1
|
Ghodsi M, Cloos A, Lotens A, De Bueger M, Van Der Smissen P, Henriet P, Cellier N, Pierreux CE, Najdovski T, Tyteca D. Development of an easy non-destructive particle isolation protocol for quality control of red blood cell concentrates. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70028. [PMID: 39830833 PMCID: PMC11739896 DOI: 10.1002/jex2.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
The extracellular vesicle release in red blood cell concentrates reflects progressive accumulation of storage lesions and could represent a new measure to be implemented routinely in blood centres in addition to haemolysis. Nevertheless, there is currently no standardized isolation protocol. In a previous publication, we developed a reproducible ultracentrifugation-based protocol (20,000 × g protocol) that allows to classify red blood cell concentrates into three cohorts according to their vesiculation level. Since this protocol was not adapted to meet routine requirements, the goal of this study was to develop an easier method based on low-speed centrifugation (2,000 × g protocol) and limited red blood cell concentrate volumes to match with a non-destructive sampling from the quality control sampling tubing. Despite the presence of contaminants, mainly in the form of albumin and lipoproteins, the material isolated with the 2,000 × g protocol contained red blood cell-derived vesicular structures. It was reproducible, could predict the number of extracellular vesicles obtained with the 20,000 × g protocol and better discriminated between the three vesiculation cohorts than haemolysis at the legal expiry date of 6 weeks. However, by decreasing red blood cell concentrate volumes to fit with the volume in the quality control tubing, particle yield was highly reduced. Therefore, centrifugation time and relative centrifugal force were adapted (1,000 × g protocol), allowing for the recovery of a similar particle number and composition between small and large volumes sampled from the main unit, in different vesiculation cohorts over time. A similar observation was made with the 1,000 × g protocol between small volumes sampled from the quality control tubing and the mother-bag. In conclusion, our study paves the way for the use of the 2,000 × g protocol (adapted to a 1,000 × g protocol with the quality control sampling tubing) for particle measurement in blood centres.
Collapse
Affiliation(s)
- Marine Ghodsi
- Cell Biology Unit & Platform for Imaging Cells and Tissues, de Duve InstituteUCLouvainBrusselsBelgium
| | - Anne‐Sophie Cloos
- Cell Biology Unit & Platform for Imaging Cells and Tissues, de Duve InstituteUCLouvainBrusselsBelgium
| | - Anaïs Lotens
- Service du SangCroix‐Rouge de BelgiqueSuarléeBelgium
| | - Marine De Bueger
- Cell Biology Unit & Platform for Imaging Cells and Tissues, de Duve InstituteUCLouvainBrusselsBelgium
| | - Patrick Van Der Smissen
- Cell Biology Unit & Platform for Imaging Cells and Tissues, de Duve InstituteUCLouvainBrusselsBelgium
| | - Patrick Henriet
- Cell Biology Unit & Platform for Imaging Cells and Tissues, de Duve InstituteUCLouvainBrusselsBelgium
| | | | - Christophe E. Pierreux
- Cell Biology Unit & Platform for Imaging Cells and Tissues, de Duve InstituteUCLouvainBrusselsBelgium
| | | | - Donatienne Tyteca
- Cell Biology Unit & Platform for Imaging Cells and Tissues, de Duve InstituteUCLouvainBrusselsBelgium
| |
Collapse
|
2
|
D'Alessandro A. It's in your blood: The impact of age, sex, genetic factors and exposures on stored red blood cell metabolism. Transfus Apher Sci 2024; 63:104011. [PMID: 39423666 PMCID: PMC11606750 DOI: 10.1016/j.transci.2024.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Transfusion of packed red blood cell (RBCs) saves millions of lives yearly worldwide, making packed RBCs the most commonly administered drug in hospitals after vaccines. However, not all blood units are created equal. By examining blood products as they age in blood banks, transfusion scientists are gaining insights into the intricacies of human chemical individuality as regulated by biological factors (such as sex, age, and body mass index), genetic and non-genetic factors like environmental, dietary, and other exposures. Here, we review recent literature on this topic, with an emphasis on studies linking genetic traits to the metabolic heterogeneity of blood products, the hemolytic propensity of stored RBCs, and transfusion outcomes in both healthy autologous and non-autologous patients requiring transfusion. Given the role of RBCs as a simplified model of eukaryotic cells, and RBC storage as a medically relevant application modeling erythrocyte responses to oxidant stress, these insights have the potential not only to guide the development of precision transfusion strategies, but also to identify novel mechanisms of RBC metabolic regulation relevant to responses to hypoxia and oxidant stress in human (patho)physiology.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Caughey MC, Francis RO, Karafin MS. New and emerging technologies for pretransfusion blood quality assessment: A state-of-the-art review. Transfusion 2024; 64:2196-2208. [PMID: 39325509 PMCID: PMC11573642 DOI: 10.1111/trf.18019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Affiliation(s)
- Melissa C. Caughey
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University; Chapel Hill, NC
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, New York
| | - Matthew S. Karafin
- Department of Pathology and Laboratory Medicine, University of North Carolina; Chapel Hill, NC
| |
Collapse
|
4
|
Zhao R, Liu X, Ekpo MD, He Y, Tan S. Exploring the Cryopreservation Mechanism and Direct Removal Strategy of TAPS in Red Blood Cell Cryopreservation. ACS Biomater Sci Eng 2024; 10:4259-4268. [PMID: 38832439 DOI: 10.1021/acsbiomaterials.3c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Cryopreservation of red blood cells (RBCs) plays an indispensable role in modern clinical transfusion therapy. Researchers are dedicated to finding cryoprotectants (CPAs) with high efficiency and low toxicity to prevent RBCs from cryopreservation injury. This study presents, for the first time, the feasibility and underlying mechanisms of a novel CPA called tris(hydroxymethyl)aminomethane-3-propanesulfonic acid (TAPS) in RBCs cryopreservation. The results demonstrated that the addition of TAPS achieved a post-thaw recovery of RBCs at 79.12 ± 0.67%, accompanied by excellent biocompatibility (above 97%). Subsequently, the mechanism for preventing RBCs from cryopreservation injury was elucidated. On one hand, TAPS exhibits a significant amount of bound water and effectively inhibits ice recrystallization, thereby reducing mechanical damage. On the other hand, TAPS demonstrates high capacity to scavenge reactive oxygen species and strong endogenous antioxidant enzyme activity, providing effective protection against oxidative damage. Above all, TAPS can be readily removed through direct washing, and the RBCs after washing showed no significant differences in various physiological parameters (SEM, RBC hemolysis, ESR, ATPase activity, and Hb content) compared to fresh RBCs. Finally, the presented mathematical modeling analysis indicates the good benefits of TAPS. In summary, TAPS holds potential for both research and practical in the field of cryobiology, offering innovative insights for the improvement of RBCs cryopreservation in transfusion medicine.
Collapse
Affiliation(s)
- Rui Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Pilot Free Trade Zone Global Cell Bank, Changsha, Hunan 410000, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou, SIP 215000, China
| |
Collapse
|
5
|
Isiksacan Z, William N, Senturk R, Boudreau L, Wooning C, Castellanos E, Isiksacan S, Yarmush ML, Acker JP, Usta OB. Extended supercooled storage of red blood cells. Commun Biol 2024; 7:765. [PMID: 38914723 PMCID: PMC11196592 DOI: 10.1038/s42003-024-06463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Red blood cell (RBC) transfusions facilitate many life-saving acute and chronic interventions. Transfusions are enabled through the gold-standard hypothermic storage of RBCs. Today, the demand for RBC units is unfulfilled, partially due to the limited storage time, 6 weeks, in hypothermic storage. This time limit stems from high metabolism-driven storage lesions at +1-6 °C. A recent and promising alternative to hypothermic storage is the supercooled storage of RBCs at subzero temperatures, pioneered by our group. Here, we report on long-term supercooled storage of human RBCs at physiological hematocrit levels for up to 23 weeks. Specifically, we assess hypothermic RBC additive solutions for their ability to sustain supercooled storage. We find that a commercially formulated next-generation solution (Erythro-Sol 5) enables the best storage performance and can form the basis for further improvements to supercooled storage. Our analyses indicate that oxidative stress is a prominent time- and temperature-dependent injury during supercooled storage. Thus, we report on improved supercooled storage of RBCs at -5 °C by supplementing Erythro-Sol 5 with the exogenous antioxidants, resveratrol, serotonin, melatonin, and Trolox. Overall, this study shows the long-term preservation potential of supercooled storage of RBCs and establishes a foundation for further improvement toward clinical translation.
Collapse
Affiliation(s)
- Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| | - Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Rahime Senturk
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Chemical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Luke Boudreau
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| | - Celine Wooning
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Human Biology, Scripps College, Claremont, CA, USA
| | - Emily Castellanos
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Psychology, Amherst College, Amherst, MA, USA
| | - Salih Isiksacan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Electrical-Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada.
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Children's, Boston, MA, USA.
| |
Collapse
|
6
|
Mykhailova O, Brandon-Coatham M, Phan C, Yazdanbakhsh M, Olafson C, Yi QL, Kanias T, Acker JP. Red cell concentrates from teen male donors contain poor-quality biologically older cells. Vox Sang 2024; 119:417-427. [PMID: 38418415 DOI: 10.1111/vox.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND OBJECTIVES Donor factors influence the quality characteristics of red cell concentrates (RCCs) and the lesions that develop in these heterogeneous blood products during hypothermic storage. Teen male donors' RCCs contain elevated levels of biologically old red blood cells (RBCs). The aim of this study was to interrogate the quality of units of different donor ages and sexes to unravel the complex interplay between donor characteristics, long-term cold storage and, for the first time, RBC biological age. MATERIALS AND METHODS RCCs from teen males, teen females, senior males and senior females were density-separated into less-dense/young (Y-RBCs) and dense/old RBCs (O-RBCs) throughout hypothermic storage for testing. The unseparated and density-separated cells were tested for haematological parameters, stress (oxidative and osmotic) haemolysis and oxygen affinity (p50). RESULTS The O-RBCs obtained from teen donor samples, particularly males, had smaller mean corpuscular volumes and higher mean corpuscular haemoglobin concentrations. While biological age did not significantly affect oxygen affinity, biologically aged O-RBCs from stored RCCs exhibited increased oxidative haemolysis and decreased osmotic fragility, with teenage male RCCs exhibiting the highest propensity to haemolyse. CONCLUSION Previously, donor age and sex were shown to have an impact on the biological age distribution of RBCs within RCCs. Herein, we demonstrated that RBC biological age, particularly O-RBCs, which are found more prevalently in male teens, to be a driving factor of several aspects of poor blood product quality. This study emphasizes that donor factors should continue to be considered for their potential impacts on transfusion outcomes.
Collapse
Affiliation(s)
- Olga Mykhailova
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | | | - Celina Phan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Mahsa Yazdanbakhsh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Carly Olafson
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Qi-Long Yi
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | - Jason P Acker
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Yang Q, Chen D, Li C, Liu R, Wang X. Mechanism of hypoxia-induced damage to the mechanical property in human erythrocytes-band 3 phosphorylation and sulfhydryl oxidation of membrane proteins. Front Physiol 2024; 15:1399154. [PMID: 38706947 PMCID: PMC11066195 DOI: 10.3389/fphys.2024.1399154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: The integrity of the erythrocyte membrane cytoskeletal network controls the morphology, specific surface area, material exchange, and state of erythrocytes in the blood circulation. The antioxidant properties of resveratrol have been reported, but studies on the effect of resveratrol on the hypoxia-induced mechanical properties of erythrocytes are rare. Methods: In this study, the effects of different concentrations of resveratrol on the protection of red blood cell mor-phology and changes in intracellular redox levels were examined to select an appropriate concentration for further study. The Young's modulus and surface roughness of the red blood cells and blood viscosity were measured via atomic force microsco-py and a blood rheometer, respectively. Flow cytometry, free hemoglobin levels, and membrane lipid peroxidation levels were used to characterize cell membrane damage in the presence and absence of resveratrol after hypoxia. The effects of oxida-tive stress on the erythrocyte membrane proteins band 3 and spectrin were further investigated by immunofluorescent label-ing and Western blotting. Results and discussion: Resveratrol changed the surface roughness and Young's modulus of the erythrocyte mem-brane, reduced the rate of eryptosis in erythrocytes after hypoxia, and stabilized the intracellular redox level. Further data showed that resveratrol protected the erythrocyte membrane proteins band 3 and spectrin. Moreover, resistance to band 3 pro-tein tyrosine phosphorylation and sulfhydryl oxidation can protect the stability of the erythrocyte membrane skeleton net-work, thereby protecting erythrocyte deformability under hypoxia. The results of the present study may provide new insights into the roles of resveratrol in the prevention of hypoxia and as an antioxidant.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
D'Alessandro A, Hod EA. Red Blood Cell Storage: From Genome to Exposome Towards Personalized Transfusion Medicine. Transfus Med Rev 2023; 37:150750. [PMID: 37574398 PMCID: PMC10834861 DOI: 10.1016/j.tmrv.2023.150750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 08/15/2023]
Abstract
Over the last decade, the introduction of omics technologies-especially high-throughput genomics and metabolomics-has contributed significantly to our understanding of the role of donor genetics and nongenetic determinants of red blood cell storage biology. Here we briefly review the main advances in these areas, to the extent these contributed to the appreciation of the impact of donor sex, age, ethnicity, but also processing strategies and donor environmental, dietary or other exposures - the so-called exposome-to the onset and severity of the storage lesion. We review recent advances on the role of genetically encoded polymorphisms on red cell storage biology, and relate these findings with parameters of storage quality and post-transfusion efficacy, such as hemolysis, post-transfusion intra- and extravascular hemolysis and hemoglobin increments. Finally, we suggest that the combination of these novel technologies have the potential to drive further developments towards personalized (or precision) transfusion medicine approaches.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Hay A, Nemkov T, Gamboni F, Dzieciatkowska M, Key A, Galbraith M, Bartsch K, Sun K, Xia Y, Stone M, Busch MP, Norris PJ, Zimring JC, D’Alessandro A. Sphingosine 1-phosphate has a negative effect on RBC storage quality. Blood Adv 2023; 7:1379-1393. [PMID: 36469038 PMCID: PMC10139937 DOI: 10.1182/bloodadvances.2022008936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022] Open
Abstract
Blood storage promotes the rapid depletion of red blood cell (RBC) high-energy adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG), which are critical regulators of erythrocyte physiology and function, as well as oxygen kinetics and posttransfusion survival. Sphingosine-1-phosphate (S1P) promotes fluxes through glycolysis. We hypothesized that S1P supplementation to stored RBC units would improve energy metabolism and posttransfusion recovery. We quantified S1P in 1929 samples (n = 643, storage days 10, 23, and 42) from the REDS RBC Omics study. We then supplemented human and murine RBCs from good storer (C57BL6/J) and poor storer strains (FVB) with S1P (1, 5, and 10 μM) before measurements of metabolism and posttransfusion recovery. Similar experiments were repeated for mice with genetic ablation of the S1P biosynthetic pathway (sphingosine kinase 1 [Sphk1] knockout [KO]). Sample analyses included metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics, and analysis of end-of-storage posttransfusion recovery, under normoxic and hypoxic storage conditions. Storage promoted decreases in S1P levels, which were the highest in units donated by female or older donors. Supplementation of S1P to human and murine RBCs boosted the steady-state levels of glycolytic metabolites and glycolytic fluxes, ie the generation of ATP and DPG, at the expense of the pentose phosphate pathway. Lower posttransfusion recovery was observed upon S1P supplementation. All these phenomena were reversed in Sphk1 KO mice or with hypoxic storage. S1P is a positive regulator of energy metabolism and a negative regulator of antioxidant metabolism in stored RBCs, resulting in lower posttransfusion recoveries in murine models.
Collapse
Affiliation(s)
- Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Matthew Galbraith
- Linda Crnic Institute for Down Syndrome, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Kyle Bartsch
- Linda Crnic Institute for Down Syndrome, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | | | - Yang Xia
- University of Changsha, Changsha, China
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
10
|
Anastasiadi AT, Stamoulis K, Papageorgiou EG, Lelli V, Rinalducci S, Papassideri IS, Kriebardis AG, Antonelou MH, Tzounakas VL. The time-course linkage between hemolysis, redox, and metabolic parameters during red blood cell storage with or without uric acid and ascorbic acid supplementation. FRONTIERS IN AGING 2023; 4:1161565. [PMID: 37025499 PMCID: PMC10072267 DOI: 10.3389/fragi.2023.1161565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
Oxidative phenomena are considered to lie at the root of the accelerated senescence observed in red blood cells (RBCs) stored under standard blood bank conditions. It was recently shown that the addition of uric (UA) and/or ascorbic acid (AA) to the preservative medium beneficially impacts the storability features of RBCs related to the handling of pro-oxidant triggers. This study constitutes the next step, aiming to examine the links between hemolysis, redox, and metabolic parameters in control and supplemented RBC units of different storage times. For this purpose, a paired correlation analysis of physiological and metabolism parameters was performed between early, middle, and late storage in each subgroup. Strong and repeated correlations were observed throughout storage in most hemolysis parameters, as well as in reactive oxygen species (ROS) and lipid peroxidation, suggesting that these features constitute donor-signatures, unaffected by the diverse storage solutions. Moreover, during storage, a general "dialogue" was observed between parameters of the same category (e.g., cell fragilities and hemolysis or lipid peroxidation and ROS), highlighting their interdependence. In all groups, extracellular antioxidant capacity, proteasomal activity, and glutathione precursors of preceding time points anticorrelated with oxidative stress lesions of upcoming ones. In the case of supplemented units, factors responsible for glutathione synthesis varied proportionally to the levels of glutathione itself. The current findings support that UA and AA addition reroutes the metabolism to induce glutathione production, and additionally provide mechanistic insight and footing to examine novel storage optimization strategies.
Collapse
Affiliation(s)
- Alkmini T. Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Veronica Lelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
- *Correspondence: Vassilis L. Tzounakas,
| |
Collapse
|
11
|
Tricine as a Novel Cryoprotectant with Osmotic Regulation, Ice Recrystallization Inhibition and Antioxidant Properties for Cryopreservation of Red Blood Cells. Int J Mol Sci 2022; 23:ijms23158462. [PMID: 35955596 PMCID: PMC9369174 DOI: 10.3390/ijms23158462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
The cryopreservation of red blood cells (RBCs) plays a key role in blood transfusion therapy. Traditional cryoprotectants (CPAs) are mostly organic solvents and may cause side effects to RBCs, such as hemolysis and membrane damage. Therefore, it is necessary to find CPAs with a better performance and lower toxicity. Herein, we report for the first time that N-[Tri(hydroxymethyl)methyl]glycine (tricine) showed a great potential in the cryopreservation of sheep RBCs. The addition of tricine significantly increased the thawed RBCs’ recovery from 19.5 ± 1.8% to 81.2 ± 8.5%. The properties of thawed RBCs were also maintained normally. Through mathematical modeling analysis, tricine showed a great efficiency in cryopreservation. We found that tricine had a good osmotic regulation capacity, which could mitigate the dehydration of RBCs during cryopreservation. In addition, tricine inhibited ice recrystallization, thereby decreasing the mechanical damage from ice. Tricine could also reduce oxidative damage during freezing and thawing by scavenging reactive oxygen species (ROS) and maintaining the activities of endogenous antioxidant enzymes. This work is expected to open up a new path for the study of novel CPAs and promote the development of cryopreservation of RBCs.
Collapse
|
12
|
Czubak-Prowizor K, Macieja A, Poplawski T, Zbikowska HM. Responses of human colon and breast adenocarcinoma cell lines (LoVo, MCF7) and non-tumorigenic mammary epithelial cells (MCF-10A) to the acellular fraction of packed red blood cells in the presence and absence of cisplatin. PLoS One 2022; 17:e0271193. [PMID: 35802725 PMCID: PMC9269965 DOI: 10.1371/journal.pone.0271193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
Perioperative blood transfusion in colorectal and some other cancer patients has been linked to the increased risk for recurrence, but a causal mechanism remains unclear. During the preparation and storage of packed red blood cells (PRBCs) bio-active substances accumulate in the acellular fraction (supernatant). Viability, proliferation, reactive oxygen species (ROS) levels, and DNA damage of colon (LoVo) and breast (MCF7) adenocarcinoma cells and non-tumorigenic MCF-10A cell line were determined in response to the supernatants of fresh and long-stored (day 42) PRBCs, leukoreduced (LR) or non-leukoreduced (NLR). The effect of supernatants on the cytotoxicity of cisplatin (cisPt) towards the cells was also examined. Supernatants, especially from a day 1 PRBCs, both LR and NLR, reduced the viability and inhibited proliferation of tumor cells (LoVo, MCF7), accompanying by the excessive ROS production, but these were not the case in MCF-10A. Moreover, supernatants had no effect on the cytotoxicity of cisPt against LoVo and MCF7 cells, while caused increased drug resistance in MCF-10A cells. The findings suggest the acellular fraction of PRBCs does not exhibit any pro-proliferative activity in the cancer cell lines studied. However, these are pioneering issues and require further research.
Collapse
Affiliation(s)
- Kamila Czubak-Prowizor
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland
- * E-mail: ,
| | - Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Tomasz Poplawski
- Department of Chemistry and Clinical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Halina Malgorzata Zbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Barshtein G. Biochemical and Biophysical Properties of Red Blood Cells in Disease. Biomolecules 2022; 12:biom12070923. [PMID: 35883479 PMCID: PMC9312862 DOI: 10.3390/biom12070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, Campus Een Kerem, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
14
|
Intervening on the Storage Time of RBC Units and its Effects on Adverse Recipient Outcomes using Real-World Data. Blood 2022; 139:3647-3654. [PMID: 35482965 PMCID: PMC9227103 DOI: 10.1182/blood.2022015892] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Emulating hypothetical randomized trials using large real-world data may be well suited to address the issues of prior RBC transfusion RCTs. Our study suggests that transfusing RBC units stored for >1 or 2 weeks increases recipient mortality.
Randomized controlled trials (RCTs) have found no evidence that the storage time of transfused red blood cell (RBC) units affects recipient survival. However, inherent difficulties in conducting RBC transfusion RCTs have prompted critique of their design, analyses, and interpretation. Here, we address these issues by emulating hypothetical randomized trials using large real-world data to further clarify the adverse effects of storage time. We estimated the comparative effect of transfusing exclusively older vs fresher RBC units on the primary outcome of death, and the secondary composite end point of thromboembolic events, or death, using inverse probability weighting. Thresholds were defined as 1, 2, 3, and 4 weeks of storage. A large Danish blood transfusion database from the period 2008 to 2018 comprising >900 000 transfusion events defined the observational data. A total of 89 799 patients receiving >340 000 RBC transfusions during 28 days of follow-up met the eligibility criteria. Treatment with RBC units exclusively fresher than 1, 2, 3, and 4 weeks of storage was found to decrease the 28-day recipient mortality with 2.44 percentage points (pp) (0.86 pp, 4.02 pp), 1.93 pp (0.85 pp, 3.02 pp), 1.06 pp (–0.20 pp, 2.33 pp), and −0.26 pp (–1.78 pp, 1.25 pp) compared with transfusing exclusively older RBC units, respectively. The 28-day risk differences for the composite end point were similar. This study suggests that transfusing exclusively older RBC units stored for >1 or 2 weeks increases the 28-day recipient mortality and risk of thromboembolism or death compared with transfusing fresher RBC units.
Collapse
|
15
|
Czubak-Prowizor K, Macieja A, Poplawski T, Zbikowska HM. Packed Red Blood Cell Supernatants Do Not Promote Growth or Cisplatin Resistance of Myeloid Leukemia K-562 Cells. J Blood Med 2022; 13:121-131. [PMID: 35283654 PMCID: PMC8906863 DOI: 10.2147/jbm.s349965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Kamila Czubak-Prowizor
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
- Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, 92-215, Poland
- Correspondence: Kamila Czubak-Prowizor, Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland, Tel +48 42 635 44 83, Email ;
| | - Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| | - Tomasz Poplawski
- Department of Chemistry and Clinical Biochemistry, Medical University of Lodz, Lodz, 90-136, Poland
| | - Halina Malgorzata Zbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| |
Collapse
|
16
|
Abstract
BACKGROUND Erythrocyte transfusions are independently associated with acute kidney injury. Kidney injury may be consequent to the progressive hematologic changes that develop during storage. This study therefore tested the hypothesis that prolonged erythrocyte storage increases posttransfusion acute kidney injury. METHODS The Informing Fresh versus Old Red Cell Management (INFORM) trial randomized 31,497 patients to receive either the freshest or oldest available matching erythrocyte units and showed comparable mortality with both. This a priori substudy compared the incidence of posttransfusion acute kidney injury in the randomized groups. Acute kidney injury was defined by the creatinine component of the Kidney Disease: Improving Global Outcomes criteria. RESULTS The 14,461 patients included in this substudy received 40,077 erythrocyte units. For patients who received more than one unit, the mean age of the blood units was used as the exposure. The median of the mean age of blood units transfused per patient was 11 days [interquartile range, 8, 15] in the freshest available blood group and 23 days [interquartile range, 17, 30] in the oldest available blood group. In the primary analysis, posttransfusion acute kidney injury was observed in 688 of 4,777 (14.4%) patients given the freshest available blood and 1,487 of 9,684 (15.4%) patients given the oldest available blood, with an estimated relative risk (95% CI) of 0.94 (0.86 to 1.02; P = 0.132). The secondary analysis treated blood age as a continuous variable (defined as duration of storage in days), with an estimated relative risk (95% CI) of 1.00 (0.96 to 1.04; P = 0.978) for a 10-day increase in the mean age of erythrocyte units. CONCLUSIONS In a population of patients without severely impaired baseline renal function receiving fewer than 10 erythrocyte units, duration of blood storage had no effect on the incidence of posttransfusion acute kidney injury. EDITOR’S PERSPECTIVE
Collapse
|
17
|
Exploring the application and mechanism of sodium hyaluronate in cryopreservation of red blood cells. Mater Today Bio 2021; 12:100156. [PMID: 34825160 PMCID: PMC8603211 DOI: 10.1016/j.mtbio.2021.100156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
The cryopreservation of red blood cells (RBCs) is essential for transfusion therapy and maintaining the inventory of RBCs units. The existing cryoprotectants (CPAs) have many defects, and the search for novel CPAs is becoming a research hotspot. Sodium hyaluronate (SH) is polymerized from sodium glucuronate and N-acetylglucosamine, which has good water binding capacity and biocompatibility. Herein, we reported for the first time that under the action of medium molecular weight sodium hyaluronate (MSH), the thawed RBCs recovery increased from 33.1 ± 5.8% to 63.2 ± 3.5%. In addition, RBCs functions and properties were maintained normally, and the residual MSH could be removed by direct washing. When MSH was used with a very low concentration (5% v/v) of glycerol (Gly), the thawed RBCs recovery could be increased to 92.3 ± 4.6%. In general, 40% v/v Gly was required to achieve similar efficiency. A mathematical model was used to compare the performance of MSH, PVA and trehalose in cryopreservation, and MSH showed the best efficiency. It was found that MSH could periodically regulate the content of intracellular water through the “reservoir effect” to reduce the damages during freezing and thawing. Moreover, MSH could inhibit ice recrystallization when combined with RBCs. The high viscosity and strong water binding capacity of MSH was also conducive to reducing the content of ice. This works points out a new direction for cryopreservation of RBCs and may promote transfusion therapy in clinic. MSH improved the RBCs recovery in cryopreservation. MSH can be removed directly after thawing. The properties and functions of RBCs were protected by MSH. High RBCs recovery is found using MSH with 5% v/v glycerol. The mathematical model is studied for the cryopreservation. The mechanism is proposed for cryopreservation using MSH.
Collapse
|
18
|
Barshtein G, Pajic-Lijakovic I, Gural A. Deformability of Stored Red Blood Cells. Front Physiol 2021; 12:722896. [PMID: 34690797 PMCID: PMC8530101 DOI: 10.3389/fphys.2021.722896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Red blood cells (RBCs) deformability refers to the cells’ ability to adapt their shape to the dynamically changing flow conditions so as to minimize their resistance to flow. The high red cell deformability enables it to pass through small blood vessels and significantly determines erythrocyte survival. Under normal physiological states, the RBCs are attuned to allow for adequate blood flow. However, rigid erythrocytes can disrupt the perfusion of peripheral tissues and directly block microvessels. Therefore, RBC deformability has been recognized as a sensitive indicator of RBC functionality. The loss of deformability, which a change in the cell shape can cause, modification of cell membrane or a shift in cytosol composition, can occur due to various pathological conditions or as a part of normal RBC aging (in vitro or in vivo). However, despite extensive research, we still do not fully understand the processes leading to increased cell rigidity under cold storage conditions in a blood bank (in vitro aging), In the present review, we discuss publications that examined the effect of RBCs’ cold storage on their deformability and the biological mechanisms governing this change. We first discuss the change in the deformability of cells during their cold storage. After that, we consider storage-related alterations in RBCs features, which can lead to impaired cell deformation. Finally, we attempt to trace a causal relationship between the observed phenomena and offer recommendations for improving the functionality of stored cells.
Collapse
Affiliation(s)
- Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
19
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|
20
|
López-Canizales AM, Angulo-Molina A, Garibay-Escobar A, Silva-Campa E, Mendez-Rojas MA, Santacruz-Gómez K, Acosta-Elías M, Castañeda-Medina B, Soto-Puebla D, Álvarez-Bajo O, Burgara-Estrella A, Pedroza-Montero M. Nanoscale Changes on RBC Membrane Induced by Storage and Ionizing Radiation: A Mini-Review. Front Physiol 2021; 12:669455. [PMID: 34149450 PMCID: PMC8213202 DOI: 10.3389/fphys.2021.669455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
The storage lesions and the irradiation of blood cellular components for medical procedures in blood banks are events that may induce nanochanges in the membrane of red blood cells (RBCs). Alterations, such as the formation of pores and vesicles, reduce flexibility and compromise the overall erythrocyte integrity. This review discusses the alterations on erythrocytic lipid membrane bilayer through their characterization by confocal scanning microscopy, Raman, scanning electron microscopy, and atomic force microscopy techniques. The interrelated experimental results may address and shed light on the correlation of biomechanical and biochemical transformations induced in the membrane and cytoskeleton of stored and gamma-irradiated RBC. To highlight the main advantages of combining these experimental techniques simultaneously or sequentially, we discuss how those outcomes observed at micro- and nanoscale cell levels are useful as biomarkers of cell aging and storage damage.
Collapse
Affiliation(s)
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | | | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | - Miguel A. Mendez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas, Puebla, Mexico
| | | | - Mónica Acosta-Elías
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | | | - Diego Soto-Puebla
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | - Osiris Álvarez-Bajo
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | | | | |
Collapse
|
21
|
D'Alessandro A, Fu X, Kanias T, Reisz JA, Culp-Hill R, Guo Y, Gladwin MT, Page G, Kleinman S, Lanteri M, Stone M, Busch MP, Zimring JC. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica 2021; 106:1290-1302. [PMID: 32241843 PMCID: PMC8094095 DOI: 10.3324/haematol.2020.246603] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Red blood cell storage in the blood bank promotes the progressive accumulation of metabolic alterations that may ultimately impact the erythrocyte capacity to cope with oxidant stressors. However, the metabolic underpinnings of the capacity of RBCs to resist oxidant stress and the potential impact of donor biology on this phenotype are not known. Within the framework of the REDS-III RBC-Omics study, RBCs from 8,502 healthy blood donors were stored for 42 days and tested for their propensity to hemolyze following oxidant stress. A subset of extreme hemolyzers donated a second unit of blood, which was stored for 10, 23, and 42 days and profiled again for oxidative hemolysis and metabolomics (599 samples). Alterations of RBC energy and redox homeostasis were noted in donors with high oxidative hemolysis. RBCs from females, donors over 60 years old, donors of Asian/South Asian race-ethnicity, and RBCs stored in additive solution-3 were each independently characterized by improved antioxidant metabolism compared to, respectively, males, donors under 30 years old, Hispanic and African American race ethnicity donors, and RBCs stored in additive solution-1. Merging metabolomics data with results from an independent GWAS study on the same cohort, we identified metabolic markers of hemolysis and G6PD-deficiency, which were associated with extremes in oxidative hemolysis and dysregulation in NADPH and glutathione-dependent detoxification pathways of oxidized lipids. Donor sex, age, ethnicity, additive solution and G6PD status impact the metabolism of the stored erythrocyte and its susceptibility to hemolysis following oxidative insults.
Collapse
Affiliation(s)
| | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | | | - Julie A Reisz
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel Culp-Hill
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Mark T Gladwin
- University of Pittsburgh Medical Center, Pittsburgh PA, USA
| | | | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
| | | | | | | |
Collapse
|
22
|
Rogers SC, Ge X, Brummet M, Lin X, Timm DD, d'Avignon A, Garbow JR, Kao J, Prakash J, Issaian A, Eisenmesser EZ, Reisz JA, D'Alessandro A, Doctor A. Quantifying dynamic range in red blood cell energetics: Evidence of progressive energy failure during storage. Transfusion 2021; 61:1586-1599. [PMID: 33830505 DOI: 10.1111/trf.16395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND During storage, red blood cells (RBCs) undergo significant biochemical and morphologic changes, referred to collectively as the "storage lesion". It was hypothesized that these defects may arise from disrupted oxygen-based regulation of RBC energy metabolism, with resultant depowering of intrinsic antioxidant systems. STUDY DESIGN AND METHODS As a function of storage duration, the dynamic range in RBC metabolic response to three models of biochemical oxidant stress (methylene blue, hypoxanthine/xanthine oxidase, and diamide) was assessed, comparing glycolytic flux by NMR and UHPLC-MS methodologies. Blood was processed/stored under standard conditions (AS-1 additive solution) with leukoreduction. Over a 6-week period, RBC metabolic and antioxidant status were assessed at baseline and following exposure to the three biochemical oxidant models. Comparison was made of glycolytic flux (1 H-NMR tracking of [2-13 C]-glucose and metabolomic phenotyping with [1,2,3-13 C3 ] glucose), reducing equivalent (NADPH/NADP+ ) recycling, and thiol-based (GSH/GSSG) antioxidant status. RESULTS As a function of storage duration, we observed the following: (1) a reduction in baseline hexose monophosphate pathway (HMP) flux, the sole pathway responsible for the regeneration of the essential reducing equivalent NADPH; with (2) diminished stress-based dynamic range in both overall glycolytic as well as proportional HMP flux. In addition, progressive with storage duration, RBCs showed (3) constraint in reducing equivalent (NADPH) recycling capacity, (4) loss of thiol based (GSH) recycling capacity, and (5) dysregulation of metabolon assembly at the cytoplasmic domain of Band 3 membrane protein (cdB3). CONCLUSION Blood storage disturbs normal RBC metabolic control, depowering antioxidant capacity and enhancing vulnerability to oxidative injury.
Collapse
Affiliation(s)
- Stephen C Rogers
- Department of Pediatrics, Divisions of Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,The Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xia Ge
- Department of Chemistry, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Mary Brummet
- Department of Pediatrics, Divisions of Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,The Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xue Lin
- Department of Pediatrics, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - David D Timm
- Department of Pediatrics, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Andre d'Avignon
- Department of Chemistry, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Joel R Garbow
- Department of Radiology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Jeff Kao
- Department of Chemistry, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Jaya Prakash
- Department of Pediatrics, Divisions of Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allan Doctor
- Department of Pediatrics, Divisions of Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,The Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Alayash AI. βCysteine 93 in human hemoglobin: a gateway to oxidative stability in health and disease. J Transl Med 2021; 101:4-11. [PMID: 32980855 DOI: 10.1038/s41374-020-00492-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
βcysteine 93 residue plays a key role in oxygen (O2)-linked conformational changes in the hemoglobin (Hb) molecule. This solvent accessible residue is also a target for binding of thiol reagents that can remotely alter O2 affinity, cooperativity, and Hb's sensitivity to changes in pH. In recent years, βCys93 was assigned a new physiological role in the transport of nitric oxide (NO) through a process of S-nitrosylation as red blood cells (RBCs) travel from lungs to tissues. βCys93 is readily and irreversibly oxidized in the presence of a mild oxidant to cysteic acid, which causes destabilization of Hb resulting in improper protein folding and the loss of heme. Under these oxidative conditions, ferryl heme (HbFe4+), a higher oxidation state of Hb is formed together with its protein radical (.HbFe4+). This radical migrates to βCys93 and interacts with other "hotspot" amino acids that are highly susceptible to oxidative modifications. Oxidized βCys93 may therefore be used as a biomarker of oxidative stress, reflecting the deterioration of Hb within RBCs intended for transfusion or RBCs from patients with hemoglobinopathies. Site specific mutation of a redox active amino acid(s) to reduce the ferryl heme or direct chemical modifications that can shield βCys93 have been proposed to improve oxidative resistance of Hb and may offer a protective therapeutic strategy.
Collapse
Affiliation(s)
- Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research Food and Drug Administration (FDA), Silver Spring, MD, 20993, USA.
| |
Collapse
|
24
|
Liu T, Han S, Pang M, Li J, Wang J, Luo X, Wang Y, Liu Z, Yang X, Ye Z. Cerium oxide nanoparticles protect red blood cells from hyperthermia-induced damages. J Biomater Appl 2020; 36:36-44. [PMID: 33353468 DOI: 10.1177/0885328220979091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heat stroke and severe fever cause anemia, although the underlying mechanism remains unclear. Here, we report the use of Cerium oxide nanoparticles in protection of red blood cells against damage caused by exposure to short-term hyperthermia (42°C, 10 min). Red blood cells exposed to hyperthermia exhibited extradition senescence with higher density, smaller size and lower zeta potential relative to those under normal physiological environment (37°C, 10 min). Furthermore, hyperthermia-exposed cells exhibited significantly higher reactive oxygen species (ROS) production compared to the normal conditions. Importantly, the preconditional treatment, using Ceria nanoparticles (CNPs), ameliorated senescence and apoptosis in red blood cells damaged by hyperthermia by reducing ROS levels. Summarily, short-term hyperthermia caused a significant increase in ROS in red blood cells, and resulted in senescence and apoptosis. These may be possible mechanisms of pathological changes in red blood cells exposed to heat stroke or severe fever. Overall, these findings indicate that CNPs strongly inhibit ROS production, and effectively ameliorates hyperthermia-induced damages in red blood cells.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shiqian Han
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mao Pang
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, China
| | - Jing Li
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.,Department of Preventive Healthcare, Yan'an Hospital affiliated to Kunming Medical, Kunming, China
| | - Jing Wang
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhifeng Liu
- Department of Critical Care medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Xiaochao Yang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhijia Ye
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.,Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, China
| |
Collapse
|
25
|
David M, Levy E, Barshtein G, Livshits L, Arbell D, Ben Ishai P, Feldman Y. The dielectric spectroscopy of human red blood cells during 37-day storage: β-dispersion parameterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183410. [PMID: 32687816 DOI: 10.1016/j.bbamem.2020.183410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/17/2022]
Abstract
This study exploits dielectric spectroscopy to monitor the kinetics of red blood cells (RBC) storage lesions, focusing on those processes linked to cellular membrane interface known as β-dispersion. The dielectric response of RBC suspensions, exposed to blood-bank cold storage for 37 days, was studied using time-domain dielectric spectroscopy in the frequency range 500 kHz to 200 MHz. The measured dielectric processes are characterized by their dielectric strength (Δε) and their relaxation times (τ). Changes in the dielectric properties of the RBC suspensions, due to storage-related biophysical changes, were evaluated. For a quantitative characterization of RBC vitality, we characterized the shape of fresh and stored RBC and measured their deformability as expressed by their average elongation ratio, which was achieved under a shear stress of 3.0 Pa. During the second week of storage, an increment in the evolution of the relaxation times and in the dielectric permittivity strength of about 25% was observed. We propose that the characteristic increment of ATP, during the second and third weeks of storage, is responsible for the raise of the specific capacitance of cell membrane, which in turn explains the changes observed in the dielectric response when combined with the influence of the shape changes.
Collapse
Affiliation(s)
- Marcelo David
- The Hebrew University of Jerusalem, Applied Physics Department, Jerusalem, Israel.
| | - Evgeniya Levy
- The Hebrew University of Jerusalem, Applied Physics Department, Jerusalem, Israel
| | - Gregory Barshtein
- The Hebrew University of Jerusalem, Faculty of Medicine, Department of Biochemistry & Molecular Biology, Jerusalem, Israel
| | - Leonid Livshits
- The Hebrew University of Jerusalem, Faculty of Medicine, Department of Biochemistry & Molecular Biology, Jerusalem, Israel
| | - Dan Arbell
- Pediatric Surgery, Hadassah Medical Center, Israel
| | - Paul Ben Ishai
- Department of Physics, Ariel University, P.O.B. 3, Ariel 40700, Israel
| | - Yuri Feldman
- The Hebrew University of Jerusalem, Applied Physics Department, Jerusalem, Israel.
| |
Collapse
|
26
|
Red blood cell supernatant increases activation and agonist-induced reactivity of blood platelets. Thromb Res 2020; 196:543-549. [PMID: 33142231 DOI: 10.1016/j.thromres.2020.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/20/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Transfusion of "older" packed red blood cells (PRBCs) in patients with cardiovascular disorders (CVD) may be associated with an increased risk of pro-thrombotic events, but the underlying mechanisms are poorly understood. We hypothesized that the PRBC supernatant can activate blood platelets due to hemolysis-induced oxidative stress. METHODS Effects of the PRBC supernatants, and their filtrates (containing the soluble substances of molecular weight <10 kDa) prepared at day 1 and 42 of storage, from non-leukoreduced (D1 NLR, D42 NLR) and leukoreduced (D1 LR, D42 LR) PRBCs on PLT activation/reactivity and collagen-induced aggregation were measured by flow cytometry and turbidimetry, respectively. RESULTS Supernatants display a stimulating effect on PLTs, which was manifested by a release of PLT-derived microparticles, generation of PLT aggregates, increased P-selectin expression on the membrane surface, and activation of integrin αIIbβ3. Moreover, supernatants interacted in a way that may be additive or synergistic with collagen or with ADP. The pre-storage LR did not affect the levels of PLT activation markers. The enhanced PLT activation was presumably mediated by free hemoglobin and/or the products of its breakdown, accumulating in the PRBC milieu, and their ability to trigger the ROS generation. Additionally, collagen-induced PLT aggregation was increased by low molecular weight substances possibly derived from the residual leukocytes and PLTs present in PRBCs. CONCLUSION Transfusion of aged PRBCs may result in the hyper-activity of PLTs, which, at least in part, could be a cause of transfusion-related thrombotic complications reported in CVD patients.
Collapse
|
27
|
Karamanos E, Shah AR, Kim JN, Wang HT. Impact of Blood Transfusion in Free Flap Breast Reconstruction Using Propensity Score Matching. J Reconstr Microsurg 2020; 37:315-321. [PMID: 32892332 DOI: 10.1055/s-0040-1716388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Microvascular thrombosis has been associated with cytokine release and inflammatory syndromes which can occur as a result of blood transfusions. This phenomenon could potentially lead to complications in breast free flap reconstruction. The aim of this study was to evaluate the impact of perioperative blood transfusion in free flap breast reconstruction using large population analysis. METHODS The American College of Surgeons National Quality Improvement Program database was queried for delayed free flap breast reconstructions performed in 2016. The study population was divided based on perioperative blood transfusion within 24 hours of the start of the operation. Propensity score matching analysis was used to ensure homogeneity between the two study groups. Primary outcome was unplanned return to the operating room (OR) within 30 days. Secondary outcomes were readmission and complications. RESULTS A total of 1,256 patients were identified. Out of those, 91 patients received a perioperative blood transfusion. All the patients received only one unit of PRBC within the first 24 hours. Those patients were matched with similar patients who did not receive a transfusion on a ratio of 1:3 (273 patients). Patients who received a transfusion had a significantly higher incidence of reoperation (42 vs. 10%, p < 0.001). Patients who received a transfusion were more likely to return to the OR after 48 hours from the initial operation (13 vs. 5%, p = 0.001). All returns to the OR were due to flap-related complications. Perioperative blood transfusion increased the incidence of wound dehiscence (9 vs. 2%, p = 0.041) but had no protective effect on the development of other postoperative complications. CONCLUSION Perioperative blood transfusion in free flap breast reconstruction is associated with an increased probability of flap-related complications and subsequent return to the OR without decreasing the probability of developing other systemic postoperative complications.
Collapse
Affiliation(s)
- Efstathios Karamanos
- Department of Surgery, Division of Plastic and Reconstructive Surgery, UT Health San Antonio, San Antonio, Texas
| | - Amita R Shah
- Department of Surgery, Division of Plastic and Reconstructive Surgery, UT Health San Antonio, San Antonio, Texas
| | - Julie N Kim
- Department of Surgery, Division of Plastic and Reconstructive Surgery, UT Health San Antonio, San Antonio, Texas
| | - Howard T Wang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
28
|
Tang F, Chen D, Zhang S, Hu W, Chen J, Zhou H, Zeng Z, Wang X. Elastic hysteresis loop acts as cell deformability in erythrocyte aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183309. [PMID: 32298678 DOI: 10.1016/j.bbamem.2020.183309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/22/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
The decrease in cellular deformability shows strong correlation with erythrocyte aging. Cell deformation can be divided into passive deformation and active deformation; however, the active deformation has been ignored in previous studies. In this work, Young's moduli of age-related erythrocytes were tested by atomic force microscopy. Furthermore, the deformation and passive and active deformation values were calculated by respective areas. Our results showed that erythrocytes in the densest fraction had the highest values of the Young's modulus, deformation, and active deformation, but the lowest values of passive deformation. Moreover, values of the deformation and active deformation both increased gradually with erythrocyte aging. The present data indicate that the elastic hysteresis loop between the approach and the retract curve could be regarded as erythrocyte deformability, and cellular deformability could be characterized by energy states. In addition, active deformation might be a crucial mechanical factor for clearing aged erythrocytes. This could provide an important information on erythrocyte biomechanics in the removal of aged cell.
Collapse
Affiliation(s)
- Fuzhou Tang
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing, PR China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medica University, Guizhou, PR China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guizhou, PR China
| | - Dong Chen
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing, PR China
| | - Shichao Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medica University, Guizhou, PR China
| | - Wenhui Hu
- School of Basic Medical Science, Guizhou Medical University, Guizhou, PR China
| | - Jin Chen
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medica University, Guizhou, PR China
| | - Houming Zhou
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guizhou, PR China
| | - Zhu Zeng
- School of Basic Medical Science, Guizhou Medical University, Guizhou, PR China.
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing, PR China.
| |
Collapse
|
29
|
Stefanoni D, Fu X, Reisz JA, Kanias T, Nemkov T, Page GP, Dumont L, Roubinian N, Stone M, Kleinman S, Busch M, Zimring JC, D'Alessandro A. Nicotine exposure increases markers of oxidant stress in stored red blood cells from healthy donor volunteers. Transfusion 2020; 60:1160-1174. [PMID: 32385854 DOI: 10.1111/trf.15812] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cigarette smoking is a frequent habit across blood donors (approx. 13% of the donor population), that could compound biologic factors and exacerbate oxidant stress to stored red blood cells (RBCs). STUDY DESIGN AND METHODS As part of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, a total of 599 samples were sterilely drawn from RBC units stored under blood bank conditions at Storage Days 10, 23, and 42 days, before testing for hemolysis parameters and metabolomics. Quantitative measurements of nicotine and its metabolites cotinine and cotinine oxide were performed against deuterium-labeled internal standards. RESULTS Donors whose blood cotinine levels exceeded 10 ng/mL (14% of the tested donors) were characterized by higher levels of early glycolytic intermediates, pentose phosphate pathway metabolites, and pyruvate-to-lactate ratios, all markers of increased basal oxidant stress. Consistently, increased glutathionylation of oxidized triose sugars and lipid aldehydes was observed in RBCs donated by nicotine-exposed donors, which were also characterized by increased fatty acid desaturation, purine salvage, and methionine oxidation and consumption via pathways involved in oxidative stress-triggered protein damage-repair mechanisms. CONCLUSION RBCs from donors with high levels of nicotine exposure are characterized by increases in basal oxidant stress and decreases in osmotic hemolysis. These findings indicate the need for future clinical studies aimed at addressing the impact of smoking and other sources of nicotine (e.g., nicotine patches, snuff, vaping, secondhand tobacco smoke) on RBC storage quality and transfusion efficacy.
Collapse
Affiliation(s)
- Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado.,University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado.,Vitalant Research Institute, Denver, Colorado
| | | |
Collapse
|
30
|
D'Alessandro A, Fu X, Reisz JA, Stone M, Kleinman S, Zimring JC, Busch M. Ethyl glucuronide, a marker of alcohol consumption, correlates with metabolic markers of oxidant stress but not with hemolysis in stored red blood cells from healthy blood donors. Transfusion 2020; 60:1183-1196. [PMID: 32385922 DOI: 10.1111/trf.15811] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Red blood cell (RBC) storage in the blood bank is associated with the progressive accumulation of oxidant stress. While the mature erythrocyte is well equipped to cope with such stress, recreative habits like alcohol consumption may further exacerbate the basal level of oxidant stress and contribute to the progress of the storage lesion. STUDY DESIGN AND METHODS RBC levels of ethyl glucuronide, a marker of alcohol consumption, were measured via ultra-high-pressure liquid chromatography coupled with high-resolution mass spectrometry. Analyses were performed on 599 samples from the recalled donor population at Storage Days 10, 23, and 42 (n = 250), as part of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study. This cohort consisted of the 5th and 95th percentile of donors with extreme hemolytic propensity out of the original cohort of 13,403 subjects enrolled in the REDS-III RBC Omics study. Ehtyl glucuronide levels were thus correlated to global metabolomics and lipidomics analyses and RBC hemolytic propensity. RESULTS Ethyl glucuronide levels were positively associated with oxidant stress markers, including glutathione consumption and turnover, methionine oxidation, S-adenosylhomocysteine accumulation, purine oxidation, and transamination markers. Decreases in glycolysis and energy metabolism, the pentose phosphate pathway and ascorbate system were observed in those subjects with the highest levels of ethyl glucuronide, though hemolysis values were comparable between groups. CONCLUSION Though preliminary, this study is suggestive that markers of alcohol consumption are associated with increases in oxidant stress and decreases in energy metabolism with no significant impact on hemolytic parameters in stored RBCs from healthy donor volunteers.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado.,Vita lant Research Institute, Denver, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | |
Collapse
|
31
|
Old, older, the oldest: red blood cell storage and the potential harm of using older red blood cell concentrates. Curr Opin Anaesthesiol 2020; 33:234-239. [PMID: 31876784 DOI: 10.1097/aco.0000000000000824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Over the last decades, clinical studies have suggested that transfusion of red blood cells (RBCs) might negatively impact patient outcomes. Even though large randomized clinical trials did not show differences in mortality when transfusing fresh versus standard-issue RBC units, data imply that RBCs at the very end of storage could elicit negative effects. RECENT FINDINGS Certain alterations of RBCs during cold storage -- such as an increase of potassium and lactate in the storage solution -- have been discovered a century ago. In recent years, proteomic and metabolomic studies have shed more light into pathophysiological changes of RBCs during storage and have helped to specify the definition of old blood. These advancements are now utilized to increase the quality of stored RBCs and devise therapeutic strategies (e.g. nitric oxide, haptoglobin, or reduction of the iron load) when transfusing old blood. SUMMARY Further research to improve the quality of RBC units and to study populations potentially at risk is warranted. Until the question whether transfusion of old blood is detrimental for specific patient populations has been answered, a deliberate use of RBC transfusion should be implemented.
Collapse
|
32
|
The Contribution of Storage Medium and Membranes in the Microwave Dielectric Response of Packed Red Blood Cells Suspension. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During cold storage, packed red blood cells (PRBCs) undergo slow detrimental changes that are collectively termed storage lesion. The aging of the cells causes alterations in the composition of the storage-medium in the PRBC unit. In this paper, we present the comparison of the dielectric response of water in the primary (fresh) storage medium (citrate phosphate dextrose adenine solution, CPDA-1) versus the storage medium from three expired units of PRBCs. Dielectric response of the water molecules has been characterized by dielectric spectroscopy technique in the microwave frequency band (0.5–40 GHz). The dominant phenomenon is the significant increase of the dielectric strength and decrease the relaxation time τ for the samples of the stored medium in comparison with the fresh medium CPDA-1. Furthermore, we demonstrated that removing the ghosts from PRBC hemolysate did not cause the alteration of the dielectric spectrum of water. Thus, the contribution associated with water located near the cell membrane can be neglected in microwave dielectric measurements.
Collapse
|
33
|
Non-oxidative band-3 clustering agents cause the externalization of phosphatidylserine on erythrocyte surfaces by a calcium-independent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183231. [PMID: 32119860 DOI: 10.1016/j.bbamem.2020.183231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 01/17/2023]
Abstract
Aging of red blood cells (RBCs) is associated with alteration in a wide range of RBC features, occurring each on its own timescale. A number of these changes are interrelated and initiate a cascade of biochemical and structural transformations, including band-3 clustering and phosphatidylserine (PS) externalization. Using specific band-3 clustering agents (acridine orange (AO) and ZnCl2), we examined whether treatment of RBCs with these agents may affects PS externalization and whether this process is Ca2+-dependent. RBCs were isolated from the blood of eight healthy donors upon obtaining their informed consent. The suspension was supplemented with increasing concentrations of AO or ZnCl2 (from 0.5 to 2.0 mM) and incubated at 25 °C for 60 min. To detect PS at the RBC surface, we used allophycocyanin-conjugated recombinant human Annexin V. We demonstrated, that treatment of RBCs with both clustering agents caused an elevation in the percent of cells positively labeled by Annexin-V (RBCPS), and that this value was not dependent on the presence of calcium in the buffer: RBCs treated with AO in the presence of either EDTA, EGTA or calcium exhibited similar percentage of RBCPS. Moreover, the active influx of Zn2+ into RBCs induced by their co-incubation with both ZnCl2 and A23187 did not increase the percent of RBCPS as compared to RBCs incubated with ZnCl2 alone. Taken together, these results demonstrate that the band-3 clustering agents (AO or ZnCl2) induce PS externalization in a Ca2+ independent manner, and we hereby suggest a possible scenario for this phenomenon.
Collapse
|
34
|
Islamzada E, Matthews K, Guo Q, Santoso AT, Duffy SP, Scott MD, Ma H. Deformability based sorting of stored red blood cells reveals donor-dependent aging curves. LAB ON A CHIP 2020; 20:226-235. [PMID: 31796943 DOI: 10.1039/c9lc01058k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A fundamental challenge in the transfusion of red blood cells (RBCs) is that a subset of donated RBC units may not provide optimal benefit to transfusion recipients. This variability stems from the inherent ability of donor RBCs to withstand the physical and chemical insults of cold storage, which ultimately dictate their survival in circulation. The loss of RBC deformability during cold storage is well-established and has been identified as a potential biomarker for the quality of donated RBCs. While RBC deformability has traditionally been indirectly inferred from rheological characteristics of the bulk suspension, there has been considerable interest in directly measuring the deformation of RBCs. Microfluidic technologies have enabled single cell measurement of RBC deformation but have not been able to consistently distinguish differences between RBCs between healthy donors. Using the microfluidic ratchet mechanism, we developed a method to sensitively and consistently analyze RBC deformability. We found that the aging curve of RBC deformability varies significantly across donors, but is consistent for each donor over multiple donations. Specifically, certain donors seem capable of providing RBCs that maintain their deformability during two weeks of cold storage in standard test tubes. The ability to distinguish between RBC units with different storage potential could provide a valuable opportunity to identify donors capable of providing RBCs that maintain their integrity, in order to reserve these units for sensitive transfusion recipients.
Collapse
Affiliation(s)
- Emel Islamzada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada and Centre for Blood Research, University of British Columbia, Canada
| | - Kerryn Matthews
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada.
| | - Quan Guo
- Department of Mechanical Engineering, University of British Columbia, Canada.
| | - Aline T Santoso
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada.
| | - Simon P Duffy
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada. and British Columbia Institute of Technology, Canada
| | - Mark D Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada and Centre for Blood Research, University of British Columbia, Canada and Canadian Blood Services, Canada
| | - Hongshen Ma
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada and Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada. and School of Biomedical Engineering, University of British Columbia, Canada
| |
Collapse
|
35
|
Roch A, Magon NJ, Maire J, Suarna C, Ayer A, Waldvogel S, Imhof BA, Koury MJ, Stocker R, Schapira M. Transition to 37°C reveals importance of NADPH in mitigating oxidative stress in stored RBCs. JCI Insight 2019; 4:126376. [PMID: 31581149 DOI: 10.1172/jci.insight.126376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/25/2019] [Indexed: 01/14/2023] Open
Abstract
The RBC storage lesion is a multiparametric response that occurs during storage at 4°C, but its impact on transfused patients remains unclear. In studies of the RBC storage lesion, the temperature transition from cold storage to normal body temperature that occurs during transfusion has received limited attention. We hypothesized that multiple deleterious events might occur in this period of increasing temperature. We show dramatic alterations in several properties of therapeutic blood units stored at 4°C after warming them to normal body temperature (37°C), as well as febrile temperature (40°C). In particular, the intracellular content and redox state of NADP(H) were directly affected by post-storage incubation at 37°C, as well as by pro-oxidant storage conditions. Modulation of the NADPH-producing pentose phosphate pathway, but not the prevention of hemoglobin autoxidation by conversion of oxyhemoglobin to carboxyhemoglobin, provided protection against storage-induced alterations in RBCs, demonstrating the central role of NADPH in mitigating increased susceptibility of stored RBCs to oxidative stress. We propose that assessing RBC oxidative status after restoration of body temperature constitutes a sensitive method for detecting storage-related alterations that has the potential to improve the quality of stored RBCs for transfusion.
Collapse
Affiliation(s)
- Aline Roch
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Nicholas J Magon
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Jessica Maire
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Cacang Suarna
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales, Australia
| | - Sophie Waldvogel
- Centre de Transfusion Sanguine, University Hospitals, University of Geneva, Geneva, Switzerland
| | - Beat A Imhof
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Mark J Koury
- Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales, Australia
| | | |
Collapse
|
36
|
Yedgar S, Arbell D, Barshtein G. Hemodynamic Functionality of Stored Red Blood Cells: An Important Metric of Blood Unit Quality. Ann Thorac Surg 2019; 108:1587-1588. [PMID: 30953649 DOI: 10.1016/j.athoracsur.2019.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Saul Yedgar
- Department of Biochemistry, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Dan Arbell
- Department of Pediatric Surgery, Hadassah University Hospital, Jerusalem, Israel
| | - Gregory Barshtein
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Building 78, 2nd Flr, Rm 242, Campus Een Kerem, Jerusalem, Israel 91120.
| |
Collapse
|
37
|
D'Alessandro A, Zimring JC, Busch M. Chronological storage age and metabolic age of stored red blood cells: are they the same? Transfusion 2019; 59:1620-1623. [PMID: 30865302 DOI: 10.1111/trf.15248] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 01/24/2023]
Abstract
Red blood cell (RBC) storage in the blood bank is characterized by the progressive loss of metabolic regulation, a phenomenon that targets energy and antioxidant metabolism; While the progression of the storage lesion is inevitable, the rate at which this phenomenon occurs varies from donor to donor; Red blood cells from some donors at the end of storage are metabolically superior to RBCs from other donors at the beginning of storage, suggesting that the age of blood alone may not be a sufficiently accurate predictor of stored blood quality; and Animal studies and large-scale omics screening in blood donors have helped identify mechanistic contributors to the metabolic heterogeneity of stored blood units.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Division of Hematology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| |
Collapse
|
38
|
D'Alessandro A. From omics technologies to personalized transfusion medicine. Expert Rev Proteomics 2019; 16:215-225. [PMID: 30654673 DOI: 10.1080/14789450.2019.1571917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Blood transfusion is the single most frequent in-hospital medical procedure, a life-saving intervention for millions of recipients worldwide every year. Storage in the blood bank is an enabling strategy for this critical procedure, as it logistically solves the issue of making ~110 million units available for transfusion every year. Unfortunately, storage in the blood bank promotes a series of biochemical and morphological changes to the red blood cell that compromise the integrity and functionality of the erythrocyte in vitro and in animal models, and could negatively impact transfusion outcomes in the recipient. Areas covered: While commenting on the clinical relevance of the storage lesion is beyond the scope of this manuscript, here we will review recent advancements in our understanding of the storage lesion as gleaned through omics technologies. We will focus on how the omics-scale appreciation of the biological variability at the donor and recipient level is impacting our understanding of red blood cell storage biology. Expert commentary: Omics technologies are paving the way for personalized transfusion medicine, a discipline that promises to revolutionize a critical field in medical practice. The era of recipient-tailored additives, processing, and storage strategies may not be too far distant in the future.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
- b Department of Medicine - Division of Hematology , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|