1
|
Zhang Z, Cheng Y, Liang L, Liu J. The Measurement of Atmospheric Black Carbon: A Review. TOXICS 2023; 11:975. [PMID: 38133376 PMCID: PMC10748019 DOI: 10.3390/toxics11120975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Black Carbon (BC), the second-largest contributor to global warming, has detrimental effects on human health and the environment. However, the accurate quantification of BC poses a significant challenge, impeding the comprehensive assessment of its impacts. Therefore, this paper aims to critically review three quantitative methods for measuring BC: Thermal Optical Analysis (TOA), the Optical Method, and Laser-Induced Incandescence (LII). The determination principles, available commercial instruments, sources of deviation, and correction approaches associated with these techniques are systematically discussed. By synthesizing and comparing the quantitative results reported in previous studies, this paper aims to elucidate the underlying relationships and fundamental disparities among Elemental Carbon (EC), Equivalent Black Carbon (eBC), and Refractory Black Carbon (rBC). Finally, based on the current advancements in BC quantification, recommendations are proposed to guide future research directions.
Collapse
Affiliation(s)
- Zhiqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Z.Z.); (Y.C.)
| | - Yuan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Z.Z.); (Y.C.)
| | - Linlin Liang
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jiumeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Z.Z.); (Y.C.)
| |
Collapse
|
2
|
Min K, Deng S, Shu Z, Li Y, Chen B, Ma M, Liu Q, Jiang G. Monitoring the adsorption of per- and polyfluoroalkyl substances on carbon black by LDI-MS capable of simultaneous analysis of elemental and organic carbon. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1311-1321. [PMID: 37525938 DOI: 10.1039/d3em00129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Elemental carbon (EC) and organic carbon (OC) exist ubiquitously and interact mutually in the environment. Simultaneous analysis of EC and OC will greatly advance our understanding of the behavior and fate of EC and OC, but is however still a great challenge due to the lack of suitable analytical tools. Here, we report a matrix-free laser desorption/ionization mass spectrometry (LDI-MS) method capable of simultaneous analysis of EC and OC by monitoring two independent groups of specific MS fingerprint peaks. We found that EC itself can generate carbon cluster peaks in the low mass range under laser excitation, and meanwhile it can also serve as a matrix to assist the ionization of OC in LDI-MS. By using per- and polyfluoroalkyl substances (PFASs) as a typical set of OC and carbon black (CB) as a model EC, we successfully monitored the adsorption process of PFASs on CB enabled by LDI-MS. We show that hydrophobic interaction dominates the sorption of PFASs to CB, which was affected by the functional groups and carbon chain length of PFASs. Furthermore, environmental substances in water such as humic acid (HA) and surfactants can significantly affect the adsorption of PFASs on CB probably by changing the adsorption sites of CB. Overall, we demonstrate that LDI-MS offers a versatile and high-throughput tool for simultaneous analysis of EC and OC species in real environmental samples, which makes it promising for investigating the environmental behaviors and ecological risks of pollutants.
Collapse
Affiliation(s)
- Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Shenxi Deng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhao Shu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Taishan Institute for Ecology and Environment (TIEE), Jinan 250100, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Min K, Li Y, Lin Y, Yang X, Chen Z, Chen B, Ma M, Liu Q, Jiang G. Mass Spectrometry Imaging Strategy for In Situ Quantification of Soot in Size-Segregated Air Samples. Anal Chem 2022; 94:15189-15197. [DOI: 10.1021/acs.analchem.2c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ke Min
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xuezhi Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Zigu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Taishan Institute for Ecology and Environment (TIEE), Jinan 250100, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Cui M, Xu Y, Yu B, Liu L, Li J, Chen Y. Characterization of carbonaceous substances emitted from residential solid fuel combustion using real-world data from the Beijing-Tianjin-Hebei region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155529. [PMID: 35489514 DOI: 10.1016/j.scitotenv.2022.155529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Residential solid fuel emissions are among the most important sources of carbonaceous substances that exert harmful effects on air quality, human health and climate change. Considering the constantly updated emission reduction policies for residential solid fuel combustion in the Beijing-Tianjin-Hebei (BTH) region, the emission data for the source should updated in a timely manner. Testing was performed on residential solid fuel emissions in the BTH region, China. The emission factors and profiles of carbonaceous substances (including organic carbon (OC), elemental carbon (EC), EPA priority polycyclic aromatic hydrocarbons (EPAHs), methyl PAHs (MPAHs), and n-alkanes) emitted from residential solid fuels were obtained. The results showed the ranges of emission factors of PM2.5, OC, EC, EPAHs, MPAHs and n-alkanes from residential solid fuel emissions were 1.92-17.6, 0.312-6.85, 0.066-2.33, 0.004-0.58, 0.003-0.87 and 0.009-0.39 g/kg fuel, respectively. The carbon fraction profiles showed that OC1, OC2, and EC1 were the major products of residential solid fuel combustion, and the non-polar organic matter profiles showed that Fluo and MFluo were dominant. The effects of combustion modes, types of stove and types of the fuel on emission characteristics of carbonaceous substances were discussed in detail. The emission factors of carbonaceous substances from the smoldering phase and traditional stove were higher than those from the flaming phase and improved stove, respectively, which was mainly controlled by the modified combustion efficiency (MCE). It was found that the emission factors of pollutants with decreasing MCE values sharply increased, especially when the MCE values were below 90%. Finally, some diagnostic ratios were discussed, and it was determined that residential coal combustion is considered to occur at MPAHs/PAHs higher than 1.5 and MFluo/Fluo higher than 5.
Collapse
Affiliation(s)
- Min Cui
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Yuanyuan Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Binbin Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Lin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
5
|
Lin Y, Huang X, Liu Y, Cao D, Lu D, Feng Z, Liu Q, Lin Z, Jiang G. Identification, Quantification, and Imaging of the Biodistribution of Soot Particles by Mass Spectral Fingerprinting. Anal Chem 2021; 93:6665-6672. [PMID: 33881821 DOI: 10.1021/acs.analchem.0c05180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Soot is ubiquitous and has large detrimental effects on climate, air quality, and human health. However, identification of soot in carbonaceous media is very challenging due to its nanoscale carbon nature and complex sources. Due to the shortage in the methodology, until now, the fate and health effect of soot particles after inhalation are still poorly understood. Here, we report a new method for label-free identification, quantification, and imaging of soot particles in complex media based on laser desorption/ionization mass spectrometry fingerprinting. We found that soot particles from different origins and with different morphologies showed highly consistent mass spectral fingerprints deriving from peak ratios of small carbon cluster anions (C2--C10-), which enabled both accurate quantification of soot in fine particulate matter (PM2.5) samples and label-free imaging of soot particles in biological media. By using this technique, we tracked and imaged the suborgan distribution of soot particles in mice after exposure to PM2.5. The results showed that the lung is the main target organ for short-term inhalation exposure to soot particles. This study helps to better understand the inhalation toxicology of soot and also provides a practical novel methodological platform for identification, tracing, and toxicological studies of elemental carbon-based nanomaterials.
Collapse
Affiliation(s)
- Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zeming Feng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,Institute of Environment and Health, Jianghan University, Wuhan 430056, China.,University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Shen X, Wang P, Zhang X, Cao X, Shi Y, Li X, Yao X, Yao Z. Real-time measurements of black carbon and other pollutant emissions from residential biofuel stoves in rural China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138649. [PMID: 32334224 DOI: 10.1016/j.scitotenv.2020.138649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Biofuel stoves are an important source of black carbon (BC) emissions, which have adverse effects on the environment and human health, especially in rural areas. However, there have been only limited studies of BC emissions from residential biofuel stoves based on real-time measurements. In this study, a photo-acoustic extinctiometer (PAX)-based real-time measurement system was employed to monitor the emission characteristics of corncobs, corn stalks, cotton stalks and poplar branches in simple or improved stoves (with a total of 16 units) in Hebei Province, China. The real-time and phased emissions of BC, fine particulate matter (PM2.5), carbon monoxide (CO) and carbon dioxide (CO2) were assessed, and the effects of stove type and fuel on emissions were analyzed. Under the same conditions, polar branches were associated with the highest BC emission factors (EFs) of up to 2.64 ± 0.42 g kg-1, while the EFs for improved stoves were higher than those for simple stoves. During the ignition phase, BC emissions were found to be low, while the later addition of fuel dramatically increased emissions, followed by a gradual decrease until the next fuel addition. The phased results show that the flaming phase had the highest BC emission rate, the fuel addition phase was associated with the highest BC EF. The BC emission rates and EFs for the ignition, fuel addition, flaming and smoldering phases ranged from 0.0014-0.014, 0.11-6.32, 0.18-2.24 and 0.03-0.32 mg s-1, and from 0.04-0.18, 0.38-9.53, 0.45-3.55 and 0.12-1.01 g kg-1, respectively. This study assessed the BC emissions from residential biofuel stoves using a larger sample size than in prior work. The results increase our understanding of the BC emissions process, which is helpful in terms of improving the accuracy of BC EF estimations. The real-time measurement process described herein is also expected to provide new approaches to minimizing BC emissions.
Collapse
Affiliation(s)
- Xianbao Shen
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Pengrui Wang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xinyue Cao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Shi
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Li
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaolong Yao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
7
|
Hao Y, Gao C, Deng S, Yuan M, Song W, Lu Z, Qiu Z. Chemical characterisation of PM 2.5 emitted from motor vehicles powered by diesel, gasoline, natural gas and methanol fuel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:128-139. [PMID: 31004890 DOI: 10.1016/j.scitotenv.2019.03.410] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Vehicle emissions are affected by factors such as vehicle type, fuel quality, and engine repair. Therefore, mobile source profiles should be established based on a characteristic fleet for a specific region. This study characterised the chemical composition of PM2.5 emitted from motor vehicles that are commonly used in Xi'an through dynamometer tests. The tested fleet included light duty diesel vehicles (LDDVs; eight sample sets), heavy duty diesel vehicles (HDDVs; six sample sets), light duty gasoline vehicles (LDGVs; eight sample sets), one natural gas vehicle (NGV; four sample sets) and one methanol vehicle (MV; two sample sets). Similarities and differences among the source profiles were compared and evaluated. Overall, carbon species (13.14-59.11%) were the major components of PM2.5 for each type of vehicle, and the content of organic carbon (OC) was generally higher than that of elemental carbon (EC). Moreover, NO3- (18.577-220.062 mg·g-1) was the dominant water-soluble ion and the Ca2+ (2.429-17.209 mg·g-1) and Na+ (1.966-20.798 mg·g-1) contents in PM2.5 were high. In terms of elements, the PM2.5 emitted from various types of vehicles consisted of abundant Al (2.183-94.949 mg·g-1), Fe (0.567-12.297 mg·g-1), and Zn (0.659-5.195 mg·g-11). In addition, the PM2.5 profiles were significantly affected by fuel type. In general, emissions from the LDGVs and NGV exhibited higher contents of OC (477.0-479.1 mg·g-1). The greatest fractions of water-soluble ions (32.94%) and total elements (11.74%) were observed in emissions from the NGV and MV, respectively. For the same type of vehicle, the OC/EC ratio was possibly dependent on the emission standards. The PM2.5 emitted from the LDDVs with stricter emission standards exhibited higher OC/EC ratios, whereas the OC/EC ratios displayed a decreasing trend for the LDGVs under more stringent emission standards.
Collapse
Affiliation(s)
- Yanzhao Hao
- School of Automobile, Chang'an University, Xi'an 710064, China
| | - Chanjuan Gao
- College of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710064, China
| | - Shunxi Deng
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710064, China; School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, China.
| | - Min Yuan
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710064, China; School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Wenbin Song
- Xi'an Environmental Protection Bureau, Xi'an 710054, China
| | - Zhenzhen Lu
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710064, China; School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Zhaowen Qiu
- School of Automobile, Chang'an University, Xi'an 710064, China
| |
Collapse
|
8
|
Kinsey JS, Corporan E, Pavlovic J, DeWitt M, Klingshirn C, Logan R. Comparison of measurement methods for the characterization of the black carbon emissions from a T63 turboshaft engine burning conventional and Fischer-Tropsch fuels. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:576-591. [PMID: 30526430 PMCID: PMC7382935 DOI: 10.1080/10962247.2018.1556188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 05/12/2023]
Abstract
Emission measurements of black carbon (BC) mass were conducted on a T63 turboshaft engine, operated at idle and cruise power with conventional and alternative fuels, using an Artium LII-300 laser-induced incandescence analyzer (LII) and AVL model 483 micro soot sensor (MSS) photoacoustic instrument using the manufacturer's calibration for both instruments. These measurements were compared with elemental carbon (EC) determined by manual and semicontinuous thermal-optical transmission analyses according to National Institute for Occupational Safety and Health (NIOSH) method 5040 as the reference method. The results indicate that both the LII and MSS instruments show good linear correlation with EC for the two fuels and two engine power conditions evaluated. The LII measurements were observed to be biased high (27-49%) and the MSS measurements were biased low (24-35%) relative to EC. The agreement between the instruments and the reference method was substantially improved by applying a calibration of the instruments against a common BC aerosol source. Test data also suggest that the two instruments show some sensitivity to particle size (or properties related to size), specifically for particles with a geometric mean diameter (GMD) <30 nm. This sensitivity is problematic, since new engines or certain combustion conditions in current engines will produce smaller particles compared with the T63 model tested in this study. Further assessments of instrument performance for particles within this size range are therefore warranted. Implications: Accurate black carbon emission measurements are needed to certify new and in-production commercial aircraft engines. Both the Artium LII-300 and AVL 483 micro soot sensor are currently approved by the International Civil Aviation Organization for this purpose. This study compares the two instruments against elemental carbon (EC) using NIOSH method 5040 as the reference using a T63 turboshaft engine. The results indicate that both instruments correlate reasonably well with EC, and the correlation substantially improved when applying a calibration against a common aerosol source. Sensitivity to particle size may be an issue for both instruments.
Collapse
Affiliation(s)
- John S Kinsey
- a National Risk Management Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Edwin Corporan
- b U.S. Air Force Research Laboratory , Wright-Patterson Air Force Base , Dayton , OH , USA
| | | | - Matthew DeWitt
- d Fuels and Combustion Divison , University of Dayton Research Institute , Dayton , OH , USA
| | - Christopher Klingshirn
- d Fuels and Combustion Divison , University of Dayton Research Institute , Dayton , OH , USA
| | | |
Collapse
|
9
|
Brown S, Minor H, O'Brien T, Hameed Y, Feenstra B, Kuebler D, Wetherell W, Day R, Tun R, Landis E, Rice J. Review of Sunset OC/EC Instrument Measurements During the EPA's Sunset Carbon Evaluation Project. ATMOSPHERE 2019; 10:287. [PMID: 32704395 PMCID: PMC7376833 DOI: 10.3390/atmos10050287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the feasibility of the Sunset semicontinuous organic and elemental carbon (OC/EC) monitor, the U.S. Environmental Protection Agency (EPA) sponsored the deployment of this monitor at Chemical Speciation Network (CSN) sites with OC and EC measurements via quartz fiber filter collection in Chicago, Illinois; Houston, Texas; Las Vegas, Nevada; St. Louis, Missouri; Rubidoux, California; and Washington, D.C. Houston, St. Louis, and Washington also had collocated Aethalometer black carbon (BC) measurements. Sunset OC generally compared well with the CSN OC (r2 = 0.73 across five sites); the Sunset/CSN OC ratio was, on average, 1.06, with a range among sites of 0.96 to 1.12. Sunset thermal EC and CSN EC did not compare as well, with an overall r2 of 0.22, in part because 26% of the hourly Sunset EC measurements were below the detection limit. Sunset optical EC had a much better correlation to CSN EC (r2 = 0.67 across all sites), with an average Sunset/CSN ratio of 0.90 (range of 0.7 to 1.08). There was also a high correlation of Sunset optical EC with Aethalometer BC (r2 = 0.77 across all sites), though with a larger bias (average Sunset/Aethalometer ratio of 0.56). When the Sunset instrument was working well, OC and OptEC data were comparable to CSN OC and EC.
Collapse
Affiliation(s)
- Steven Brown
- Sonoma Technology, Inc., 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, USA
| | - Hilary Minor
- Sonoma Technology, Inc., 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, USA
| | - Theresa O'Brien
- Sonoma Technology, Inc., 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, USA
| | - Yousaf Hameed
- Department of Air Quality, Clark County, 4701 W. Russell Rd. Suite 200, Las Vegas, NV 89118, USA
| | - Brandon Feenstra
- South Coast Air Quality Management District, 21865 Copley Dr. Diamond Bar, CA 91765-4178, USA
| | - Dustin Kuebler
- Missouri Department of Natural Resources, P.O. Box 176, Jefferson City, MO 65102, USA
| | - Will Wetherell
- Missouri Department of Natural Resources, P.O. Box 176, Jefferson City, MO 65102, USA
| | - Robert Day
- Department of Energy and Environment, Government of the District of Columbia, 1200 First Street, N.E. 5th Floor, Washington, DC 20002, USA
| | - Richard Tun
- Department of Energy and Environment, Government of the District of Columbia, 1200 First Street, N.E. 5th Floor, Washington, DC 20002, USA
| | - Elizabeth Landis
- U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Ambient Air Monitoring Group, Mail Code C304-06, Research Triangle Park, NC 27711, USA
| | - Joann Rice
- U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Ambient Air Monitoring Group, Mail Code C304-06, Research Triangle Park, NC 27711, USA
| |
Collapse
|
10
|
Wen J, Shi G, Tian Y, Chen G, Liu J, Huang-Fu Y, Ivey CE, Feng Y. Source contributions to water-soluble organic carbon and water-insoluble organic carbon in PM 2.5 during Spring Festival, heating and non-heating seasons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:172-180. [PMID: 30114567 DOI: 10.1016/j.ecoenv.2018.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
To investigate the influences of anthropogenic activities on carbon aerosols, especially on water-soluble organic carbon (WSOC), PM2.5 samples were collected at an urban site in a northern city of China during Spring Festival (SF), heating season (HS), and non-heating season (NHS). Carbonaceous species and ions (Ca2+, SO42-, NO3-, etc.) were analyzed. Mass concentrations of WSOC and WSIC exhibited higher levels in SF and HS, and high WSOC/OC ratios (67.4%) on average were found. Stronger correlations between WSOC and K+, Cl- occurred in SF, which might due to contributions of firework emissions. Six major sources of PM2.5 were quantified by PMF model, which contributed in aerosol mass differently in different periods: biomass & firework burning exhibited higher contribution (11.2%) in SF; crustal dust accounted for 19.4% during NHS; secondary particles contributed most (41.0%) in HS; during SF and HS, coal combustion devoted more to aerosol mass. Contributions to WSOC were in the order of vehicular exhaust (41.0% of WSOC) > coal combustion (29.3%) > secondary formation (17.0%) > biomass & firework burning (12.7%). The 82.0% of WIOC were from coal combustion and the rest were devoted by vehicular exhaust. Obvious peaks of firework burning contributions to WSOC were observed on SF's Eve and Lantern Festival. Coal combustion contributed to organic carbons highly in SF and HS. Results implied that anthropogenic activities contributions, like firework burning and coal combustion, significantly influenced the levels of PM2.5 and WSOC.
Collapse
Affiliation(s)
- Jie Wen
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Gang Chen
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Jiayuan Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yanqi Huang-Fu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cesunica E Ivey
- Department of Physics, University of Nevada Reno, Reno, NV 89557, USA
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Galvão ES, Santos JM, Lima AT, Reis NC, Orlando MTD, Stuetz RM. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications. CHEMOSPHERE 2018; 199:546-568. [PMID: 29455125 DOI: 10.1016/j.chemosphere.2018.02.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 05/11/2023]
Abstract
Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required.
Collapse
Affiliation(s)
- Elson Silva Galvão
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
| | - Jane Meri Santos
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Ana Teresa Lima
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Neyval Costa Reis
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Richard Michael Stuetz
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Emami F, Masiol M, Hopke PK. Air pollution at Rochester, NY: Long-term trends and multivariate analysis of upwind SO 2 source impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1506-1515. [PMID: 28915545 DOI: 10.1016/j.scitotenv.2017.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 05/25/2023]
Abstract
There have been many changes in the air pollutant sources in the northeastern United States since 2001. To assess the effect of these changes, trend analyses of the monthly average values were performed on PM2.5 and its components including major ions, elemental carbon (EC), organic carbon (OC), and gaseous pollutant concentrations measured between 2001 (in some cases 1999) and 2015 at the NYS Department of Environmental Conservation sites in Rochester, NY. Mann-Kendall regression with Sen's slope was applied to estimate the trends and seasonality. Using piecewise regression, significant reductions in the air pollution of Rochester area were observed between 2008 and 2010 when a 260MW coal-fired power plant was decommissioned, new heavy-duty diesel trucks had to be equipped with catalytic regenerator traps, and the economic recession that began in 2008 reduced traffic and other activities. The monthly average PM2.5 mass showed a downward trend (-5μg/m3; -41%) in Rochester between 2001 and 2015. This change is largely due to reductions in particulate sulfate that showed a 65% decrease. The sulfate concentrations were compared to changes in SO2 emissions in seventeen upwind source domains, and other systematic changes by multivariate linear regression. Selectivity ratio obtained from target projection discriminated the most important source domains that are SO2 emissions from Georgia for winter, North Carolina for transition (spring and fall) and Ohio along with other influences for summer. North Carolina and Michigan were identified as the main sources for entire period. These observations suggest that any further reductions in the specified regional SO2 emissions would result in a proportional decrease in sulfate in Rochester.
Collapse
Affiliation(s)
- Fereshteh Emami
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699, United States
| | - Mauro Masiol
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699, United States; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699, United States; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
13
|
Lappi MK, Ristimäki JM. Evaluation of thermal optical analysis method of elemental carbon for marine fuel exhaust. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:1298-1318. [PMID: 28548907 DOI: 10.1080/10962247.2017.1335251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 05/08/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED The awareness of black carbon (BC) as the second largest anthropogenic contributor in global warming and an ice melting enhancer has increased. Due to prospected increase in shipping especially in the Arctic reliability of BC emissions and their invented amounts from ships is gaining more attention. The International Maritime Organization (IMO) is actively working toward estimation of quantities and effects of BC especially in the Arctic. IMO has launched work toward constituting a definition for BC and agreeing appropriate methods for its determination from shipping emission sources. In our study we evaluated the suitability of elemental carbon (EC) analysis by a thermal-optical transmittance (TOT) method to marine exhausts and possible measures to overcome the analysis interferences related to the chemically complex emissions. The measures included drying with CaSO4, evaporation at 40-180ºC, H2O treatment, and variation of the sampling method (in-stack and diluted) and its parameters (e.g., dilution ratio, Dr). A reevaluation of the nominal organic carbon (OC)/EC split point was made. Measurement of residual carbon after solvent extraction (TC-CSOF) was used as a reference, and later also filter smoke number (FSN) measurement, which is dealt with in a forthcoming paper by the authors. Exhaust sources used for collecting the particle sample were mainly four-stroke marine engines operated with variable loads and marine fuels ranging from light to heavy fuel oils (LFO and HFO) with a sulfur content range of <0.1-2.4% S. The results were found to be dependent on many factors, namely, sampling, preparation and analysis method, and fuel quality. It was found that the condensed H2SO4 + H2O on the particulate matter (PM) filter had an effect on the measured EC content, and also promoted the formation of pyrolytic carbon (PyC) from OC, affecting the accuracy of EC determination. Thus, uncertainty remained regarding the EC results from HFO fuels. IMPLICATIONS The work supports one part of the decision making in black carbon (BC) determination methodology. If regulations regarding BC emissions from marine engines will be implemented in the future, a well-defined and at best unequivocal method of BC determination is required for coherent and comparable emission inventories and estimating BC effects. As the aerosol from marine emission sources may be very heterogeneous and low in BC, special attention to the effects of sampling conditions and sample pretreatments on the validity of the results was paid in developing the thermal-optical analysis methodology (TOT).
Collapse
Affiliation(s)
- Maija K Lappi
- a VTT Technical Research Centre of Finland , Espoo , Finland
| | - Jyrki M Ristimäki
- b Royal Caribbean Cruises Ltd, Newbuilding and Innovation , Turku , Finland
| |
Collapse
|
14
|
Crenn V, Fronval I, Petitprez D, Riffault V. Fine particles sampled at an urban background site and an industrialized coastal site in Northern France - Part 1: Seasonal variations and chemical characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:203-218. [PMID: 26685722 DOI: 10.1016/j.scitotenv.2015.11.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 06/05/2023]
Abstract
The chemical composition of particulate matter sampled at two French Northern sites (Douai, DO - urban background; Grande-Synthe, GS - industrialized coastal site) was investigated during two summer and winter field campaigns at each site. Measurements of the major chemical species (organic, sulfate, nitrate, ammonium, chloride) in the non-refractory submicron aerosols (NR-PM1) were carried out by a High Resolution Time-of-Flight Aerosol Mass Spectrometer. Black Carbon in PM2.5 was monitored using an Aethalometer, while the OC and EC fractions and some targeted chemical organic families (polycyclic aromatic hydrocarbons, PAHs; dicarboxylic acids, DCAs) were quantified by the simultaneous collection of PM2.5 on filters followed by offline analyses. The seasonal trends and winter-to-summer (W/S) concentration ratios are discussed in this paper. Results indicate that the total average mass concentrations of PM2.5 varied between 20.5μgm-3 and 32.6μgm-3 in DO and between 10.6μgm-3 and 29.9μgm-3 in GS during summer and winter, respectively. Similar concentration patterns were found for PAHs and Organic Carbon (OC, representing ~80% of the total carbon) with highest concentrations in winter at the urban site. DCA concentrations showed less seasonal variations, although the highest value also appeared during winter. Total NR-PM1 presented concentrations in summer lower by a factor of 4 (for DO) and 10 (for GS) than those observed in winter. Organics and nitrates dominated the NR-PM1 in DO for both seasons and during winter in GS while sulfates and nitrates were the most dominant species in summer in GS. Average chloride concentrations were slightly more important in GS than those in DO related to its use in industrial processes and no significant seasonal trend was observed. The size-resolved chemical composition showed that aerosols sampled in DO in winter are more aged than those collected in GS where fresh emissions of sulfate from the industrial sector were observed.
Collapse
Affiliation(s)
- V Crenn
- Département SAGE, Mines Douai, F-59508 Douai, France; Université de Lille, F-59000 Lille, France
| | - I Fronval
- Département SAGE, Mines Douai, F-59508 Douai, France; Université de Lille, F-59000 Lille, France
| | - D Petitprez
- PC2A, UMR CNRS-Lille1 8522, F-59655, Villeneuve d'Ascq, France; Université de Lille, F-59000 Lille, France
| | - V Riffault
- Département SAGE, Mines Douai, F-59508 Douai, France; Université de Lille, F-59000 Lille, France
| |
Collapse
|
15
|
Winquist A, Schauer JJ, Turner JR, Klein M, Sarnat SE. Impact of ambient fine particulate matter carbon measurement methods on observed associations with acute cardiorespiratory morbidity. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:215-221. [PMID: 25138293 DOI: 10.1038/jes.2014.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Elemental carbon (EC) and organic carbon (OC) represent a substantial portion of particulate matter <2.5 μm in diameter (PM2.5), and have been associated with adverse health effects. EC and OC are commonly measured using the National Institute of Occupational Safety and Health (NIOSH) method or the Interagency Monitoring of Protected Visual Environments (IMPROVE) method. Measurement method differences could have an impact on observed epidemiologic associations. Daily speciated PM2.5 data were obtained from the St Louis-Midwest Supersite, and St Louis emergency department (ED) visit data were obtained from the Missouri Hospital Association for the period June 2001 to April 2003. We assessed acute associations between cardiorespiratory ED visits and EC and OC from NIOSH and IMPROVE methods using Poisson generalized linear models controlling for temporal trends and meteorology. Associations were generally similar for EC and OC from the different measurement methods. The most notable difference between methods was observed for congestive heart failure and EC (for example, warm season rate ratios (95% confidence intervals) per interquartile range change in EC concentration were: NIOSH=1.06 (0.99-1.13), IMPROVE=1.01 (0.96-1.07)). Overall, carbon measurement method had little impact on acute associations between EC, OC, and ED visits. Some specific differences were observed, however, which may be related to particle composition.
Collapse
Affiliation(s)
- Andrea Winquist
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jamie J Schauer
- Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jay R Turner
- Environmental and Chemical Engineering, Washington University, St Louis, Missouri, USA
| | - Mitch Klein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Stefanie Ebelt Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Nguyen DL, Kim JY, Ghim YS, Shim SG. Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3594-3605. [PMID: 25253054 DOI: 10.1007/s11356-014-3587-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
PM2.5 carbonaceous particles were measured at Gosan, South Korea during 29 March-11 April 2002 which includes a pollution period (30 March-01 April) when the highest concentrations of major anthropogenic species (nss-SO4 (2-), NO3 (-), and NH4 (+)) were observed and a strong Asian dust (AD) period (08-10 April) when the highest concentrations of mainly dust-originated trace elements (Al, Ca, Mg, and Fe) were seen. The concentrations of elemental carbon (EC) measured in the pollution period were higher than those measured in the strong AD period, whereas an inverse variation in the concentrations of organic carbon (OC) was observed. Based on the OC/EC ratios, the possible source that mainly contributed to the highly elevated OC concentrations measured in the strong AD period was biomass burning. The influence of the long-range transport of smoke plumes emitted from regional biomass burning sources was evaluated by using MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data for fire locations and the potential source contribution function analysis. The most potential source regions of biomass burning were the Primorsky and Amur regions in Far Eastern Russia and southeastern and southwestern Siberia, Russia. Further discussion on the source characteristics suggested that the high OC concentrations measured in the strong AD period were significantly affected by the smoldering phase of biomass burning. In addition to biomass burning, secondary OC (SOC) formed during atmospheric long-range transport should be also considered as an important source of OC concentration measured at Gosan. Although this study dealt with the episodic case of the concurrent increase of dust and biomass burning particles, understanding the characteristics of heterogeneous mixing aerosol is essential in assessing the radiative forcing of aerosol.
Collapse
Affiliation(s)
- Duc Luong Nguyen
- Green City Technology Institute, Korea Institute of Science and Technology (KIST), 39-1, Hawolgok-dong, Seongbuk-gu, Seoul, South Korea
| | | | | | | |
Collapse
|
17
|
Chen Y, Zheng M, Edgerton ES, Ke L, Sheng G, Fu J. PM2.5source apportionment in the southeastern U.S.: Spatial and seasonal variations during 2001-2005. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016572] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Cheng Y, Duan FK, He KB, Zheng M, Du ZY, Ma YL, Tan JH. Intercomparison of thermal-optical methods for the determination of organic and elemental carbon: influences of aerosol composition and implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:10117-10123. [PMID: 22044188 DOI: 10.1021/es202649g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An intercomparison of organic carbon (OC) and elemental carbon (EC) measurements was conducted based on ambient aerosol samples collected during four seasons in Beijing, China. Dependence of OC and EC values on the temperature protocol and the charring correction method is presented and influences of aerosol composition are investigated. EC was found to decrease with the peak inert mode temperature (T(peak)) such that EC determined by the IMPROVE (the Interagency Monitoring of Protected Visual Environments)-A protocol (T(peak) was 580 °C) was 2.85 ± 1.31 and 3.83 ± 2.58 times that measured by an alternative protocol with a T(peak) of 850 °C when using the transmittance and reflectance correction, respectively. It was also found that reflectance correction tends to classify more carbon as EC compared with transmittance; results from the IMPROVE-A protocol showed that the ratio of EC defined by reflectance correction (EC(R)) to that based on transmittance (EC(T)) averaged 1.50 ± 0.42. Moreover, it was demonstrated that emissions from biomass burning would increase the discrepancy between EC values determined by different temperature protocols. On the other hand, the discrepancy between EC(R) and EC(T) was strongly associated with secondary organic aerosol (SOA) which was shown to be an important source of the organics that pyrolyze during the inert mode of thermal-optical analysis.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Baek J, Hu Y, Odman MT, Russell AG. Modeling secondary organic aerosol in CMAQ using multigenerational oxidation of semi-volatile organic compounds. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015911] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaemeen Baek
- School of Civil and Environmental Engineering; Georgia Institute of Technology; Atlanta Georgia USA
| | - Yongtao Hu
- School of Civil and Environmental Engineering; Georgia Institute of Technology; Atlanta Georgia USA
| | - M. Talat Odman
- School of Civil and Environmental Engineering; Georgia Institute of Technology; Atlanta Georgia USA
| | - Armistead G. Russell
- School of Civil and Environmental Engineering; Georgia Institute of Technology; Atlanta Georgia USA
| |
Collapse
|