1
|
Araújo LTFD, Reis MEMD, Andrade WMGD, Resende NDS, Lima RRMD, Nascimento ESD, Costa MSMDO, Cavalcante JC. Distribution of nitric oxide in the rock cavy (Kerodon rupestris) brain II: The brainstem. J Chem Neuroanat 2021; 116:101989. [PMID: 34126223 DOI: 10.1016/j.jchemneu.2021.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
In a recent paper, we described the distribution of Nitric oxide (NO) in the diencephalon of the rock cavy (Kerodon rupestris). This present paper follows this work, showing the distribution of NO synthesizing neurons in the rock cavy's brainstem. For this, we used immunohistochemistry against the neuronal form of nitric oxide synthase (NOS) and NADPH diaphorase histochemistry. In contrast to the diencephalon in the rock cavy, where the NOS neurons were seen to be limited to some nuclei in the thalamus and hypothalamus, the distribution of NOS in the brainstem is widespread. Neurons immunoreactive to NOS (NOS-ir) were seen as rostral as the precommissural nuclei and as caudal as the caudal and gelatinous parts of the spinal trigeminal nucleus. Places such as the raphe nuclei, trigeminal complex, superior and inferior colliculus, oculomotor complex, periaqueductal grey matter, solitary tract nucleus, laterodorsal tegmental nucleus, pedunculopontine tegmental, and other nuclei of the reticular formation are among the locations with the most NOS-ir neurons. This distribution is similar, but with some differences, to those described for other rodents, indicating that NO also has an important role in rock cavy's physiology.
Collapse
Affiliation(s)
- Lucimário Thiago Félix de Araújo
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maria Emanuela Martins Dos Reis
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Wylqui Mikael Gomes de Andrade
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nayra da Silva Resende
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ruthnaldo Rodrigues Melo de Lima
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Expedito Silva do Nascimento
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Judney Cley Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
2
|
AlMarabeh S, Abdulla MH, O'Halloran KD. Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension? Front Physiol 2019; 10:465. [PMID: 31105584 PMCID: PMC6491928 DOI: 10.3389/fphys.2019.00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Renal sensory nerves are important in the regulation of body fluid and electrolyte homeostasis, and blood pressure. Activation of renal mechanoreceptor afferents triggers a negative feedback reno-renal reflex that leads to the inhibition of sympathetic nervous outflow. Conversely, activation of renal chemoreceptor afferents elicits reflex sympathoexcitation. Dysregulation of reno-renal reflexes by suppression of the inhibitory reflex and/or activation of the excitatory reflex impairs blood pressure control, predisposing to hypertension. Obstructive sleep apnoea syndrome (OSAS) is causally related to hypertension. Renal denervation in patients with OSAS or in experimental models of chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoeas (pauses in breathing), results in a decrease in circulating norepinephrine levels and attenuation of hypertension. The mechanism of the beneficial effect of renal denervation on blood pressure control in models of CIH and OSAS is not fully understood, since renal denervation interrupts renal afferent signaling to the brain and sympathetic efferent signals to the kidneys. Herein, we consider the currently proposed mechanisms involved in the development of hypertension in CIH disease models with a focus on oxidative and inflammatory mediators in the kidneys and their potential influence on renal afferent control of blood pressure, with wider consideration of the evidence available from a variety of hypertension models. We draw focus to the potential contribution of aberrant renal afferent signaling in the development, maintenance and progression of high blood pressure, which may have relevance to CIH-induced hypertension.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Buhler AVK, Tachibana S, Zhang Y, Quock RM. nNOS immunoreactivity co-localizes with GABAergic and cholinergic neurons, and associates with β-endorphinergic and met-enkephalinergic opioidergic fibers in rostral ventromedial medulla and A5 of the mouse. Brain Res 2018; 1698:170-178. [PMID: 30081038 DOI: 10.1016/j.brainres.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/24/2018] [Accepted: 08/02/2018] [Indexed: 11/26/2022]
Abstract
The present study examined the co-expression of neuronal nitric oxide synthase (nNOS) in the rostral ventromedial medulla (RVM) and A5 regions of the mouse brainstem within several neurochemical populations involved in nociceptive modulation. Double immunohistochemical methods showed that nNOS+ neurons do not co-localize with serotonergic neurons within any of these regions. Within the RVM, the nuclei raphe magnus and gigantocellularis contain a population of nNOS+/GAD67+ neurons, and within the paragigantocellularis lateralis, there is a smaller population of nNOS+/CHAT+ neurons. Further, nNOS+ neurons overlap the region of expression of β-endorphinergic and met-enkephalinergic fibers within the RVM. No co-labeling was found within the A5 for any of these populations. These findings suggest that pain-modulatory serotonergic neurons within the brainstem do not directly produce nitric oxide (NO). Rather, NO-producing neurons within the RVM belong to GABAergic and cholinergic cell populations, and are in a position to modulate or be modulated by local opioidergic neurons.
Collapse
Affiliation(s)
- Amber V K Buhler
- School of Pharmacy, Pacific University Oregon, 222 SE 8th Ave, Hillsboro, OR 97123, United States.
| | - Sean Tachibana
- School of Pharmacy, Pacific University Oregon, 222 SE 8th Ave, Hillsboro, OR 97123, United States
| | - Yangmiao Zhang
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Raymond M Quock
- Department of Psychology, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
4
|
Matott M, Ciarlone G, Putnam R, Dean J. Normobaric hyperoxia (95% O2) stimulates CO2-sensitive and CO2-insensitive neurons in the caudal solitary complex of rat medullary tissue slices maintained in 40% O2. Neuroscience 2014; 270:98-122. [DOI: 10.1016/j.neuroscience.2014.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/13/2022]
|
5
|
Sharpe AL, Calderon AS, Andrade MA, Cunningham JT, Mifflin SW, Toney GM. Chronic intermittent hypoxia increases sympathetic control of blood pressure: role of neuronal activity in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 2013; 305:H1772-80. [PMID: 24097432 DOI: 10.1152/ajpheart.00592.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Like humans with sleep apnea, rats exposed to chronic intermittent hypoxia (CIH) experience arterial hypoxemias and develop hypertension characterized by exaggerated sympathetic nerve activity (SNA). To gain insights into the poorly understood mechanisms that initiate sleep apnea/CIH-associated hypertension, experiments were performed in rats exposed to CIH for only 7 days. Compared with sham-treated normoxic control rats, CIH-exposed rats (n = 8 rats/group) had significantly increased hematocrit (P < 0.001) and mean arterial pressure (MAP; P < 0.05). Blockade of ganglionic transmission caused a significantly (P < 0.05) greater reduction of MAP in rats exposed to CIH than control rats (n = 8 rats/group), indicating a greater contribution of SNA in the support of MAP even at this early stage of CIH hypertension. Chemical inhibition of neuronal discharge in the hypothalamic paraventricular nucleus (PVN) (100 pmol muscimol) had no effect on renal SNA but reduced lumbar SNA (P < 0.005) and MAP (P < 0.05) more in CIH-exposed rats (n = 8) than control rats (n = 7), indicating that CIH increased the contribution of PVN neuronal activity in the support of lumbar SNA and MAP. Because CIH activates brain regions controlling body fluid homeostasis, the effects of internal carotid artery injection of hypertonic saline were tested and determined to increase lumbar SNA more (P < 0.05) in CIH-exposed rats than in control rats (n = 9 rats/group). We conclude that neurogenic mechanisms are activated early in the development of CIH hypertension such that elevated MAP relies on increased sympathetic tonus and ongoing PVN neuronal activity. The increased sensitivity of Na(+)/osmosensitive circuitry in CIH-exposed rats suggests that early neuroadaptive responses among body fluid regulatory neurons could contribute to the initiation of CIH hypertension.
Collapse
Affiliation(s)
- Amanda L Sharpe
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas
| | | | | | | | | | | |
Collapse
|
6
|
Biancardi VC, Son SJ, Sonner PM, Zheng H, Patel KP, Stern JE. Contribution of central nervous system endothelial nitric oxide synthase to neurohumoral activation in heart failure rats. Hypertension 2011; 58:454-63. [PMID: 21825233 DOI: 10.1161/hypertensionaha.111.175810] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurohumoral activation, a hallmark in heart failure (HF), is linked to the progression and mortality of HF patients. Thus, elucidating its precise underlying mechanisms is of critical importance. Other than its classic peripheral vasodilatory actions, the gas NO is a pivotal neurotransmitter in the central nervous system control of the circulation. While accumulating evidence supports a contribution of blunted NO function to neurohumoral activation in HF, the precise cellular sources, and NO synthase (NOS) isoforms involved, remain unknown. Here, we used a multidisciplinary approach to study the expression, cellular distribution, and functional relevance of the endothelial NOS isoform within the hypothalamic paraventricular nucleus in sham and HF rats. Our results show high expression of endothelial NOS in the paraventricular nucleus (mostly confined to astroglial cells), which contributes to constitutive NO bioavailability, as well as tonic inhibition of presympathetic neuronal activity and sympathoexcitatory outflow from the paraventricular nucleus. A diminished endothelial NOS expression and endothelial NOS-derived NO availability were found in the paraventricular nucleus of HF rats, resulting, in turn, in blunted NO inhibitory actions on neuronal activity and sympathoexcitatory outflow. Taken together, our study supports blunted central nervous system endothelial NOS-derived NO as a pathophysiological mechanism underlying neurohumoral activation in HF.
Collapse
Affiliation(s)
- Vinicia C Biancardi
- Georgia Health Sciences University, Department of Physiology, 1120 15th St, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
7
|
Hypoxia-induced cellular and vascular changes in the nucleus tractus solitarius and ventrolateral medulla. J Neuropathol Exp Neurol 2011; 70:201-17. [PMID: 21293297 DOI: 10.1097/nen.0b013e31820d8f92] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Major changes in arterial pressure, autonomic, and respiratory activity occur in response to hypoxia. We analyzed structural damage and increased vascular permeability in the ventrolateral medulla and nucleus tractus solitarius, which control autonomic, respiratory, and cardiovascular functions in adult Wistar rats subjected to 2 hours of hypoxia (7% oxygen + 93% nitrogen) for up to 14 days after hypoxicexposure. Brainstem tissue levels of vascular endothelial growth factor (VEGF), nitric oxide (NO), and glutamate were significantly increased over control levels after hypoxic injury. By electron microscopy, swollen neurons and dendrites, degenerating axons, disrupted myelin sheaths, and swollen astrocyte processes were observed in the nucleus tractus solitarius and ventrolateral medulla. Leakage of intravenously administered horseradish peroxidase was observed through vascular walls in hypoxic rats. These results suggest that increased VEGF and NO production in hypoxia resulted in increased vascular permeability, which, along with increased levels of glutamate, may have induced structural alterations of the neurons, dendrites, and axons. Administration of the antioxidant neurohormone melatonin (10mg/kg) before and after the hypoxia reduced VEGF, NO, and glutamate levels and improved ultrastructural abnormalities induced by hypoxia exposure, suggesting that it may have a therapeutic potential in reducing hypoxia-associated brainstem damage.
Collapse
|
8
|
Dean JB. Hypercapnia causes cellular oxidation and nitrosation in addition to acidosis: implications for CO2 chemoreceptor function and dysfunction. J Appl Physiol (1985) 2010; 108:1786-95. [PMID: 20150563 PMCID: PMC2886689 DOI: 10.1152/japplphysiol.01337.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/08/2010] [Indexed: 12/22/2022] Open
Abstract
Cellular mechanisms of CO2 chemoreception are discussed and debated in terms of the stimuli produced during hypercapnic acidosis and their molecular targets: protons generated by the hydration of CO2 and dissociation of carbonic acid, which target membrane-bound proteins and lipids in brain stem neurons. The CO2 hydration reaction, however, is not the only reaction that CO2 undergoes that generates molecules capable of modifying proteins and lipids. Molecular CO2 also reacts with peroxynitrite (ONOO-), a reactive nitrogen species (RNS), which is produced from nitric oxide (*NO) and superoxide (*O2-). The CO2/ONOO- reaction, in turn, produces additional nitrosative and oxidative reactive intermediates. Furthermore, protons facilitate additional redox reactions that generate other reactive oxygen species (ROS). ROS/RNS generated by these redox reactions may act as additional stimuli of CO2 chemoreceptors since neurons in chemosensitive areas produce both *NO and *O2- and, therefore, ONOO-. Perturbing *NO, *O2-, and ONOO- activities in chemosensitive areas modulates cardiorespiration. Moreover, neurons in at least one chemosensitive area, the solitary complex, are stimulated by cellular oxidation. Together, these data raise the following two questions: 1) do pH and ROS/RNS work in tandem to stimulate CO2 chemoreceptors during hypercapnic acidosis; and 2) does nitrosative stress and oxidative stress contribute to CO2 chemoreceptor dysfunction? To begin considering these two issues and their implications for central chemoreception, this minireview has the following three goals: 1) summarize the nitrosative and oxidative reactions that occur during hypercapnic acidosis and isocapnic acidosis; 2) review the evidence that redox signaling occurs in chemosensitive areas; and 3) review the evidence that neurons in the solitary complex are stimulated by cellular oxidation.
Collapse
Affiliation(s)
- Jay B Dean
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, University of South Florida, College of Medicine, MDC 8, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, USA.
| |
Collapse
|
9
|
Granjeiro EM, Pajolla GP, Accorsi-Mendonça D, Machado BH. Interaction of purinergic and nitrergic mechanisms in the caudal nucleus tractus solitarii of rats. Auton Neurosci 2009; 151:117-26. [PMID: 19716350 DOI: 10.1016/j.autneu.2009.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 07/06/2009] [Accepted: 07/28/2009] [Indexed: 02/05/2023]
Abstract
The interaction of purinergic and nitrergic mechanisms was evaluated in the caudal nucleus tractus solitarii (cNTS) using awake animals and brainstem slices. In awake animals, ATP (1.25 nmol/50 nL) was microinjected into the cNTS before and after the microinjection of a selective neuronal nitric oxide synthase (nNOS) inhibitor N-propyl-l-arginine (NPLA, 3 pmoles/50 nL, n=8) or vehicle (saline, n=4), and cardiovascular and ventilatory parameters were recorded. In brainstem slices from a distinct group of rats, the effects of ATP on the NO concentration in the cNTS using the fluorescent dye DAF-2 DA were evaluated. For this purpose brainstem slices (150 microm) containing the cNTS were pre-incubated with ATP (500 microM; n=8) before and during DAF-2 DA loading. Microinjection of ATP into the cNTS increases the arterial pressure (AP), respiratory frequency (f(R)) and minute ventilation (V(E)), which were significantly reduced by pretreatment with N-PLA, a selective nNOS inhibitor (AP: 39+/-3 vs 16+/-14 mm Hg; f(R): 75+/-14 vs 4+/-3 cpm; V(E): 909+/-159 vs 77+/-39 mL kg(-1) m(-1)). The effects of ATP in the cNTS were not affected by microinjection of saline. ATP significantly increased the NO fluorescence in the cNTS (62+/-7 vs 101+/-10 AU). The data show that in the cNTS: a) the NO production is increased by ATP; b) NO formation by nNOS is involved in the cardiovascular and ventilatory responses to microinjection of ATP. Taken together, these data suggest an interaction of purinergic and nitrergic mechanisms in the cNTS.
Collapse
Affiliation(s)
- Erica M Granjeiro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|