model to predictively assess emerging therapeutics on organ function in ARDS. We previously demonstrated that the small molecule BC1215 blocks actions of a proinflammatory E3 ligase-associated protein, FBXO3, to suppress NF-κB signaling in animal models of lung injury. Ex vivo lung perfusion (EVLP) is a clinical technique that maintains lung function for possible transplant after organ donation. We used human lungs unacceptable for transplant to model endotoxemic injury with EVLP for 6 hours. LPS infusion induced inflammatory injury with impaired oxygenation of pulmonary venous circulation. BC1215 treatment after LPS rescued oxygenation and decreased inflammatory cytokines in bronchoalveolar lavage. RNA sequencing transcriptomics from biopsies taken during EVLP revealed robust inflammatory gene induction by LPS with a strong signal for NF-κB-associated transcripts. BC1215 treatment reduced the LPS induction of genes associated with inflammatory and host defense gene responses by Gene Ontology (GOterm) and pathways analysis. BC1215 also significantly antagonized LPS-mediated NF-κB activity. EVLP may provide a unique human platform for preclinical study of chemical entities such as FBXO3 inhibitors on tissue physiology.
Collapse
Affiliation(s)
| | - Diana Álvarez
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Simmons Center for Interstitial Lung Disease, and
| | - John Sembrat
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Simmons Center for Interstitial Lung Disease, and
| | - Josiah Radder
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Nayra Cárdenes
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Simmons Center for Interstitial Lung Disease, and
| | - Kentaro Noda
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qiaoke Gong
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Hesper Wong
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Jay Kolls
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K Mallampalli
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,The Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania, USA
| | - Bill B Chen
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Simmons Center for Interstitial Lung Disease, and.,The University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Rosso L, Zanella A, Righi I, Barilani M, Lazzari L, Scotti E, Gori F, Mendogni P. Lung transplantation, ex-vivo reconditioning and regeneration: state of the art and perspectives. J Thorac Dis 2018; 10:S2423-S2430. [PMID: 30123580 DOI: 10.21037/jtd.2018.04.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung transplantation is the only therapeutic option for end-stage pulmonary failure. Nevertheless, the shortage of donor pool available for transplantation does not allow to satisfy the requests, thus the mortality on the waiting list remains high. One of the tools to overcome the donor pool shortage is the use of ex-vivo lung perfusion (EVLP) to preserve, evaluate and recondition selected lung grafts not otherwise suitable for transplantation. EVLP is nowadays a clinical reality and have several destinations of use. After a narrative review of the literature and looking at our experience we can assume that one of the chances to improve the outcome of lung transplantation and to overcome the donor pool shortage could be the tissue regeneration of the graft during EVLP and the immunomodulation of the recipient. Both these strategies are performed using mesenchymal stem cells (MSC). The results of the models of lung perfusion with MSC-based cell therapy open the way to a new innovative approach that further increases the potential for using of the lung perfusion platform.
Collapse
Affiliation(s)
- Lorenzo Rosso
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Righi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Mario Barilani
- Unit of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Lorenza Lazzari
- Unit of Regenerative Medicine-Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Scotti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesca Gori
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Mendogni
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Lonati C, Bassani GA, Brambilla D, Leonardi P, Carlin A, Faversani A, Gatti S, Valenza F. Influence of
ex vivo
perfusion on the biomolecular profile of rat lungs. FASEB J 2018; 32:5532-5549. [DOI: 10.1096/fj.201701255r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Caterina Lonati
- Center for Surgical ResearchFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
| | - Giulia A. Bassani
- Center for Surgical ResearchFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
| | - Daniela Brambilla
- Center for Surgical ResearchFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
| | - Patrizia Leonardi
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation and Dental SciencesUniversity of Milan Milan Italy
| | - Andrea Carlin
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation and Dental SciencesUniversity of Milan Milan Italy
| | - Alice Faversani
- Division of PathologyFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Department of BiomedicalSurgical, and Dental Sciences, University of Milan Milan Italy
| | - Stefano Gatti
- Center for Surgical ResearchFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
| | - Franco Valenza
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca′ Granda‐Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation and Dental SciencesUniversity of Milan Milan Italy
| |
Collapse
|
27
|
Abstract
This article summarizes recent knowledge and clinical advances in machine perfusion (MP) of thoracic organs. MP of thoracic organs has gained much attention during the last decade. Clinical studies are investigating the role of MP to preserve, resuscitate, and assess heart and lungs prior to transplantation. Currently, MP of the cardiac allograft is essential in all type DCD heart transplantation while MP of the pulmonary allograft is mandatory in uncontrolled DCD lung transplantation. MP of thoracic organs also offers an exciting platform to further investigate downregulation of the innate and adaptive immunity prior to reperfusion of the allograft in recipients. MP provides a promising technology that allows pre-transplant preservation, resuscitation, assessment, repair, and conditioning of cardiac and pulmonary allografts outside the body in a near physiologic state prior to planned transplantation. Results of ongoing clinical trials are awaited to estimate the true clinical value of this new technology in advancing the field of heart and lung transplantation by increasing the total number and the quality of available organs and by further improving recipient early and long-term outcome.
Collapse
Affiliation(s)
- Dirk Van Raemdonck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Chronic Diseases, KU Leuven University, Leuven, Belgium
| | - Filip Rega
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven University, Leuven, Belgium
| | - Steffen Rex
- Department of Cardiovascular Sciences, KU Leuven University, Leuven, Belgium.,Department of Anaesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Arne Neyrinck
- Department of Cardiovascular Sciences, KU Leuven University, Leuven, Belgium.,Department of Anaesthesiology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Targeting Circulating Leukocytes and Pyroptosis During Ex Vivo Lung Perfusion Improves Lung Preservation. Transplantation 2017; 101:2841-2849. [PMID: 28452921 DOI: 10.1097/tp.0000000000001798] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Andreasson ASI, Karamanou DM, Gillespie CS, Özalp F, Butt T, Hill P, Jiwa K, Walden HR, Green NJ, Borthwick LA, Clark SC, Pauli H, Gould KF, Corris PA, Ali S, Dark JH, Fisher AJ. Profiling inflammation and tissue injury markers in perfusate and bronchoalveolar lavage fluid during human ex vivo lung perfusion. Eur J Cardiothorac Surg 2017; 51:577-586. [PMID: 28082471 PMCID: PMC5400024 DOI: 10.1093/ejcts/ezw358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES: Availability of donor lungs suitable for transplant falls short of current demand and contributes to waiting list mortality. Ex vivo lung perfusion (EVLP) offers the opportunity to objectively assess and recondition organs unsuitable for immediate transplant. Identifying robust biomarkers that can stratify donor lungs during EVLP to use or non-use or for specific interventions could further improve its clinical impact. METHODS: In this pilot study, 16 consecutive donor lungs unsuitable for immediate transplant were assessed by EVLP. Key inflammatory mediators and tissue injury markers were measured in serial perfusate samples collected hourly and in bronchoalveolar lavage fluid (BALF) collected before and after EVLP. Levels were compared between donor lungs that met criteria for transplant and those that did not. RESULTS: Seven of the 16 donor lungs (44%) improved during EVLP and were transplanted with uniformly good outcomes. Tissue and vascular injury markers lactate dehydrogenase, HMGB-1 and Syndecan-1 were significantly lower in perfusate from transplanted lungs. A model combining IL-1β and IL-8 concentrations in perfusate could predict final EVLP outcome after 2 h assessment. In addition, perfusate IL-1β concentrations showed an inverse correlation to recipient oxygenation 24 h post-transplant. CONCLUSIONS: This study confirms the feasibility of using inflammation and tissue injury markers in perfusate and BALF to identify donor lungs most likely to improve for successful transplant during clinical EVLP. These results support examining this issue in a larger study.
Collapse
Affiliation(s)
- Anders S I Andreasson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Danai M Karamanou
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Colin S Gillespie
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne, UK
| | - Faruk Özalp
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Tanveer Butt
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Paul Hill
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Kasim Jiwa
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Hannah R Walden
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nicola J Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Lee A Borthwick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Stephen C Clark
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Henning Pauli
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Kate F Gould
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Paul A Corris
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Simi Ali
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John H Dark
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Andrew J Fisher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
|
31
|
Maignan M, Gennai S, Debaty G, Romanini D, Schmidt MH, Brenckmann V, Brouta A, Ventrillard I, Briot R. Exhaled carbon monoxide is correlated with ischemia reperfusion injuries during
ex vivo
lung perfusion in pigs. J Breath Res 2017. [DOI: 10.1088/1752-7163/aa7a73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Iskender I, Cosgun T, Arni S, Trinkwitz M, Fehlings S, Yamada Y, Cesarovic N, Yu K, Frauenfelder T, Jungraithmayr W, Weder W, Inci I. Cytokine filtration modulates pulmonary metabolism and edema formation during ex vivo lung perfusion. J Heart Lung Transplant 2017; 37:S1053-2498(17)31802-8. [PMID: 28587802 DOI: 10.1016/j.healun.2017.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/30/2017] [Accepted: 05/18/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) has improved the process of donor lung management. Cytokine accumulation during EVLP has been shown to correlate with worse outcome after lung transplantation. Our objective in this study was to test the safety and efficacy of cytokine filtration during EVLP in a large animal model. METHODS Pig donor lungs were preserved for 24 hours at 4°C, followed by 12 hours of EVLP, according to the Toronto protocol. The perfusate was continuously run through an absorbent device (CytoSorb) via a veno-venous shunt from the reservoir in the filter group. EVLP was performed according to the standard protocol in the control group (n = 5 each). EVLP physiology, lung X-ray, perfusate biochemistry, inflammatory response and microscopic injury were assessed. RESULTS Cytokine filtration significantly improved airway pressure and dynamic compliance during the 12-hour perfusion period. Lung X-rays acquired at the end of perfusion showed increased consolidation in the control group. Electrolyte imbalance, determined by increased hydrogen, potassium and calcium ion concentrations in the perfusate, was markedly worsened in the control group. Glucose consumption and lactate production were markedly reduced, along with the lactate/pyruvate ratio in the filter group. Cytokine expression profile, tissue myeloperoxidase activity and microscopic lung injury were significantly reduced in the filter group. CONCLUSIONS Continuous perfusate filtration through sorbent beads is effective and safe during prolonged EVLP. Cytokine removal decreased the development of pulmonary edema and electrolyte imbalance through the suppression of anaerobic glycolysis and neutrophil activation in this setting. Further studies are needed to test the beneficial effect of cytokine filtration on post-transplant lung function.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Tugba Cosgun
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Stephan Arni
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Michael Trinkwitz
- Department of Cardiovascular Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Stefan Fehlings
- Department of Cardiovascular Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Yoshito Yamada
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Department of Surgical Research, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Keke Yu
- Department of Pathology, Shanghai Chest Hospital, Shanghai, People's Republic of China
| | - Thomas Frauenfelder
- Department of Radiology, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland
| | - Ilhan Inci
- Department of Thoracic Surgery, University Hospital Zurich-University of Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
EXP CLIN TRANSPLANTExp Clin Transplant 2015; 13. [DOI: 10.6002/ect.2015.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
A neutrophil elastase inhibitor improves lung function during ex vivo lung perfusion. Gen Thorac Cardiovasc Surg 2015; 63:645-51. [DOI: 10.1007/s11748-015-0585-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 09/01/2015] [Indexed: 11/27/2022]
|
35
|
Mohamed MSA. Could Ex Vivo Lung Perfusion Be a Platform to Decrease the Incidence of Chronic Lung Allograft Dysfunction? Arch Med Res 2015; 46:240-3. [PMID: 25819270 DOI: 10.1016/j.arcmed.2015.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/12/2015] [Indexed: 02/05/2023]
Abstract
The number of patients requiring lung transplantation is increasing, with a significant unmet demand for grafts. Ex vivo lung perfusion has been developed to increase graft recruitment. The major complications of lung transplantation include chronic allograft dysfunction (CLAD) whose cumulative incidence ranges from 43-80% within the first 5 years of transplantation. Many risk factors are listed for development of CLAD and almost all of those risk factors would involve activation of Toll-like receptors. This paper represents the author's overview regarding the development of CLAD as a complication of lung transplantation and the possible protective potential of ex vivo lung perfusion in this regard.
Collapse
Affiliation(s)
- Mohamed S A Mohamed
- Department of Thoracic Transplantation, University Clinic Essen, Essen, Germany.
| |
Collapse
|
36
|
Hydrogen preconditioning during ex vivo lung perfusion improves the quality of lung grafts in rats. Transplantation 2014; 98:499-506. [PMID: 25121557 DOI: 10.1097/tp.0000000000000254] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although the benefits of ex vivo lung perfusion (EVLP) have been globally advocated, the potentially deleterious effects of applying EVLP, in particular activation of proinflammatory cascades and alteration of metabolic profiles, are rarely discussed. This study examined proinflammatory events and metabolic profiles in lung grafts on EVLP and tested whether preconditioning lung grafts with inhaled hydrogen, a potent, cytoprotective gaseous signaling molecule, would alter the lungs' response to EVLP. METHODS Rat heart-lung blocks were mounted on an acellular normothermic EVLP system for 4 hr and ventilated with air or air supplemented with 2% hydrogen. Arterial and airway pressures were monitored continuously; perfusate was sampled hourly to examine oxygenation. After EVLP, the lung grafts were transplanted orthotopically into syngeneic rats, and lung function was examined. RESULTS Placing lung grafts on EVLP resulted in significant upregulation of the messenger RNAs for several proinflammatory cytokines, higher glucose consumption, and increased lactate production. Hydrogen administration attenuated proinflammatory changes during EVLP through upregulation of the heme oxygenase-1. Hydrogen administration also promoted mitochondrial biogenesis and significantly decreased lactate production. Additionally, in the hydrogen-treated lungs, the expression of hypoxia-inducible factor-1 was significantly attenuated during EVLP. These effects were maintained throughout EVLP and led to better posttransplant lung graft function in the recipients of hydrogen-treated lungs. CONCLUSIONS Lung grafts on EVLP exhibited prominent proinflammatory changes and compromised metabolic profiles. Preconditioning lung grafts using inhaled hydrogen attenuated these proinflammatory changes, promoted mitochondrial biogenesis in the lungs throughout the procedure, and resulted in better posttransplant graft function.
Collapse
|
37
|
Hauck J, Osho A, Castleberry A, Hartwig M, Reddy L, Phillips-Bute B, Swaminathan M, Mathew J, Stafford-Smith M. Acute kidney injury after ex vivo lung perfusion (EVLP). Transplant Proc 2014; 46:3598-602. [PMID: 25498096 DOI: 10.1016/j.transproceed.2014.06.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/17/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) identifies viability for marginal organs but complicates and lengthens lung transplantation surgery. Preliminary evidence supports equivalency for EVLP-assisted versus traditional (non-EVLP) procedures regarding graft function, postoperative course, mortality, and survival. However, acute kidney injury (AKI), a common serious complication of lung transplantation, has not been assessed. We tested the hypothesis that EVLP-assisted and non-EVLP lung transplantations are associated with different AKI rates. METHODS Demographic, procedural, and renal data were gathered for 13 EVLP-viable lung transplantations and a non-EVLP group matched 4:1 for single versus double, pulmonary disease, and age. AKI was defined by AKI Network (AKIN) criteria and peak creatinine rise relative to baseline (Δ%Cr) during the 1st 10 postoperative days. Chi-square was performed for AKIN and 2-tailed t test for %ΔCr. RESULTS Patient and procedural characteristics were similar between the groups. One non-EVLP patient required postoperative dialysis. AKI rates were also similar, as assessed by both AKIN (EVLP 7/13 (54%) vs non-EVLP 32/52 (62%); P = .61) and %ΔCr (EVLP 91 ± 81% vs non-EVLP 72 ± 62%; P = .63). CONCLUSIONS We did not observe different AKI rates between EVLP-assisted and traditional lung transplant procedures. Although 1 non-EVLP patient required dialysis, AKI rates were otherwise similar. These findings further support EVLP as a strategy to expand the organ pool and reduce concerns for high-renal risk recipients. The small sample size and retrospective design are limitations. However, our sample size is similar to other reports, and it is the first to analyze AKI after EVLP-assisted lung transplantation. Larger multicenter prospective studies are needed.
Collapse
Affiliation(s)
- J Hauck
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - A Osho
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - A Castleberry
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - M Hartwig
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - L Reddy
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - B Phillips-Bute
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - M Swaminathan
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - J Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - M Stafford-Smith
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
38
|
Raemdonck D, Neyrinck A, Cypel M, Keshavjee S. Ex‐vivo lung perfusion. Transpl Int 2014; 28:643-56. [DOI: 10.1111/tri.12317] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/11/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Dirk Raemdonck
- Department of Thoracic Surgery University Hospitals Leuven Leuven Belgium
- Laboratory for Experimental Thoracic Surgery KU Leuven University Leuven Belgium
| | - Arne Neyrinck
- Laboratory for Experimental Thoracic Surgery KU Leuven University Leuven Belgium
- Department of Anaesthesiology University Hospitals Leuven Leuven Belgium
| | - Marcelo Cypel
- Division of Thoracic Surgery Toronto General Hospital Toronto ON Canada
- The Latner Thoracic Surgery Laboratories Toronto General Research Institute Toronto ON Canada
| | - Shaf Keshavjee
- Division of Thoracic Surgery Toronto General Hospital Toronto ON Canada
- The Latner Thoracic Surgery Laboratories Toronto General Research Institute Toronto ON Canada
| |
Collapse
|
39
|
Pulmonary artery perfusion with anti-tumor necrosis factor alpha antibody reduces cardiopulmonary bypass-induced inflammatory lung injury in a rabbit model. PLoS One 2013; 8:e83236. [PMID: 24386164 PMCID: PMC3873915 DOI: 10.1371/journal.pone.0083236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022] Open
Abstract
Inflammatory lung injury is one of the main complications associated with cardiopulmonary bypass (CPB). Tumor necrosis factor-α (TNF-α) is one of the key factors mediating the CPB-induced inflammatory reactions. Our previous studies have shown that endotracheal administration of anti-tumor necrosis factor-α antibody (TNF-α Ab) produces some beneficial effects on lung in a rabbit CPB model. In this study, we further examined the effects of pulmonary artery perfusion with TNF-α Ab (27 ng/kg) on lung tissue integrity and pulmonary inflammation during CPB and investigated the mechanism underlying the TNF-α Ab-mediated effects in a rabbit model of CPB. Our results from transmission electron microscopy showed that the perfusion with TNF-α Ab alleviated CPB-induced histopathological changes in lung tissue. The perfusion with TNF-α Ab also prevented CPB-induced pulmonary edema and improved oxygenation index. Parameters indicating pulmonary inflammation, including neutrophil count and plasma TNF-α and malondialdehyde (MDA) levels, were significantly reduced during CPB by pulmonary artery perfusion with TNF-α Ab, suggesting that the perfusion with TNF-α Ab reduces CPB-induced pulmonary inflammation. We further investigated the molecular mechanism underlying the protective effects of TNF-α Ab on lung. Our quantitative RT-PCR analysis revealed that pulmonary artery perfusion with TNF-α Ab significantly decreased TNF-α expression in lung tissue during CPB. The apoptotic index in lung tissue and the expression of proteins that play stimulatory roles in apoptosis pathways including the fas ligand (FasL) and Bax were markedly reduced during CPB by the perfusion with TNF-α Ab. In contrast, the expression of Bcl-2, which plays an inhibitory role in apoptosis pathways, was significantly increased during CPB by the perfusion with TNF-α Ab, indicating that the perfusion with TNF-α Ab significantly reduces CPB-induced apoptosis in lung. Thus, our study suggests that pulmonary artery perfusion with TNF-α Ab might be a promising approach for attenuating CPB-induced inflammatory lung injury.
Collapse
|
40
|
|
41
|
Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury. J Transplant 2013; 2013:521369. [PMID: 23691272 PMCID: PMC3649190 DOI: 10.1155/2013/521369] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 01/26/2023] Open
Abstract
Brain death is associated with dramatic and serious pathophysiologic changes that adversely affect both the quantity and quality of organs available for transplant. To fully optimise the donor pool necessitates a more complete understanding of the underlying pathophysiology of organ dysfunction associated with transplantation. These injurious processes are initially triggered by catastrophic brain injury and are further enhanced during both brain death and graft transplantation. The activated inflammatory systems then contribute to graft dysfunction in the recipient. Inflammatory mediators drive this process in concert with the innate and adaptive immune systems. Activation of deleterious immunological pathways in organ grafts occurs, priming them for further inflammation after engraftment. Finally, posttransplantation ischaemia reperfusion injury leads to further generation of inflammatory mediators and consequent activation of the recipient's immune system. Ongoing research has identified key mediators that contribute to the inflammatory milieu inherent in brain dead organ donation. This has seen the development of novel therapies that directly target the inflammatory cascade.
Collapse
|
42
|
Valenza F, Rosso L, Coppola S, Froio S, Colombo J, Dossi R, Fumagalli J, Salice V, Pizzocri M, Conte G, Gatti S, Santambrogio L, Gattinoni L. β-Adrenergic agonist infusion during extracorporeal lung perfusion: Effects on glucose concentration in the perfusion fluid and on lung function. J Heart Lung Transplant 2012; 31:524-30. [DOI: 10.1016/j.healun.2012.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/16/2011] [Accepted: 02/02/2012] [Indexed: 11/25/2022] Open
|
43
|
Sanchez PG, Bittle GJ, Burdorf L, Pierson RN, Griffith BP. State of Art: Clinical ex vivo lung perfusion: Rationale, current status, and future directions. J Heart Lung Transplant 2012; 31:339-48. [DOI: 10.1016/j.healun.2012.01.866] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/30/2011] [Accepted: 01/17/2012] [Indexed: 01/08/2023] Open
|
44
|
Adenosine A₂A agonist improves lung function during ex vivo lung perfusion. Ann Thorac Surg 2011; 92:1840-6. [PMID: 22051279 DOI: 10.1016/j.athoracsur.2011.06.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) is a novel technique than can be used to assess and potentially repair marginal lungs that may otherwise be rejected for transplantation. Adenosine has been shown to protect against pulmonary ischemia-reperfusion (IR) injury through its A(2A) receptor. We hypothesized that combining EVLP with adenosine A(2A) receptor agonist treatment would enhance lung functional quality and increase donor lung use. METHODS Eight bilateral pig lungs were harvested and flushed with cold Perfadex (Vitrolife, Englewood, CO). After 14 hours of storage at 4°C, EVLP was performed for 5 hours on 2 explanted lung groups: (1) control group lungs (n = 4) were perfused with Steen Solution (Vitrolife) and dimethyl sulfoxide and (2) treated group lungs (n = 4) received 10 μM CGS21680, a selective A(2A) receptor agonist, in a Steen solution-primed circuit. Lung histologic features, tissue cytokines, gas analysis, and pulmonary function were compared between groups. RESULTS Treated lungs demonstrated significantly less edema as reflected by wet-dry weight ratio (6.6 versus 5.2; p < 0.03) and confirmed by histologic examination. In addition, treated lung demonstrated significantly lower levels of interferon-γ (IFN- γ) (45.1 versus 88.5; p < 0.05). Other measured tissue cytokine levels (interleukin [IL]-1β, IL-6, and IL-8) were lower in the treatment group, but values failed to reach statistical significance. The oxygenation index was improved in the treated group (1.5 versus 2.3; p < 0.01) as was mean airway pressure (10.3 versus 13; p < 0.009). CONCLUSIONS Combined use of adenosine A(2A) agonist and EVLP significantly attenuates the inflammatory response in acutely injured lungs after IR and enhances pulmonary function. This combination may improve donor lung quality and could increase the donor lung pool for transplantation.
Collapse
|
45
|
Sadaria MR, Smith PD, Fullerton DA, Justison GA, Lee JH, Puskas F, Grover FL, Cleveland JC, Reece TB, Weyant MJ. Cytokine Expression Profile in Human Lungs Undergoing Normothermic Ex-Vivo Lung Perfusion. Ann Thorac Surg 2011; 92:478-84. [DOI: 10.1016/j.athoracsur.2011.04.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/02/2011] [Accepted: 04/06/2011] [Indexed: 11/29/2022]
|
46
|
Early effects of the ex vivo evaluation system on graft function after swine lung transplantation. Eur J Cardiothorac Surg 2011; 40:956-61. [PMID: 21354808 DOI: 10.1016/j.ejcts.2010.12.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/07/2010] [Accepted: 12/24/2010] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Ex vivo lung evaluation (ex vivo) has been developed as a useful method by which to assess lungs from donation-after-cardiac death (DCD) donors prior to transplant. However, the safety of the ex vivo circulation itself with respect to grafts has not been fully investigated. The aim of this study is to evaluate the effects of the ex vivo circuit using a swine lung transplant model. METHODS Lungs with or without 2-h warm ischemia were used. To assess post-transplant graft function, the left lung was transplanted after 2-h ex vivo or cold preservation; blood gas analysis of the left pulmonary vein (partial pressure of oxygen, PO(2)) was performed during the 6-h post-transplant follow-up period. Data were compared between the ex vivo (+) and ex vivo (-) groups. RESULTS Partial pressure of oxygen/ inspired oxygen fraction (PO(2)/FiO(2)) in the ex vivo (-) group was significantly greater than that in the ex vivo (+) group until 3h after transplant. The PO(2)/FiO(2) levels in both groups then increased and became similar at 6 h after transplant, regardless of whether ischemic or non-ischemic lungs (p<0.001 and p=0.004, respectively) were used. CONCLUSIONS Negative effects of the ex vivo system were limited and seen only in the immediate post-transplant period. Therefore, in DCD swine lung transplantation, the ex vivo system appears to be safe.
Collapse
|
47
|
Invited Commentary. Ann Thorac Surg 2010; 89:1779-81. [DOI: 10.1016/j.athoracsur.2010.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 11/18/2022]
|