Griffeth EM, Dearani JA, Schaff HV, Johnson JN, Ackerman MJ, Bos JM, Alzate-Aguirre M, Todd A, Cannon BC, Wackel PL, Stephens EH. Septal Myectomy Outcomes in Children and Adolescents With Obstructive Hypertrophic Cardiomyopathy.
Ann Thorac Surg 2023;
116:499-507. [PMID:
37116851 PMCID:
PMC10524729 DOI:
10.1016/j.athoracsur.2023.04.021]
[Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND
Little data exist regarding characteristics and outcomes of pediatric patients undergoing septal myectomy. We evaluated this in a large referral population.
METHODS
Septal myectomy was performed in 199 consecutive patients aged ≤18 years with obstructive hypertrophic cardiomyopathy from January 1, 1976, to June 30, 2021.
RESULTS
Median age was 13 years (interquartile range [IQR], 8-15 years). Left ventricular myectomy approaches included transaortic (163 of 198 [82%]), transapical (16 of 198 [8%]), and combined (19 of 198 [10%]). Right ventricular interventions included myectomy (13 of 199 [7%]) and patch reconstruction of the outflow tract (15 of 199 [8%]). Maximum left ventricular outflow tract gradients decreased after myectomy (prebypass: 50 mm Hg [IQR, 31-73 mm Hg] vs postbypass: 4 mm Hg [IQR, 0-9 mm Hg], P < .001), and this was sustained long-term (5 mm Hg [IQR, 5-10 mm Hg] at 10 years). Iatrogenic aortic and mitral valve injuries occurred in 13 of 199 (7%) and 1 of 199 (1%), respectively; however, all were successfully repaired. Operative mortality was 2 of 199 (1%). The cumulative incidence of redo myectomy was low, at 5.8% at 5 and 8.3% at 10 years. Redo myectomy patients had higher maximum left ventricular outflow tract gradients on echocardiography at predischarge and 1 year and were younger at the index operation (8 years [IQR, 2.5-10 years] vs 13 years [IQR, 9-16 years], P < .001). Overall survival at 10 years was 90%, relative to 47% in a previously reported pediatric nonoperative cohort.
CONCLUSIONS
Pediatric septal myectomy provides safe, effective, and durable relief of ventricular outflow tract obstruction. Iatrogenic valve injury remains a low but nonnegligible risk. Recurrent obstruction requiring redo myectomy is infrequent and can be identified early. Long-term survival in this pediatric septal myectomy cohort appears to fare better than pediatric hypertrophic cardiomyopathy cohorts managed nonoperatively.
Collapse