1
|
Liu KL, Sun TZ, Yang Y, Gao QX, Tu LM, Yu JY, Tian QZ, Fu LY, Tang SH, Gao HL, Qi J, Kang YM, Yu XJ. Blockade of PVN neuromedin B receptor alleviates inflammation via the RAS/ROS/NF-κB pathway in spontaneously hypertensive rats. Brain Res Bull 2025; 220:111180. [PMID: 39716597 DOI: 10.1016/j.brainresbull.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Neuromedin B (NMB) has potentially great impacts on the development of cardiovascular diseases by promoting hypertensive and sympatho-excitation effects. However, studies regarding the NMB function in paraventricular nucleus (PVN) are lacking. With selective neuromedin B receptor (NMBR) antagonist, BIM-23127, we aim to determine whether the blockade of NMB function in PVN could alleviate central inflammation and attenuate hypertensive responses. Spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were chronically infused with BIM-23127 in the PVN for 6 weeks. Mean arterial pressure (MAP) was assessed with tail cuff and electrophysiological acquisition systems. PVN tissues were collected to analyze expressions of Fra-LI, inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-10, and IL-4), renin-angiotensin system (angiotensin-converting enzyme (ACE), ACE2, and AT1-reporter (AT1-R)) and oxidative stress (reactive oxygen species (ROS), superoxide dismutase (SOD)1, NADPH oxidase (NOX)2, and NOX4). ELISA was used to detect inflammation indices, norepinephrine (NE), and nuclear factor κB (NF-κB) p65 in plasma and PVN tissue homogenate. Compared to WKY, SHR exhibited higher mean arterial pressure (MAP), plasma NE, and pro-inflammatory cytokines (PICs). Higher PVN levels of Fra-LI, PICs, ACE, AT1-R, ROS, NOX2, NOX4, and NF-κB p65, while lower central levels of anti-inflammatory cytokines (AICs), ACE2, and SOD1 were observed in SHR. Administration of BIM-23127 in PVN reversed all these changes in SHR. In SHR, blockade of NMBR in the PVN inhibited sympatho-excitation and attenuated hypertensive response. The attenuation mechanism may involve reducing inflammation and the RAS/ROS/ NF-κB pathways in PVN.
Collapse
Affiliation(s)
- Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Tian-Ze Sun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Yang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Department of Pharmacology, School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China
| | - Qian-Xi Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Shanxi Medical University, Taiyuan 030001, China
| | - Li-Mei Tu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Shanxi Medical University, Taiyuan 030001, China
| | - Jia-Yue Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Qiao-Zhen Tian
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Shanxi Datong University, Datong 037009, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Shu-Huan Tang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China.
| |
Collapse
|
2
|
Paul S, Hanna L, Harding C, Hayter EA, Walmsley L, Bechtold DA, Brown TM. Output from VIP cells of the mammalian central clock regulates daily physiological rhythms. Nat Commun 2020; 11:1453. [PMID: 32193397 PMCID: PMC7081308 DOI: 10.1038/s41467-020-15277-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/29/2020] [Indexed: 12/27/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) circadian clock is critical for optimising daily cycles in mammalian physiology and behaviour. The roles of the various SCN cell types in communicating timing information to downstream physiological systems remain incompletely understood, however. In particular, while vasoactive intestinal polypeptide (VIP) signalling is essential for SCN function and whole animal circadian rhythmicity, the specific contributions of VIP cell output to physiological control remains uncertain. Here we reveal a key role for SCN VIP cells in central clock output. Using multielectrode recording and optogenetic manipulations, we show that VIP neurons provide coordinated daily waves of GABAergic input to target cells across the paraventricular hypothalamus and ventral thalamus, supressing their activity during the mid to late day. Using chemogenetic manipulation, we further demonstrate specific roles for this circuitry in the daily control of heart rate and corticosterone secretion, collectively establishing SCN VIP cells as influential regulators of physiological timing. VIP-expressing neurons play a central role in circadian timekeeping within the mammalian central clock. Here the authors use opto- and chemogenetic approaches to show that VIP neuronal activity regulates rhythmic activity in downstream hypothalamic target neurons and their physiological functions.
Collapse
Affiliation(s)
- Sarika Paul
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Lydia Hanna
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK.,School of Pharmacy, University of Reading, Reading, UK
| | - Court Harding
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Edward A Hayter
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Lauren Walmsley
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - David A Bechtold
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Tanaka K, Shimizu T, Yanagita T, Nemoto T, Nakamura K, Taniuchi K, Dimitriadis F, Yokotani K, Saito M. Brain RVD-haemopressin, a haemoglobin-derived peptide, inhibits bombesin-induced central activation of adrenomedullary outflow in the rat. Br J Pharmacol 2014; 171:202-13. [PMID: 24138638 DOI: 10.1111/bph.12471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/17/2013] [Accepted: 09/21/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Haemopressin and RVD-haemopressin, derived from the haemoglobin α-chain, are bioactive peptides found in brain and are ligands for cannabinoid CB1 receptors. Activation of brain CB1 receptors inhibited the secretion of adrenal catecholamines (noradrenaline and adrenaline) induced by i.c.v. bombesin in the rat. Here, we investigated the effects of two haemoglobin-derived peptides on this bombesin-induced response EXPERIMENTAL APPROACH Anaesthetised male Wistar rats were pretreated with either haemoglobin-derived peptide, given i.c.v., 30 min before i.c.v. bombesin and plasma catecholamines were subsequently measured electrochemically after HPLC. Direct effects of bombesin on secretion of adrenal catecholamines were examined using bovine adrenal chromaffin cells. Furthermore, activation of haemoglobin α-positive spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of central adrenomedullary outflow) after i.c.v. bombesin was assessed by immunohistochemical techniques. KEY RESULTS Bombesin given i.c.v. dose-dependently elevated plasma catecholamines whereas incubation with bombesin had no effect on spontaneous and nicotine-induced secretion of catecholamines from chromaffin cells. The bombesin-induced increase in catecholamines was inhibited by pretreatment with i.c.v. RVD-haemopressin (CB1 receptor agonist) but not after pretreatment with haemopressin (CB1 receptor inverse agonist). Bombesin activated haemoglobin α-positive spinally projecting neurons in the PVN. CONCLUSIONS AND IMPLICATIONS The haemoglobin-derived peptide RVD-haemopressin in the brain plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow via brain CB1 receptors in the rat. These findings provide basic information for the therapeutic use of haemoglobin-derived peptides in the modulation of central adrenomedullary outflow.
Collapse
Affiliation(s)
- Kenjiro Tanaka
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tanaka K, Shimizu T, Higashi Y, Nakamura K, Taniuchi K, Dimitriadis F, Shimizu S, Yokotani K, Saito M. Central bombesin possibly induces S-nitrosylation of cyclooxygenase-1 in pre-sympathetic neurons of rat hypothalamic paraventricular nucleus. Life Sci 2014; 100:85-96. [PMID: 24530741 DOI: 10.1016/j.lfs.2014.01.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/16/2014] [Accepted: 01/30/2014] [Indexed: 01/22/2023]
Abstract
AIMS Cyclooxygenase (COX) can be activated by nitric oxide-induced (NO-induced) conversion of cysteine thiol group of COX into S-nitrosothiol. We previously reported the involvement of brain COX/NO synthase (NOS) in centrally administered bombesin-, a stress-related neuropeptide, induced secretion of rat adrenal noradrenaline and adrenaline. To examine a possible involvement of the NO-induced modification of COX in bombesin-induced response, we investigated whether bombesin induces close proximity of COX-1 and neuronal NOS (nNOS) or S-nitroso-cysteine in pre-sympathetic spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN), a regulatory center of adrenomedullary outflow. MAIN METHODS In twelve-week-old male Wistar rats, pre-sympathetic spinally projecting neurons in the PVN were labeled with a retrograde tracer Fluoro-Gold (FG). After intracerebroventricular administration of bombesin, we performed double immunohistochemical analysis for Fos and COX-1 or nNOS in FG-labeled PVN neurons. We also performed a fluorescent in situ proximity ligation assay (PLA) for visualizing of close proximity (<40 nm) of COX-1 with nNOS or S-nitroso-cysteine. KEY FINDINGS Bombesin significantly increased the number of Fos-immunoreactive cells in FG-labeled PVN neurons with COX-1 or nNOS immunoreactivity. 7-Nitroindazole, a selective nNOS inhibitor, abolished Fos-immunoreactivity induced by bombesin in COX-1-immunoreactive FG-labeled PVN neurons. Bombesin also induced PLA-positive signals indicating close proximity of COX-1/nNOS and COX-1/S-nitroso-cysteine in FG-labeled PVN neurons. SIGNIFICANCE Centrally administered bombesin possibly induces S-nitrosylation of COX-1 through close proximity of COX-1 and nNOS in pre-sympathetic spinally projecting PVN neurons, thereby activating COX-1 during the bombesin-induced activation of central adrenomedullary outflow in the rat.
Collapse
Affiliation(s)
- Kenjiro Tanaka
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan.
| | - Youichirou Higashi
- Department of Neurosurgery, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Kumiko Nakamura
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Keisuke Taniuchi
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Fotios Dimitriadis
- B' Urologic Department, Papageorgiou General Hospital, Aristotle University School of Medicine, Thessaloniki, Greece
| | - Shogo Shimizu
- Division of Molecular Pharmacology, Tottori University School of Medicine, Yonago, Tottori 683-8503, Japan
| | - Kunihiko Yokotani
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
5
|
Le Mével JC, Lancien F, Mimassi N, Kermorgant M, Conlon JM. Central ventilatory and cardiovascular actions of trout gastrin-releasing peptide (GRP) in the unanesthetized trout. Biol Open 2013; 2:960-7. [PMID: 24143283 PMCID: PMC3773343 DOI: 10.1242/bio.20135553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/17/2013] [Indexed: 11/09/2022] Open
Abstract
Gastrin-releasing peptide (GRP), a neuropeptide initially isolated from porcine stomach, shares sequence similarity with bombesin. GRP and its receptors are present in the brains and peripheral tissues of several species of teleost fish, but little is known about the ventilatory and cardiovascular effects of this peptide in these vertebrates. The goal of this study was to compare the central and peripheral actions of picomolar doses of trout GRP on ventilatory and cardiovascular variables in the unanesthetized rainbow trout. Compared to vehicle, intracerebroventricular (ICV) injection of GRP (1–50 pmol) significantly elevated the ventilation rate (ƒV) and the ventilation amplitude (VAMP), and consequently the total ventilation (VTOT). The maximum hyperventilatory effect of GRP (VTOT: +225%), observed at a dose of 50 pmol, was mostly due to its stimulatory action on VAMP (+170%) rather than ƒV (+20%). In addition, ICV GRP (50 pmol) produced a significant increase in mean dorsal aortic blood pressure (PDA) (+35%) and in heart rate (ƒH) (+25%). Intra-arterial injections of GRP (5–100 pmol) were without sustained effect on the ventilatory variables but produced sporadic and transient increases in ventilatory movement at doses of 50 and 100 pmol. At these doses, GRP elevated PDA by +20% but only the 50 pmol dose significantly increased HR (+15%). In conclusion, our study suggests that endogenous GRP within the brain of the trout may act as a potent neurotransmitter and/or neuromodulator in the regulation of cardio-ventilatory functions. In the periphery, endogenous GRP may act as locally-acting and/or circulating neurohormone with an involvement in vasoregulatory mechanisms.
Collapse
Affiliation(s)
- Jean-Claude Le Mével
- Université Européenne de Bretagne, Université de Brest, INSERM UMR1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé , 22 Avenue Camille Desmoulins, CS 93837, 29238 Brest Cedex 3, CHU de Brest , France
| | | | | | | | | |
Collapse
|