1
|
Zhu Y, Pirola S, Salmasi MY, Sasidharan S, Fisichella SM, O'Regan DP, Moore JE, Athanasiou T, Xu XY. The Influence of Material Properties and Wall Thickness on Predicted Wall Stress in Ascending Aortic Aneurysms: A Finite Element Study. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00756-9. [PMID: 39455477 DOI: 10.1007/s13239-024-00756-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE Finite element analysis (FEA) has been used to predict wall stress in ascending thoracic aortic aneurysm (ATAA) in order to evaluate risk of dissection or rupture. Patient-specific FEA requires detailed information on ATAA geometry, loading conditions, material properties, and wall thickness. Unfortunately, measuring aortic wall thickness and mechanical properties non-invasively poses a significant challenge, necessitating the use of non-patient-specific data in most FE simulations. This study aimed to assess the impact of employing non-patient-specific material properties and wall thickness on ATAA wall stress predictions. METHODS FE simulations were performed on 13 ATAA geometries reconstructed from computed tomography angiography (CTA) images. Patient-specific material properties and wall thicknesses were made available from a previous study where uniaxial tensile testing was performed on tissue samples obtained from the same patients. The ATAA wall models were discretised with hexahedral elements and prestressed. For each ATAA model, FE simulations were conducted using patient-specific material properties and wall thicknesses, and group-mean values derived from all tissue samples included in the same experimental study. Literature-based material property and wall thickness were also obtained from the literature and applied to 4 representative cases. Additional FE simulations were performed on these 4 cases by employing group-mean and literature-based wall thicknesses. RESULTS FE simulations using the group-mean material property produced peak wall stresses comparable to those obtained using patient-specific material properties, with a mean deviation of 7.8%. Peak wall stresses differed by 20.8% and 18.7% in patients with exceptionally stiff or compliant walls, respectively. Comparison to results using literature-based material properties revealed larger discrepancies, ranging from 5.4% to 28.0% (mean 20.1%). Bland-Altman analysis showed significant discrepancies in areas of high wall stress, where wall stress obtained using patient-specific and literature-based properties differed by up to 674 kPa, compared to 227 kPa between patient-specific and group-mean properties. Regarding wall thickness, using the literature-based value resulted in even larger discrepancies in predicted peak stress, ranging from 24.2% to 30.0% (mean 27.3%). Again, using the group-mean wall thickness offered better predictions with a difference less than 5% in three out of four cases. While peak wall stresses were most affected by the choice of mechanical properties or wall thickness, the overall distribution of wall stress hardly changed. CONCLUSIONS Our study demonstrated the importance of incorporating patient-specific material properties and wall thickness in FEA for risk prediction of aortic dissection or rupture. Our future efforts will focus on developing inverse methods for non-invasive determination of patient-specific wall material parameters and wall thickness.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Selene Pirola
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - M Yousuf Salmasi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Serena M Fisichella
- Department of Chemical Engineering, Imperial College London, London, UK
- Politecnico di Milano, Milan, Italy
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - James E Moore
- Department of Bioengineering, Imperial College London, London, UK
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
2
|
Chung JCY, Eliathamby D, Seo H, Fan CP, Islam R, Deol K, Simmons CA, Ouzounian M. Biomechanical properties of the aortic root are distinct from those of the ascending aorta in both normal and aneurysmal states. JTCVS OPEN 2023; 16:38-47. [PMID: 38204645 PMCID: PMC10775071 DOI: 10.1016/j.xjon.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 01/12/2024]
Abstract
Background Although aneurysms of the ascending aorta and the aortic root are treated similarly in clinical guidelines, how biomechanical properties differ between these 2 segments of aorta is poorly defined. Methods Biomechanical testing was performed on tissue collected from the aortic root (normal = 11, aneurysm = 51) and the ascending aorta (normal = 21, aneurysm = 76). Energy loss, tangent modulus of elasticity, and delamination strength were evaluated. These biomechanical properties were then compared between (1) normal ascending and normal root tissue, (2) normal and aneurysmal root tissue, (3) normal and aneurysmal ascending tissue, and (4) aneurysmal root and aneurysmal ascending tissue. Propensity score matching was performed to further compare aneurysmal root and aneurysmal ascending aortic tissue. Clinical and biomechanical variables associated with decreased delamination strength in the aortic root were evaluated. Results The normal aortic root demonstrated greater viscoelastic behavior (energy loss 0.08 [0.06, 0.10] vs 0.05 [0.04, 0.06], P = .008), and greater resistance against delamination (93 [58, 126] mN/mm vs 54 [40, 63] mN/mm, P = .05) compared with the ascending aorta. Delamination strength was significantly reduced in aneurysms in both the root and the ascending aorta compared with their normal states. Aneurysms of the aortic root matched to the ascending aortic aneurysms in terms of baseline characteristics including size, were characterized by a larger decrease in delamination strength from baseline (Δ -59 mN/mm vs Δ -24 mN/mm). Aging (P = .003) and the presence of hypertension (P = .02) were associated with weakening of the aortic root, while diameter did not have this association (P = .29). Conclusions The normal aortic root was found to have distinct biomechanical properties compared with the ascending aorta. When aneurysms form in the aortic root, there is less strength against delamination, without other biomechanical changes such as increased energy loss observed in aneurysmal ascending aortas. Age and hypertension were associated decreased aortic wall strength in the aortic root, whereas diameter had no such association.
Collapse
Affiliation(s)
- Jennifer C.-Y. Chung
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Daniella Eliathamby
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hijun Seo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chun-Po Fan
- Rogers Computational Program, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Rifat Islam
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Karamvir Deol
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Craig A. Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Maral Ouzounian
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Isselbacher EM, Preventza O, Hamilton Black J, Augoustides JG, Beck AW, Bolen MA, Braverman AC, Bray BE, Brown-Zimmerman MM, Chen EP, Collins TJ, DeAnda A, Fanola CL, Girardi LN, Hicks CW, Hui DS, Schuyler Jones W, Kalahasti V, Kim KM, Milewicz DM, Oderich GS, Ogbechie L, Promes SB, Ross EG, Schermerhorn ML, Singleton Times S, Tseng EE, Wang GJ, Woo YJ, Faxon DP, Upchurch GR, Aday AW, Azizzadeh A, Boisen M, Hawkins B, Kramer CM, Luc JGY, MacGillivray TE, Malaisrie SC, Osteen K, Patel HJ, Patel PJ, Popescu WM, Rodriguez E, Sorber R, Tsao PS, Santos Volgman A, Beckman JA, Otto CM, O'Gara PT, Armbruster A, Birtcher KK, de las Fuentes L, Deswal A, Dixon DL, Gorenek B, Haynes N, Hernandez AF, Joglar JA, Jones WS, Mark D, Mukherjee D, Palaniappan L, Piano MR, Rab T, Spatz ES, Tamis-Holland JE, Woo YJ. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Thorac Cardiovasc Surg 2023; 166:e182-e331. [PMID: 37389507 PMCID: PMC10784847 DOI: 10.1016/j.jtcvs.2023.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
AIM The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" provides recommendations to guide clinicians in the diagnosis, genetic evaluation and family screening, medical therapy, endovascular and surgical treatment, and long-term surveillance of patients with aortic disease across its multiple clinical presentation subsets (ie, asymptomatic, stable symptomatic, and acute aortic syndromes). METHODS A comprehensive literature search was conducted from January 2021 to April 2021, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through June 2022 during the guideline writing process, were also considered by the writing committee, where appropriate. STRUCTURE Recommendations from previously published AHA/ACC guidelines on thoracic aortic disease, peripheral artery disease, and bicuspid aortic valve disease have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with aortic disease have been developed. There is added emphasis on the role of shared decision making, especially in the management of patients with aortic disease both before and during pregnancy. The is also an increased emphasis on the importance of institutional interventional volume and multidisciplinary aortic team expertise in the care of patients with aortic disease.
Collapse
|
4
|
Isselbacher EM, Preventza O, Hamilton Black J, Augoustides JG, Beck AW, Bolen MA, Braverman AC, Bray BE, Brown-Zimmerman MM, Chen EP, Collins TJ, DeAnda A, Fanola CL, Girardi LN, Hicks CW, Hui DS, Schuyler Jones W, Kalahasti V, Kim KM, Milewicz DM, Oderich GS, Ogbechie L, Promes SB, Gyang Ross E, Schermerhorn ML, Singleton Times S, Tseng EE, Wang GJ, Woo YJ. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2022; 146:e334-e482. [PMID: 36322642 PMCID: PMC9876736 DOI: 10.1161/cir.0000000000001106] [Citation(s) in RCA: 511] [Impact Index Per Article: 255.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AIM The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" provides recommendations to guide clinicians in the diagnosis, genetic evaluation and family screening, medical therapy, endovascular and surgical treatment, and long-term surveillance of patients with aortic disease across its multiple clinical presentation subsets (ie, asymptomatic, stable symptomatic, and acute aortic syndromes). METHODS A comprehensive literature search was conducted from January 2021 to April 2021, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through June 2022 during the guideline writing process, were also considered by the writing committee, where appropriate. Structure: Recommendations from previously published AHA/ACC guidelines on thoracic aortic disease, peripheral artery disease, and bicuspid aortic valve disease have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with aortic disease have been developed. There is added emphasis on the role of shared decision making, especially in the management of patients with aortic disease both before and during pregnancy. The is also an increased emphasis on the importance of institutional interventional volume and multidisciplinary aortic team expertise in the care of patients with aortic disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bruce E Bray
- AHA/ACC Joint Committee on Clinical Data Standards liaison
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Y Joseph Woo
- AHA/ACC Joint Committee on Clinical Practice Guidelines liaison
| |
Collapse
|
5
|
Isselbacher EM, Preventza O, Hamilton Black Iii J, Augoustides JG, Beck AW, Bolen MA, Braverman AC, Bray BE, Brown-Zimmerman MM, Chen EP, Collins TJ, DeAnda A, Fanola CL, Girardi LN, Hicks CW, Hui DS, Jones WS, Kalahasti V, Kim KM, Milewicz DM, Oderich GS, Ogbechie L, Promes SB, Ross EG, Schermerhorn ML, Times SS, Tseng EE, Wang GJ, Woo YJ. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2022; 80:e223-e393. [PMID: 36334952 PMCID: PMC9860464 DOI: 10.1016/j.jacc.2022.08.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AIM The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" provides recommendations to guide clinicians in the diagnosis, genetic evaluation and family screening, medical therapy, endovascular and surgical treatment, and long-term surveillance of patients with aortic disease across its multiple clinical presentation subsets (ie, asymptomatic, stable symptomatic, and acute aortic syndromes). METHODS A comprehensive literature search was conducted from January 2021 to April 2021, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through June 2022 during the guideline writing process, were also considered by the writing committee, where appropriate. STRUCTURE Recommendations from previously published AHA/ACC guidelines on thoracic aortic disease, peripheral artery disease, and bicuspid aortic valve disease have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with aortic disease have been developed. There is added emphasis on the role of shared decision making, especially in the management of patients with aortic disease both before and during pregnancy. The is also an increased emphasis on the importance of institutional interventional volume and multidisciplinary aortic team expertise in the care of patients with aortic disease.
Collapse
|
6
|
Editor's Choice: The Biggest Challenges in Cardiothoracic Surgery. Ann Thorac Surg 2022; 114:1099-1103. [PMID: 36168192 DOI: 10.1016/j.athoracsur.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 12/31/2022]
|
7
|
He X, Lu J. On strain-based rupture criterion for ascending aortic aneurysm: the role of fiber waviness. Acta Biomater 2022; 149:51-59. [PMID: 35760348 DOI: 10.1016/j.actbio.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 11/01/2022]
Abstract
We propose a new approach for constructing strain-based rupture criterion for ascending thoracic aortic aneurysm. The rupture metric is formulated using an effective strain, which is a measure of net strain that the collagen bundles experience after fiber uncrimping. The effective strain is a function of the total strain and the waviness properties of the collagen fibers. In the present work, the waviness properties are obtained from fitting biaxial response data to constitutive models that explicitly consider the collagen waviness and fiber recruitment. Inflation test data from 10 ascending thoracic aortic aneurysm specimens are analyzed. For each specimen, tension-strain data at ∼2300 material points are garnered. The effective strain fields in the configuration immediately before rupture are computed. It is found that the hotspots of the effective strain match the rupture sites very well in all 10 samples. More importantly, the values of effective strain at the hotsopts are closely clustered around 0.1, in contrast to a much wider distribution of the total strain. The study underscores the importance of considering the fiber recruitment in formulating strain-based rupture metric, and suggests that ϵ¯≈0.1, where ϵ¯ is the effective strain metric defined in this work, can be considered as a criterion for assessing the imminent rupture risk of ascending aortic aneurysms.
Collapse
Affiliation(s)
- Xuehuan He
- Department of Mechanical Engineering, and Iowa Technology Institute The University of Iowa, Iowa City, IA 52242, USA
| | - Jia Lu
- Department of Mechanical Engineering, and Iowa Technology Institute The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Nappi F. The role of the extracellular matrix in the development of heart valve disease: Underestimation or undercomprehension? J Card Surg 2022; 37:1623-1626. [PMID: 35352851 DOI: 10.1111/jocs.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
The function of metalloproteinases of the extracellular matrix and their inhibitors has emerged with a crucial role in valve diseases. Both the expression of matrix metalloproteinases and their inhibitors are susceptible to modification in patients with severe mitral insufficiency. This process is due to substantial changes in the collagen structure during mechanical stress on the mitral valve leaflets. Several studies have measured the level of deformation of the mitral leaflets with the use of the finite element analysis method by establishing the stiffness of the cellular and extracellular elements of the mitral valve leaflets. Evidence suggested the possible underestimation of the stiffness of the leaflets. This implies greater stress on the components of the extracellular matrix in the circumferential and radial strains that involve the mitral leaflets during chronic regurgitation. The remodeling process during mechanical stress phenomena involves both the cellular compartment and the extracellular matrix and can be adaptive or maladaptive as showed in patients who receive a pulmonary autograft to replace the diseased aortic valve. However, adaptive remodeling can be driven using resorbable polymers that interfere with the extracellular matrix. Further investigation is required for the understanding of the mechanisms that determine the structural changes of the extracellular matrix and to prevent them.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, Saint-Denis, France
| |
Collapse
|
9
|
Song HK. Biomechanics in Marfan Thoracic Aortic Aneurysms: Size Isn't the Only Thing that Matters. Ann Thorac Surg 2021; 114:1375-1376. [PMID: 34450176 DOI: 10.1016/j.athoracsur.2021.07.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Howard K Song
- Division of Cardiothoracic Surgery, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd Portland, Oregon 97239.
| |
Collapse
|