1
|
Matsubara E, Yano H, Pan C, Komohara Y, Fujiwara Y, Zhao S, Shinchi Y, Kurotaki D, Suzuki M. The Significance of SPP1 in Lung Cancers and Its Impact as a Marker for Protumor Tumor-Associated Macrophages. Cancers (Basel) 2023; 15:cancers15082250. [PMID: 37190178 DOI: 10.3390/cancers15082250] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Macrophages are a representative cell type in the tumor microenvironment. Macrophages that infiltrate the cancer microenvironment are referred to as tumor-associated macrophages (TAMs). TAMs exhibit protumor functions related to invasion, metastasis, and immunosuppression, and an increased density of TAMs is associated with a poor clinical course in many cancers. Phosphoprotein 1 (SPP1), also known as osteopontin, is a multifunctional secreted phosphorylated glycoprotein. Although SPP1 is produced in a variety of organs, at the cellular level, it is expressed on only a few cell types, such as osteoblasts, fibroblasts, macrophages, dendritic cells, lymphoid cells, and mononuclear cells. SPP1 is also expressed by cancer cells, and previous studies have demonstrated correlations between levels of circulating SPP1 and/or increased SPP1 expression on tumor cells and poor prognosis in many types of cancer. We recently revealed that SPP1 expression on TAMs is correlated with poor prognosis and chemoresistance in lung adenocarcinoma. In this review, we summarize the significance of TAMs in lung cancers and discuss the importance of SPP1 as a new marker for the protumor subpopulation of monocyte-derived TAMs in lung adenocarcinoma. Several studies have shown that the SPP1/CD44 axis contribute to cancer chemoresistance in solid cancers, so the SPP1/CD44 axis may represent one of the most critical mechanisms for cell-to-cell communication between cancer cells and TAMs.
Collapse
Affiliation(s)
- Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shukang Zhao
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yusuke Shinchi
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
2
|
Yi B, Cheng Y, Chang R, Zhou W, Tang H, Gao Y, Zhang C. Prognostic significance of tumor-associated macrophages polarization markers in lung cancer: a pooled analysis of 5105 patients. Biosci Rep 2023; 43:BSR20221659. [PMID: 36633963 PMCID: PMC9902841 DOI: 10.1042/bsr20221659] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/01/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The prognostic significance of tumor-associated macrophages (TAMs) in patients with lung cancer (LCa) remains controversial. We therefore conducted the present study to systematically evaluate the role of different TAMs markers and histologic locations on the prognosis of LCa. METHODS Searches of Web of Science, PubMed, and EMBASE databases were performed up to 28 February 2022. The pooled analysis was conducted in random-effect or fixed-effects model with hazard risk (HR) and 95% confidence interval (CI) for survival data including overall survival (OS), and disease-free survival (DFS) from raw or adjusted measures, according to different TAMs markers and histologic locations. RESULTS Including a total of 5105 patients from 30 eligible studies, the results indicated that the total count of CD68+ TAMs was negatively associated with OS and DFS, which was also observed in the relationship of CD68+ or CD204+ TAMs in tumor stroma (TS) with OS and DFS (all P<0.05). Conversely, higher CD68+ TAMs density in tumor nest (TN) or TN/TS ratio of CD68+ TAMs predicted better OS (all P<0.05). Similarly, higher HLA-DR+ TAMs density was correlated with better OS in TN and TS (all P<0.05). Besides, neither nest CD163+ TAM density nor stromal CD163+ TAM density was a prognostic factor in LCa patients (all P>0.05). CONCLUSION Our study indicated that different TAMs markers and histologic locations could bring about different prognostic effects in LCa patients. Great understanding of the infiltration modes of TAMs may contribute to improve outcomes of LCa patients.
Collapse
Affiliation(s)
- Bin Yi
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Huili Tang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| |
Collapse
|
3
|
Matsubara E, Komohara Y, Esumi S, Shinchi Y, Ishizuka S, Mito R, Pan C, Yano H, Kobayashi D, Fujiwara Y, Ikeda K, Sakagami T, Suzuki M. SPP1 Derived from Macrophages Is Associated with a Worse Clinical Course and Chemo-Resistance in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14184374. [PMID: 36139536 PMCID: PMC9496817 DOI: 10.3390/cancers14184374] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Osteopontin, also called secreted phosphoprotein 1 (SPP1), is expressed by cancer cells and is known as a poor prognostic factor. Although the production of SPP1 by tumor-associated macrophages (TAMs) has been attracting much attention recently, there have been no studies distinguishing the SPP1 expression of cancer cells and TAMs. In the present study, we demonstrated the following points. (1) Increased SPP1 expression on TAMs is associated with a worse clinical course in EGFR-wild-type adenocarcinoma. (2) SPP1 expression on macrophages is dependent on GM-CSF-mediated macrophage differentiation. (3) Macrophage-derived SPP1 potentially contributed to chemoresistance in lung cancer. Abstract Osteopontin, also called secreted phosphoprotein 1 (SPP1), is a multifunctional secreted phosphorylated glycoprotein. SPP1 is also expressed in tumor cells, and many studies demonstrated that a high level of circulating SPP1 is correlated with a poor prognosis in various cancers. SPP1 is expressed not only by tumor cells but also by stromal cells, such as macrophages. However, there have been no studies distinguishing the SPP1 expression of cancer cells and tumor-associated macrophages (TAMs). Thus, in this study, we tried to accurately evaluate the SPP1 expression status on cancer cells and TAMs separately in patients with non-small cell lung cancer by using double immunohistochemistry. We demonstrated that high SPP1 expression on TAMs predicted a poor prognosis in lung adenocarcinoma patients. Additionally, we investigated the expression mechanisms related to SPP1 using human-monocyte-derived macrophages and revealed that the SPP1 expression level increased in macrophage differentiation mediated by granulocyte-macrophage colony-stimulating factor. Furthermore, SPP1 contributed to anti-cancer drug resistance in lung cancer cell lines. In conclusion, SPP1 production on TAMs predicted a poor prognosis in lung adenocarcinoma patients, and TAM-derived SPP1′s involvement in the chemo-resistance of cancer cells was suggested.
Collapse
Affiliation(s)
- Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-8556, Japan
- Correspondence: ; Tel.: +81-96-373-5095
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yusuke Shinchi
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shiho Ishizuka
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Remi Mito
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Daiki Kobayashi
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Koei Ikeda
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
4
|
Li Y, Liu H, Zhao Y, Yue D, Chen C, Li C, Zhang Z, Wang C. Tumor-associated macrophages (TAMs)-derived osteopontin (OPN) upregulates PD-L1 expression and predicts poor prognosis in non-small cell lung cancer (NSCLC). Thorac Cancer 2021; 12:2698-2709. [PMID: 34423566 PMCID: PMC8520804 DOI: 10.1111/1759-7714.14108] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Programmed cell death ligand 1 (PD‐L1) is widely known as an immune checkpoint molecule in tumor cells. Osteopontin (OPN) is expressed by both tumor cells and tumor‐associated macrophages (TAMs), and both autocrine and paracrine of OPN are considered to be involved in tumor metastasis, proliferation and immunosuppression. However, little is known about the relationship between OPN expressed in TAMs (TOPN) and PD‐L1 in non‐small cell lung cancer (NSCLC). Methods Tissue microarray was used to detect the expression of TOPN, TAMs and PD‐L1 by multiple quantitative fluorescence staining in 509 NSCLC patients undergoing complete pulmonary resection. The correlations between TOPN, PD‐L1 and clinicopathological data were analyzed. An in vitro coculture system was established to investigate the crosstalk between TOPN and neoplastic PD‐L1. In vivo, the intrinsic features of PD‐L1 in NSCLC xenografts were evaluated after being coinjected with OPN‐positive TAMs, and a series of key cytokines and chemokines were detected in the tumor microenvironment. Results A positive association between the TOPN and PD‐L1 expression in tumor tissues from 509 patients with NSCLC was verified. In addition, TOPN and PD‐L1 were independent prognostic factors for overall survival (OS) and disease‐free survival (DFS) of NSCLC patients. Moreover, TOPN upregulated PD‐L1 expression in NSCLC cells through the nuclear factor‐κB (NF‐κB) pathway in vitro TOPN induced the PD‐L1 expression promoted the tumor growth in tumor‐bearing mice, altering immune‐related cytokines and chemokines. Conclusions TOPN regulates PD‐L1 expression through the NF‐κB pathway in NSCLS, which is a potential independent biomarker and target for prognosis as well as immunotherapy.
Collapse
Affiliation(s)
- Yue Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Hailin Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Yujie Zhao
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Dongsheng Yue
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chenguang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
5
|
Giopanou I, Kanellakis NI, Giannou AD, Lilis I, Marazioti A, Spella M, Papaleonidopoulos V, Simoes DCM, Zazara DE, Agalioti T, Moschos C, Magkouta S, Kalomenidis I, Panoutsakopoulou V, Lamort AS, Stathopoulos GT, Psallidas I. Osteopontin drives KRAS-mutant lung adenocarcinoma. Carcinogenesis 2021; 41:1134-1144. [PMID: 31740923 DOI: 10.1093/carcin/bgz190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Increased expression of osteopontin (secreted phosphoprotein 1, SPP1) is associated with aggressive human lung adenocarcinoma (LADC), but its function remains unknown. Our aim was to determine the role of SPP1 in smoking-induced LADC. We combined mouse models of tobacco carcinogen-induced LADC, of deficiency of endogenous Spp1 alleles, and of adoptive pulmonary macrophage reconstitution to map the expression of SPP1 and its receptors and determine its impact during carcinogenesis. Co-expression of Spp1 and mutant KrasG12C in benign cells was employed to investigate SPP1/KRAS interactions in oncogenesis. Finally, intratracheal adenovirus encoding Cre recombinase was delivered to LSL.KRASG12D mice lacking endogenous or overexpressing transgenic Spp1 alleles. SPP1 was overexpressed in experimental and human LADC and portended poor survival. In response to two different smoke carcinogens, Spp1-deficient mice developed fewer and smaller LADC with decreased cellular survival and angiogenesis. Both lung epithelial- and macrophage-secreted SPP1 drove tumor-associated inflammation, while epithelial SPP1 promoted early tumorigenesis by fostering the survival of KRAS-mutated cells. Finally, loss and overexpression of Spp1 was, respectively, protective and deleterious for mice harboring KRASG12D-driven LADC. Our data support that SPP1 is functionally involved in early stages of airway epithelial carcinogenesis driven by smoking and mutant KRAS and may present an important therapeutic target.
Collapse
Affiliation(s)
- Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Nikolaos I Kanellakis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Anastasios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Vassilios Papaleonidopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Davina C M Simoes
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne, UK
| | - Dimitra E Zazara
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Theodora Agalioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Charalampos Moschos
- "Marianthi Simou Laboratory," 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Sophia Magkouta
- "Marianthi Simou Laboratory," 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Ioannis Kalomenidis
- "Marianthi Simou Laboratory," 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anne-Sophie Lamort
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz ZentrumMünchen, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz ZentrumMünchen, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Ioannis Psallidas
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK.,Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| |
Collapse
|
6
|
Prognostic significance and targeting tumor-associated macrophages in cancer: new insights and future perspectives. Breast Cancer 2021; 28:539-555. [PMID: 33661479 DOI: 10.1007/s12282-021-01231-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Macrophages are phagocytic sentinel cells of the immune system that are central to both innate and adaptive immune responses and serve as the first line of defense against pathogenic insults to tissues. In the tumor microenvironment, tumor-derived factors induce monocyte polarization towards a pro-tumor phenotype. The pro-tumor macrophages regulate key steps in tumorigenicity including tumor growth, angiogenesis, immune suppression, and metastasis. Macrophage infiltration in solid tumors correlates with poor prognosis and resistance to chemotherapy in most cancers. Here in this review, we will shed light on tumor-associated macrophages (TAMs) in regulating tumorigenicity and TAMs as a prognostic biomarker. Also, we will review the recent advances in targeting TAMs to increase the prognosis of cancer patients.
Collapse
|
7
|
Klement JD, Poschel DB, Lu C, Merting AD, Yang D, Redd PS, Liu K. Osteopontin Blockade Immunotherapy Increases Cytotoxic T Lymphocyte Lytic Activity and Suppresses Colon Tumor Progression. Cancers (Basel) 2021; 13:cancers13051006. [PMID: 33670921 PMCID: PMC7957528 DOI: 10.3390/cancers13051006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Despite the breakthrough in human cancer immunotherapy, colorectal cancer, except for the small subset of microsatellite instable colorectal cancer (MSI, ~4% total cases), is one of the few human cancers that does not respond to current immune checkpoint inhibitor (ICI) immunotherapy. CTLs are present in both MSI and microsatellite stable (MSS) human colon carcinoma, suggesting that PD-L1-independent mechanisms may exist and suppress CTL activation in the colon tumor microenvironment. We determined that osteopontin (OPN) inhibits tumor-specific cytotoxic T lymphocyte (CTL) lytic activity to promote colon tumor growth in vivo. Accordingly, OPN blockade immunotherapy using OPN neutralization monoclonal antibodies 100D3 and 103D6 suppressed colon tumor growth in vivo. Our findings indicate that 100D3 and 103D6 has the potential to be further developed for colorectal cancer immunotherapy. Abstract Human colorectal cancers are mostly microsatellite-stable with no response to anti-PD-1 blockade immunotherapy, necessitating the development of a new immunotherapy. Osteopontin (OPN) is elevated in human colorectal cancer and may function as an immune checkpoint. We aimed at elucidating the mechanism of action of OPN and determining the efficacy of OPN blockade immunotherapy in suppression of colon cancer. We report here that OPN is primarily expressed in tumor cells, myeloid cells, and innate lymphoid cells in human colorectal carcinoma. Spp1 knock out mice exhibit a high incidence and fast growth rate of carcinogen-induced tumors. Knocking out Spp1 in colon tumor cells increased tumor-specific CTL cytotoxicity in vitro and resulted in decreased tumor growth in vivo. The OPN protein level is elevated in the peripheral blood of tumor-bearing mice. We developed four OPN neutralization monoclonal antibodies based on their efficacy in blocking OPN inhibition of T cell activation. OPN clones 100D3 and 103D6 increased the efficacy of tumor-specific CTLs in killing colon tumor cells in vitro and suppressed colon tumor growth in tumor-bearing mice in vivo. Our data indicate that OPN blockade immunotherapy with 100D3 and 103D6 has great potential to be further developed for colorectal cancer immunotherapy and for rendering a colorectal cancer response to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- John D. Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China;
| | - Alyssa D. Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Priscilla S. Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Chemedimmune Inc., Augusta, GA 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: ; Tel.: +1-706-721-9483
| |
Collapse
|
8
|
Deligne C, Midwood KS. Macrophages and Extracellular Matrix in Breast Cancer: Partners in Crime or Protective Allies? Front Oncol 2021; 11:620773. [PMID: 33718177 PMCID: PMC7943718 DOI: 10.3389/fonc.2021.620773] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Solid cancers such as breast tumors comprise a collection of tumor, stromal and immune cells, embedded within a network of tumor-specific extracellular matrix. This matrix is associated with tumor aggression, treatment failure, chemo- and radio-resistance, poor survival and metastasis. Recent data report an immunomodulatory role for the matrix in cancer, via the creation of niches that control the migration, localization, phenotype and function of tumor-infiltrating immune cells, ultimately contributing to escape of immune surveillance. Macrophages are crucial components of the immune infiltrate in tumors; they are associated with a poor prognosis in breast cancer and contribute to shaping the anti-tumor immune response. We and others have described how matrix molecules commonly upregulated within the tumor stroma, such as tenascin-C, fibronectin and collagen, exert a complex influence over macrophage behavior, for example restricting or enhancing their infiltration into the tumor, and driving their polarization towards or away from a pro-tumoral phenotype, and how in turn macrophages can modify matrix production in the tumor to favor tumor growth and metastasis. Targeting specific domains of matrix molecules to reinstate an efficient anti-tumor immune response, and effectively control tumor growth and spread, is emerging as a promising field offering a new angle for cancer therapy. Here, we review current knowledge on the interactions between tumor-associated macrophages and matrix molecules that occur within the tumor microenvironment of breast cancer, and discuss how these pathways can be targeted for new immunotherapies for hard to treat, desmoplastic tumors.
Collapse
Affiliation(s)
- Claire Deligne
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Butti R, Kumar TVS, Nimma R, Banerjee P, Kundu IG, Kundu GC. Osteopontin Signaling in Shaping Tumor Microenvironment Conducive to Malignant Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:419-441. [PMID: 34664250 DOI: 10.1007/978-3-030-73119-9_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Context-dependent reciprocal crosstalk between cancer and surrounding stromal cells in the tumor microenvironment is imperative for the regulation of various hallmarks of cancer. A myriad of growth factors, chemokines, and their receptors aids in the interaction between cancer cells and tumor microenvironmental components. Osteopontin is a chemokine-like protein, overexpressed in different types of cancers. Osteopontin plays a crucial role in orchestrating dialogue between cancer and stromal cells. Osteopontin, in tumor microenvironment, is produced in tumor as well as stromal cells. Tumor-derived osteopontin regulates proliferation, migration, activation, and differentiation of different types of stromal cells. Osteopontin secreted from tumor cells regulates the generation of cancer-associated fibroblasts from resident fibroblasts and mesenchymal stem cells. Osteopontin also shapes immunosuppressive tumor microenvironment by controlling regulatory T cells and tumor-associated macrophages. Moreover, secretion of osteopontin from tumor stroma has been highly documented. Stromal cell-derived osteopontin induces epithelial-to-mesenchymal transition, angiogenesis, metastasis, and cancer stem cell enrichment. Tumor- or stroma-derived osteopontin mainly functions through binding with cell surface receptors, integrins and CD44, and activates downstream signaling events like PI-3 kinase/Akt and MAPK pathways. Presumably, disrupting the communication between the tumor cells and surrounding microenvironment by targeting osteopontin-regulated signaling using specific antibodies, small-molecule inhibitors, and chemotherapeutic agents is a novel therapeutic strategy for clinical management of cancer.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Totakura V S Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Ramakrishna Nimma
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Pinaki Banerjee
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Ipsita G Kundu
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Institute of Eminence, Hyderabad, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India. .,School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, India.
| |
Collapse
|
10
|
Osteopontin: A Key Regulator of Tumor Progression and Immunomodulation. Cancers (Basel) 2020; 12:cancers12113379. [PMID: 33203146 PMCID: PMC7698217 DOI: 10.3390/cancers12113379] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anti-PD-1/PD-L1 and anti-CTLA-4-based immune checkpoint blockade (ICB) immunotherapy have recently emerged as a breakthrough in human cancer treatment. Durable efficacy has been achieved in many types of human cancers. However, not all human cancers respond to current ICB immunotherapy and only a fraction of the responsive cancers exhibit efficacy. Osteopontin (OPN) expression is highly elevated in human cancers and functions as a tumor promoter. Emerging data suggest that OPN may also regulate immune cell function in the tumor microenvironment. This review aims at OPN function in human cancer progression and new findings of OPN as a new immune checkpoint. We propose that OPN compensates PD-L1 function to promote tumor immune evasion, which may underlie human cancer non-response to current ICB immunotherapy. Abstract OPN is a multifunctional phosphoglycoprotein expressed in a wide range of cells, including osteoclasts, osteoblasts, neurons, epithelial cells, T, B, NK, NK T, myeloid, and innate lymphoid cells. OPN plays an important role in diverse biological processes and is implicated in multiple diseases such as cardiovascular, diabetes, kidney, proinflammatory, fibrosis, nephrolithiasis, wound healing, and cancer. In cancer patients, overexpressed OPN is often detected in the tumor microenvironment and elevated serum OPN level is correlated with poor prognosis. Initially identified in activated T cells and termed as early T cell activation gene, OPN links innate cells to adaptive cells in immune response to infection and cancer. Recent single cell RNA sequencing revealed that OPN is primarily expressed in tumor cells and tumor-infiltrating myeloid cells in human cancer patients. Emerging experimental data reveal a key role of OPN is tumor immune evasion through regulating macrophage polarization, recruitment, and inhibition of T cell activation in the tumor microenvironment. Therefore, in addition to its well-established direct tumor cell promotion function, OPN also acts as an immune checkpoint to negatively regulate T cell activation. The OPN protein level is highly elevated in peripheral blood of human cancer patients. OPN blockade immunotherapy with OPN neutralization monoclonal antibodies (mAbs) thus represents an attractive approach in human cancer immunotherapy.
Collapse
|
11
|
Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol 2020; 10:566511. [PMID: 33194645 PMCID: PMC7642726 DOI: 10.3389/fonc.2020.566511] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major innate immune cells that constitute up to 50% of the cell mass of human tumors. TAMs are highly heterogeneous cells that originate from resident tissue-specific macrophages and from newly recruited monocytes. TAMs' variability strongly depends on cancer type, stage, and intratumor heterogeneity. Majority of TAMs are programmed by tumor microenvironment to support primary tumor growth and metastatic spread. However, TAMs can also restrict tumor growth and metastasis. In this review, we summarized the knowledge about the role of TAMs in tumor growth, metastasis and in the response to cancer therapy in patients with five aggressive types of cancer: breast, colorectal, lung, ovarian, and prostate cancers that are frequently metastasize into distant organs resulting in high mortality of the patients. Two major TAM parameters are applied for the evaluation of TAM correlation with the cancer progression: total amount of TAMs and specific phenotype of TAMs identified by functional biomarkers. We summarized the data generated in the wide range of international patient cohorts on the correlation of TAMs with clinical and pathological parameters of tumor progression including lymphatic and hematogenous metastasis, recurrence, survival, therapy efficiency. We described currently available biomarkers for TAMs that can be measured in patients' samples (tumor tissue and blood). CD68 is the major biomarker for the quantification of total TAM amounts, while transmembrane receptors (stabilin-1, CD163, CD206, CD204, MARCO) and secreted chitinase-like proteins (YKL-39, YKL-40) are used as biomarkers for the functional TAM polarization. We also considered that specific role of TAMs in tumor progression can depend on the localization in the intratumoral compartments. We have made the conclusion for the role of TAMs in primary tumor growth, metastasis, and therapy sensitivity for breast, colorectal, lung, ovarian, and prostate cancers. In contrast to other cancer types, majority of clinical studies indicate that TAMs in colorectal cancer have protective role for the patient and interfere with primary tumor growth and metastasis. The accumulated data are essential for using TAMs as biomarkers and therapeutic targets to develop cancer-specific immunotherapy and to design efficient combinations of traditional therapy and new immunomodulatory approaches.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Gulnara Tuguzbaeva
- Department of Pathophysiology, Bashkir State Medical University, Ufa, Russia
| | - Anastasia Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina Stakheyeva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Valentin Pavlov
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Evgeniy Choinzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
12
|
Tuminello S, Veluswamy R, Lieberman-Cribbin W, Gnjatic S, Petralia F, Wang P, Flores R, Taioli E. Prognostic value of immune cells in the tumor microenvironment of early-stage lung cancer: a meta-analysis. Oncotarget 2019; 10:7142-7155. [PMID: 31903172 PMCID: PMC6935257 DOI: 10.18632/oncotarget.27392] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Early-stage non-small cell lung cancer (NSCLC) patients carry significant risk of recurrence post-surgery. In-depth characterization of the immune tumor microenvironment (TME) can have prognostic value. This study aimed to evaluate the association of individual immune cell types in the TME with clinical outcomes in surgically resected, early-stage NSCLC. METHODS We performed a systematic literature search of the National Library of Medicine database through November 2019, investigating predefined biomarkers (CD3+ T cells, CD4+ T helper cells, CD8+ cytotoxic T cells, CD20+ B cells, CD56+ & CD57+ Natural Killer (NK) cells, CD68+ Tissue Associated Macrophages (TAMS), FoxP3+ T regulatory cells, and Mast Cells (MC)), and their association with survival following PRISMA guidelines. RESULTS Studies that adjusted for important clinical covariates (such as stage and age) showed that higher levels of CD8+ cytotoxic T cells were associated with improved OS (HR = 0.68; 95% CI, 0.50-0.93) and DFS (HR = 0.60; 95% CI, 0.41-0.87), while increased CD20+ B cells (HR = 0.16; 95% CI, 0.04-0.64) and CD 56/57+ NK cells (HR = 0.50; 95% CI, 0.26-0.95) were associated with improved OS; lung cancers with increased FoxP3+ T regulatory cells (HR = 2.22; 95% CI, 1.47-3.34) had worse OS. CONCLUSIONS Immune cell components of the TME have prognostic value in early-stage, surgically resected NSCLC, and may reveal which patients are more likely to need additional systemic treatment, including immunotherapy. Clinical covariates need to be considered when evaluating the prognostic value of immune cells in the TME.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajwanth Veluswamy
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wil Lieberman-Cribbin
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pei Wang
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raja Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Barranco G, Fernández E, Rivas S, Quezada R, Nava D, Aguilar J, García A, Astudillo H, Lome C, Ruiz E. Osteopontin expression and its relationship with prognostic factors in diffuse large B-cell lymphoma. Hematol Rep 2019; 11:7964. [PMID: 31579151 PMCID: PMC6761465 DOI: 10.4081/hr.2019.7964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/05/2019] [Indexed: 01/20/2023] Open
Abstract
The aim of this study is to explore the expression of osteopontin (OPN) and its relationship with prognostic factors and survival in diffuse large B cell lymphoma (DLBCL). A tissue microarray was performed for immunohistochemical evaluation. Contingency tables were analyzed for trends; chi-square test was used to determine differences between groups. Univariate and multivariate Cox proportional hazards-regression analyses were performed to evaluate the impact of prognostic factors on survival. Expression of OPN was observed in 28%. It was different in non-germinal center DLBCL (P=0.04). The mean overall survival (OS) was lower in patients with positive OPN expression (19.762; CI 95% 14.269-25.255) it was not significant (P=0.123). It is not possible to establish a clear relationship between the expression by immunohistochemistry of osteopontin and a poor prognosis but it would be important to complement the analysis with other techniques as PCR or NGS that allow us to assess the influence of the isoforms and post-translational modifications of OPN on the biological behavior of DLBCL. Our findings indicate that OPN expression could be associated with a more aggressive variant of lymphoma: non-germinal center DLBCL.
Collapse
Affiliation(s)
| | - Edith Fernández
- Translational Medicine, National Institute of Cancerology, Mexico City.,Computational Genomics, National Institute of Genomic Medicine, Mexico City
| | - Silvia Rivas
- Department of Hematology, National Institute of Cancerology, Mexico City
| | - Roxana Quezada
- Department of Pathology, National Institute of Cancerology, Mexico City
| | - Dolores Nava
- Department of Pathology, National Institute of Cancerology, Mexico City
| | - José Aguilar
- Department of Internal Medicine, National Institute of Cancerology, Mexico City
| | - Abelardo García
- Translational Medicine, National Institute of Cancerology, Mexico City
| | - Horacio Astudillo
- Laboratory of Translational Cancer Research and Cellular Therapy, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Carmen Lome
- Department of Pathology, National Institute of Cancerology, Mexico City
| | - Erika Ruiz
- Translational Medicine, National Institute of Cancerology, Mexico City
| |
Collapse
|
14
|
Popēna I, Ābols A, Saulīte L, Pleiko K, Zandberga E, Jēkabsons K, Endzeliņš E, Llorente A, Linē A, Riekstiņa U. Effect of colorectal cancer-derived extracellular vesicles on the immunophenotype and cytokine secretion profile of monocytes and macrophages. Cell Commun Signal 2018; 16:17. [PMID: 29690889 PMCID: PMC5937830 DOI: 10.1186/s12964-018-0229-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Background Macrophages are one of the most important players in the tumor microenvironment. The polarization status of tumor associated macrophages into a pro-inflammatory type M1 or anti-inflammatory type M2 may influence cancer progression and patient survival. Extracellular vesicles (EVs) are membrane-bound vesicles containing different biomolecules that are involved in cell to cell signal transfer. Accumulating evidence suggests that cancer-derived EVs are taken up by macrophages and modulate their phenotype and cytokine profile. However, the interactions of cancer-derived EVs with monocytes and macrophages at various differentiation and polarization states are poorly understood. In the current study, we have analyzed the uptake and functional effects of primary (SW480) and metastatic (SW620) isogenic colorectal cancer (CRC) cell line-derived EVs on monocytes (M), inactive macrophages (M0) and M1 and M2 polarized macrophages. Methods THP-1 monocytes were differentiated into M0 macrophages by addition of phorbol-12-myristate-13-acetate. Then M0 macrophages were further polarized into M1 and M2 macrophages in the presence of LPS, IFN- γ, IL-4, and IL-13 respectively. Internalization of SW480 and SW620-derived EVs was analyzed by flow cytometry and fluorescence microscopy. Changes in monocyte and macrophage immunophenotype and secretory profile upon EV exposure were analyzed by flow cytometry, quantitative PCR and Luminex assays. Results THP-1 monocytes and M0 macrophages efficiently take up SW480 and SW620-derived EVs, and our results indicate that dynamin-dependent endocytic pathways may be implicated. Interestingly, SW480 and SW620-derived EVs increased CD14 expression in M0 macrophages whereas SW480-derived EVs decreased HLA-DR expression in M1 and M2 polarized macrophages. Moreover, SW480-derived EVs significantly increased CXCL10 expression in monocytes and M0 macrophages. In contrast, SW620-derived EVs induced secretion of IL-6, CXCL10, IL-23 and IL-10 in M0 macrophages. However, addition of CRC cell line-derived EVs together with LPS, IFN- γ (M1) and IL-4, IL-13 (M2) stimuli during macrophage polarization had no additional effect on cytokine expression in M1 and M2 macrophages. Conclusion Our results suggest that CRC cell line-derived EVs are internalized and reprogram the immunophenotype and secretory profile in monocytes and inactive macrophages inducing mixed M1 and M2 cytokine response. Although CRC EVs decreased HLA-DR expression in M1, M2 polarized macrophages, their effect on the secretory profile of M1 and M2 polarized macrophages was negligible. Electronic supplementary material The online version of this article (10.1186/s12964-018-0229-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ineta Popēna
- Faculty of Medicine, University of Latvia, Raina blvd. 19, Riga, LV-1568, Latvia
| | - Artūrs Ābols
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Līga Saulīte
- Faculty of Medicine, University of Latvia, Raina blvd. 19, Riga, LV-1568, Latvia
| | - Kārlis Pleiko
- Faculty of Medicine, University of Latvia, Raina blvd. 19, Riga, LV-1568, Latvia
| | - Elīna Zandberga
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Kaspars Jēkabsons
- Faculty of Medicine, University of Latvia, Raina blvd. 19, Riga, LV-1568, Latvia
| | - Edgars Endzeliņš
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379, Oslo, Norway
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Una Riekstiņa
- Faculty of Medicine, University of Latvia, Raina blvd. 19, Riga, LV-1568, Latvia.
| |
Collapse
|
15
|
Hamilton G, Rath B. Circulating tumor cell interactions with macrophages: implications for biology and treatment. Transl Lung Cancer Res 2017; 6:418-430. [PMID: 28904886 DOI: 10.21037/tlcr.2017.07.04] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer and metastasis are closely associated with inflammation. Macrophages are important effector cells in enhancing tumor proliferation, invasion and providing protection against the immune system. Despite advanced knowledge of tumor-macrophage interactions, the role of macrophages in emergence and invasion of circulating tumor cells (CTCs) is not known. A series of six CTC cell lines have been derived from blood of patients with extensive disease small cell lung cancer (ED-SCLC) in our lab, most likely representing a homogenous cell population of the actual metastasis-initiating cells (MIC) of CTCs. SCLC has an unfavorable prognosis due to rapid dissemination and early chemoresistant relapses. SCLC CTCs recruit macrophages and elicit secretion of various cytokines and the six CTC lines express chitinase-3-like-1 (CHI3L1), vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP9) in abundance. CHI3L1 is cytokine/growth factor expressed in inflammation and cancer and found to be correlated to metastasis and a dismal prognosis. In conclusion, SCLC CTCs have acquired the essential means for aggressiveness and invasion in a tumor microenvironment specifically shaped by macrophages and inflammation.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Guo Q, Jin Z, Yuan Y, Liu R, Xu T, Wei H, Xu X, He S, Chen S, Shi Z, Hou W, Hua B. New Mechanisms of Tumor-Associated Macrophages on Promoting Tumor Progression: Recent Research Advances and Potential Targets for Tumor Immunotherapy. J Immunol Res 2016; 2016:9720912. [PMID: 27975071 PMCID: PMC5128713 DOI: 10.1155/2016/9720912] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
The majority of basic and clinical studies have shown a protumor function of tumor-associated macrophages (TAMs), which represent a large proportion of matrix cells. TAMs promote tumorigenesis, and their number is related to the malignancy degree and poor prognosis of many kinds of tumors. Macrophage plasticity makes it possible to change the tumor microenvironment and remodel antitumor immunity during cancer immunotherapy. Increasing numbers of studies have revealed the effects of TAMs on the tumor microenvironment, for example, via promotion of tumor growth and tumorigenesis and through an increase in the number of cancer stem cells or via facilitation of angiogenesis, lymphangiogenesis, and metastasis. Investigators also proposed tumor-immunological treatments targeting TAMs by inhibiting TAM recruitment and differentiation, by regulating TAM polarization, and by blocking factors and pathways associated with the protumor function of TAMs. This comprehensive review presents recent research on TAMs in relation to prediction of poor outcomes, remodeling of the tumor immune microenvironment, and immunological targeted therapies.
Collapse
Affiliation(s)
- Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Zhichao Jin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Yuan Yuan
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Tao Xu
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, No. 1 Playground Road, Haidian District, Beijing 100091, China
| | - Huamin Wei
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Xinyao Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Shulin He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Shuntai Chen
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine (IBRCM), China Academy of Chinese Medicine Sciences, No. 16 Dongzhimen Nanxiaojie, Dongcheng District, Beijing 100700, China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| |
Collapse
|
17
|
Sun Y, Li D, Lv XH, Hua SC, Han JC, Xu F, Li XD. Roles of osteopontin and matrix metalloproteinase-7 in occurrence, progression, and prognosis of nonsmall cell lung cancer. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 20:1138-46. [PMID: 26958047 PMCID: PMC4766819 DOI: 10.4103/1735-1995.172980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND This study detected osteopontin (OPN) and matrix metalloproteinase-7 (MMP-7) expressions to explore the roles of OPN and MMP-7 in the occurrence, progression, and prognosis of nonsmall cell lung cancer (NSCLC). MATERIALS AND METHODS A retrospective study was conducted on NSCLC tissues (n = 152; case group) and adjacent nonneoplastic lung parenchyma (adjacent to tumor >5 cm; n = 152; control group) collected from 152 NSCLC patients. The protein expressions of OPN and MMP-7 were detected by immunohistochemistry. OPN and MMP-7 messenger RNA (mRNA) expressions were detected by reverse transcription polymerase chain reaction (RT-PCR). RESULTS The protein and mRNA expressions of OPN and MMP-7 in NSCLC tissues were evidently higher than those in adjacent nonneoplastic lung parenchyma (all P < 0.05). OPN protein and mRNA expression were associated with the degree of differentiation, tumor node metastasis (TNM) staging, and lymph node metastasis in NSCLC (all P < 0.05). MMP-7 protein expression was associated with TNM staging and lymph node metastasis (both P < 0.05) while MMP-7 mRNA expression was associated with the degree of differentiation, TNM staging, and lymph node metastasis (all P < 0.05). A significantly positive relativity was revealed between OPN expression and MMP-7 expression (protein: r = 0.789, P < 0.001; mRNA: r = 0.377, P < 0.001). Lymph node metastasis, TNM staging, OPN, and MMP-7 protein expressions were independent risk factors for the prognosis of NSCLC (all P < 0.05). CONCLUSION High MMP-7 and OPN protein expressions are closely related to the occurrence, progression, and prognosis of NSCLC, and can be served as unfavorable prognostic factors for NSCLC.
Collapse
Affiliation(s)
- Ying Sun
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiao-Hong Lv
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shu-Cheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ji-Chang Han
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Feng Xu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xian-Dong Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Hamilton G, Rath B, Klameth L, Hochmair MJ. Small cell lung cancer: Recruitment of macrophages by circulating tumor cells. Oncoimmunology 2015; 5:e1093277. [PMID: 27141354 DOI: 10.1080/2162402x.2015.1093277] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/25/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023] Open
Abstract
Tumor-associated macrophages (TAMs) play an important role in tumor progression, suppression of antitumor immunity and dissemination. Blood monocytes infiltrate the tumor region and are primed by local microenvironmental conditions to promote tumor growth and invasion. Although many of the interacting cytokines and factors are known for the tumor-macrophage interactions, the putative contribution of circulating tumor cells (CTCs) is not known so far. These specialized cells are characterized by increased mobility, ability to degrade the extracellular matrix (ECM) and to enter the blood stream and generate secondary lesions which is a leading cause of death for the majority of tumor patients. The first establishment of two permanent CTC lines, namely BHGc7 and 10, from blood samples of advanced stage small cell lung cancer (SCLC) patients allowed us to investigate the CTC-immune cell interaction. Cocultures of peripheral blood mononuclear cells (PBMNCs) with CTCs or addition of CTC-conditioned medium (CTC-CM) in vitro resulted in monocyte-macrophage differentiation and appearance of CD14+, CD163weak and CD68+ macrophages expressing markers of TAMs. Furthermore, we screened the supernatants of CTC-primed macrophages for presence of approximately 100 cytokines and compared the expression with those induced by the local metastatic SCLC26A cell line. Macrophages recruited by SCLC26A-CM showed expression of osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), IL-8, chitinase3-like 1 (CHI3L1), platelet factor (Pf4), IL-1ra and matrix metalloproteinase-9 (MMP-9) among other minor cytokines/chemokines. In contrast, BHGc7-CM induced marked overexpression of complement factor D (CFD)/adipsin and vitamin D-BP (VDBP), as well as increased secretion of OPN, lipocalin-2 (LCN2), CHI3L1, uPAR, MIP-1 and GDF-15/MIC-1. BHGc10, derived independently from relapsed SCLC, revealed an almost identical pattern with added expression of ENA-78/CXCL5. CMs of the non-tumor HEK293 cell line revealed no induction of macrophages, whereas incubation of PBMNCs with recombinant CHI3L1 gave positive results. Thus, the specific contributions of CTCs in SCLC affect CFD/adipsin, possibly involved in immunity/cachexia, VDBP which gives rise to group-specific component protein-derived macrophage-activating factor (GcMAF), GDF-15/MIC-1 which enhances the malignant phenotype of tumor cells and ENA-78/CXCL5 which attracts angiogenic neutrophils. In conclusion, CTCs are competent to specifically manipulate TAMs to increase invasiveness, angiogenesis, immunosuppression and possibly lipid catabolism.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Surgery, Medical University Vienna , Vienna, Austria
| | - Barbara Rath
- Ludwig Boltzmann Cluster of Translational Oncology , Vienna, Austria
| | - Lukas Klameth
- Ludwig Boltzmann Cluster of Translational Oncology , Vienna, Austria
| | | |
Collapse
|
19
|
Antonoff M. Invited commentary. Ann Thorac Surg 2015; 99:1148. [PMID: 25841807 DOI: 10.1016/j.athoracsur.2014.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/05/2014] [Accepted: 12/16/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Mara Antonoff
- Thoracic & Cardiovascular Surgery, UT MD Anderson Cancer Center, 1400 Pressler St, Unit 1489, Houston, TX, 77030.
| |
Collapse
|