1
|
Sen S, Parihar N, Patil PM, Upadhyayula SM, Pemmaraju DB. Revisiting the Emerging Role of Light-Based Therapies in the Management of Spinal Cord Injuries. Mol Neurobiol 2024:10.1007/s12035-024-04658-8. [PMID: 39658774 DOI: 10.1007/s12035-024-04658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
The surge in spinal cord injuries (SCI) attracted many neurobiologists to explore the underlying complex pathophysiology and to offer better therapeutic outcomes. The multimodal approaches to therapy in SCI have proven to be effective but to a limited extent. The clinical basics involve invasive procedures and limited therapeutic interventions, and most preclinical studies and formulations are yet to be translated due to numerous factors. In recent years, photobiomodulation therapy (PBMT) has found many applications in various medical fields. In most PBMT, studies on SCI have employed laser sources in experimental animal models as a non-invasive source. PBMT has been applied in numerous facets of SCI pathophysiology, especially attenuation of neuroinflammatory cascades, enhanced neuronal regeneration, reduced apoptosis and gliosis, and increased behavioral recovery within a short span. Although PBMT is specific in modulating mitochondrial bioenergetics, innumerous molecular pathways such as JAK-STAT, PI3K-AKT, NF-κB, MAPK, JNK/TLR/MYD88, ERK/CREB, TGF-β/SMAD, GSK3β-AKT-β-catenin, and AMPK/PGC-1α/TFAM signaling pathways have been or are yet to be exploited. PMBT has been effective not only in cell-specific actions in SCI such as astrocyte activation or microglial polarization or alterations in neuronal pathology but also modulated overall pathobiology in SCI animals such as rapid behavioral recovery. The goal of this review is to summarize research that has used PBMT for various models of SCI in different animals, including clarifying its mechanisms and prospective molecular pathways that may be utilized for better therapeutic outcomes.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Nidhi Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Prathamesh Mahadev Patil
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Suryanarayana Murty Upadhyayula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Deepak B Pemmaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
2
|
Ikeno Y, Ghincea CV, Roda GF, Cheng L, Aftab M, Meng X, Weyant MJ, Cleveland JC, Fullerton DA, Reece TB. Direct and indirect activation of the adenosine triphosphate-sensitive potassium channel to induce spinal cord ischemic metabolic tolerance. J Thorac Cardiovasc Surg 2023; 165:e90-e99. [PMID: 34763893 DOI: 10.1016/j.jtcvs.2021.08.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The mitochondrial adenosine triphosphate-sensitive potassium channel is central to pharmacologically induced tolerance to spinal cord injury. We hypothesized that both direct and nitric oxide-dependent indirect activation of the adenosine triphosphate-sensitive potassium channel contribute to the induction of ischemic metabolic tolerance. METHODS Spinal cord injury was induced in adult male C57BL/6 mice through 7 minutes of thoracic aortic crossclamping. Pretreatment consisted of intraperitoneal injection 3 consecutive days before injury. Experimental groups were sham (no pretreatment or ischemia, n = 10), spinal cord injury control (pretreatment with normal saline, n = 27), Nicorandil 1.0 mg/kg (direct and indirect adenosine triphosphate-sensitive potassium channel opener, n = 20), Nicorandil 1 mg/kg + carboxy-PTIO 1 mg/kg (nitric oxide scavenger, n = 21), carboxy-PTIO (n = 12), diazoxide 5 mg/kg (selective direct adenosine triphosphate-sensitive potassium channel opener, n = 25), and DZ 5 mg/kg+ carboxy-PTIO 1 mg/kg, carboxy-PTIO (n = 23). Limb motor function was assessed using the Basso Mouse Score (0-9) at 12-hour intervals for 48 hours after ischemia. RESULTS Motor function was significantly preserved at all time points after ischemia in the Nicorandil pretreatment group compared with ischemic control. The addition of carboxy-PTIO partially attenuated Nicorandil's motor-preserving effect. Motor function in the Nicorandil + carboxy-PTIO group was significantly preserved compared with the spinal cord injury control group (P < .001), but worse than in the Nicorandil group (P = .078). Motor preservation in the diazoxide group was similar to the Nicorandil + carboxy-PTIO group. There was no significant difference between the diazoxide and diazoxide + carboxy-PTIO groups. CONCLUSIONS Both direct and nitric oxide-dependent indirect activation of the mitochondrial adenosine triphosphate-sensitive potassium channel play an important role in pharmacologically induced motor function preservation.
Collapse
Affiliation(s)
- Yuki Ikeno
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Christian V Ghincea
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Gavriel F Roda
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Linling Cheng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Michael J Weyant
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Joseph C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - David A Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - T Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo.
| |
Collapse
|
3
|
Yin ZS, Kang Y, Zhu R, Li S, Qin KP, Tang H, Shan WS. Erythropoietin inhibits ferroptosis and ameliorates neurological function after spinal cord injury. Neural Regen Res 2023; 18:881-888. [DOI: 10.4103/1673-5374.353496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
5
|
Awad H, Efanov A, Rajan J, Denney A, Gigax B, Kobalka P, Kelani H, Basso DM, Bozinovski J, Tili E. Histological Findings After Aortic Cross-Clamping in Preclinical Animal Models. J Neuropathol Exp Neurol 2021; 80:895-911. [PMID: 34534333 PMCID: PMC8783616 DOI: 10.1093/jnen/nlab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal cord ischemic injury and paralysis are devastating complications after open surgical repair of thoracoabdominal aortic aneurysms. Preclinical models have been developed to simulate the clinical paradigm to better understand the neuropathophysiology and develop therapeutic treatment. Neuropathological findings in the preclinical models have not been comprehensively examined before. This systematic review studies the past 40 years of the histological findings after open surgical repair in preclinical models. Our main finding is that damage is predominantly in the grey matter of the spinal cord, although white matter damage in the spinal cord is also reported. Future research needs to examine the neuropathological findings in preclinical models after endovascular repair, a newer type of surgical repair used to treat aortic aneurysms.
Collapse
Affiliation(s)
- Hamdy Awad
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Alexander Efanov
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Jayanth Rajan
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Andrew Denney
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Bradley Gigax
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Peter Kobalka
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Hesham Kelani
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - D Michele Basso
- Department of Neuroscience, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio, USA
| | - John Bozinovski
- Division of Cardiac Surgery, Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Esmerina Tili
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Thompson A, Farmer K, Rowe E, Hayley S. Erythropoietin modulates striatal antioxidant signalling to reduce neurodegeneration in a toxicant model of Parkinson's disease. Mol Cell Neurosci 2020; 109:103554. [DOI: 10.1016/j.mcn.2020.103554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
|
7
|
Wu SH, Lu IC, Tai MH, Chai CY, Kwan AL, Huang SH. Erythropoietin Alleviates Burn-induced Muscle Wasting. Int J Med Sci 2020; 17:33-44. [PMID: 31929736 PMCID: PMC6945565 DOI: 10.7150/ijms.38590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Burn injury induces long-term skeletal muscle pathology. We hypothesized EPO could attenuate burn-induced muscle fiber atrophy. Methods: Rats were allocated into four groups: a sham burn group, an untreated burn group subjected to third degree hind paw burn, and two burn groups treated with weekly or daily EPO for four weeks. Gastrocnemius muscle was analyzed at four weeks post-burn. Results: EPO attenuated the reduction of mean myofiber cross-sectional area post-burn and the level of the protective effect was no significant difference between two EPO-treated groups (p=0.784). Furthermore, EPO decreased the expression of atrophy-related ubiquitin ligase, atrogin-1, which was up-regulated in response to burn. Compared to untreated burn rats, those receiving weekly or daily EPO groups had less cell apoptosis by TUNEL assay. EPO decreased the expression of cleaved caspase 3 (key factor in the caspase-dependent pathway) and apoptosis-inducing factor (implicated in the caspase-independent pathway) after burn. Furthermore, EPO alleviated connective tissue overproduction following burn via transforming growth factor beta 1-Smad2/3 pathway. Daily EPO group caused significant erythrocytosis compared with untreated burn group but not weekly EPO group. Conclusion: EPO therapy attenuated skeletal muscle apoptosis and fibrosis at four weeks post-burn. Weekly EPO may be a safe and effective option in muscle wasting post-burn.
Collapse
Affiliation(s)
- Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - I-Cheng Lu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chee-Yin Chai
- Departments of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Hao J, Wang P, Pei D, Jia B, Hu Q. Rhein lysinate improves motor function in rats with spinal cord injury via inhibiting p38 MAPK pathway. Kaohsiung J Med Sci 2019; 35:765-771. [PMID: 31483087 DOI: 10.1002/kjm2.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jian Hao
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Ping Wang
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Dai‐Ping Pei
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Bin Jia
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Qun‐Sheng Hu
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| |
Collapse
|