1
|
Chen W, Ma X, Fu Y, Liu C, Li H, Shi G. Electroacupuncture Regulates Sympathetic Nerve Through the NTS Glu-RVLM Circuit to Relieve Spontaneous Pain in SNI Rats. CNS Neurosci Ther 2025; 31:e70327. [PMID: 40150822 PMCID: PMC11949842 DOI: 10.1111/cns.70327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/17/2025] [Accepted: 02/23/2025] [Indexed: 03/29/2025] Open
Abstract
AIM Patients suffering from neuropathic pain often experience sympathetic dysfunction. Acupuncture has shown promise in alleviating pain and modulating the activity of the autonomic nervous system. This study aims to explore the potential mechanism through which electroacupuncture (EA) modulates sympathetic nerves to alleviate neuropathic pain. METHODS Spared nerve injury (SNI) was utilized to induce neuropathic pain. EA was administered at acupoints Huantiao and Yanglingquan for 30 min every other day after SNI. Pain behavior was evaluated using paw withdrawal thresholds (PWTs) and spontaneous pain scores. Various techniques including immunofluorescence, viral tracing, electrophysiology, and chemogenetic manipulations were employed to investigate the impact of EA on the sympathetic nerves and pain behaviors, specifically through the nucleus tractus solitarii (NTS)Glu-rostral ventrolateral medulla (RVLM) circuit. RESULTS In SNI rats, EA alleviated both mechanical and spontaneous pain, diminished sympathetic nerve excitability, and inhibited sympathetic nerve sprouting within the dorsal root ganglia (DRG), reduced the excitability of glutamatergic neurons in the NTS which project to the RVLM. Chemogenetic inhibition of the NTSGlu-RVLM circuit produced the same effect as EA in spontaneous pain, sympathetic nerve excitability, extracellular discharge frequency in RVLM, but not in mechanical pain. Similarly, chemogenetic activation of the NTSGlu-RVLM circuit negated the analgesic effects of EA on spontaneous pain while not affecting mechanical pain. CONCLUSIONS This study suggested that EA alleviates spontaneous pain rather than mechanical pain by regulating the sympathetic nerve activity via the NTSGlu-RVLM circuit.
Collapse
Affiliation(s)
- Wen Chen
- International Acupuncture and Moxibustion Innovation InstituteBeijing University of Chinese MedicineBeijingChina
| | - Xin Ma
- International Acupuncture and Moxibustion Innovation InstituteBeijing University of Chinese MedicineBeijingChina
- School of Acupuncture‐Moxibustion and TuinaShandong University of Traditional Chinese MedicineJinanChina
| | - Yi‐Ming Fu
- International Acupuncture and Moxibustion Innovation InstituteBeijing University of Chinese MedicineBeijingChina
| | - Cun‐Zhi Liu
- International Acupuncture and Moxibustion Innovation InstituteBeijing University of Chinese MedicineBeijingChina
| | - Hong‐Ping Li
- International Acupuncture and Moxibustion Innovation InstituteBeijing University of Chinese MedicineBeijingChina
| | - Guang‐Xia Shi
- International Acupuncture and Moxibustion Innovation InstituteBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
2
|
Li S, Liu Y, Zhang N, Li W, Xu WJ, Xu YQ, Chen YY, Cui X, Zhu B, Gao XY. Perspective of Calcium Imaging Technology Applied to Acupuncture Research. Chin J Integr Med 2024; 30:3-9. [PMID: 36795265 DOI: 10.1007/s11655-023-3692-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 02/17/2023]
Abstract
Acupuncture, a therapeutic treatment defined as the insertion of needles into the body at specific points (ie, acupoints), has growing in popularity world-wide to treat various diseases effectively, especially acute and chronic pain. In parallel, interest in the physiological mechanisms underlying acupuncture analgesia, particularly the neural mechanisms have been increasing. Over the past decades, our understanding of how the central nervous system and peripheral nervous system process signals induced by acupuncture has developed rapidly by using electrophysiological methods. However, with the development of neuroscience, electrophysiology is being challenged by calcium imaging in view field, neuron population and visualization in vivo. Owing to the outstanding spatial resolution, the novel imaging approaches provide opportunities to enrich our knowledge about the neurophysiological mechanisms of acupuncture analgesia at subcellular, cellular, and circuit levels in combination with new labeling, genetic and circuit tracing techniques. Therefore, this review will introduce the principle and the method of calcium imaging applied to acupuncture research. We will also review the current findings in pain research using calcium imaging from in vitro to in vivo experiments and discuss the potential methodological considerations in studying acupuncture analgesia.
Collapse
Affiliation(s)
- Sha Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yun Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wang Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wen-Jie Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi-Qian Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi-Yuan Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xin-Yan Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Dou Z, Su N, Zhou Z, Mi A, Xu L, Zhou J, Sun S, Liu Y, Hao M, Li Z. Modulation of visceral pain by brain nuclei and brain circuits and the role of acupuncture: a narrative review. Front Neurosci 2023; 17:1243232. [PMID: 38027491 PMCID: PMC10646320 DOI: 10.3389/fnins.2023.1243232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Visceral pain is a complex and heterogeneous pain condition that is often associated with pain-related negative emotional states, including anxiety and depression, and can exert serious effects on a patient's physical and mental health. According to modeling stimulation protocols, the current animal models of visceral pain mainly include the mechanical dilatation model, the ischemic model, and the inflammatory model. Acupuncture can exert analgesic effects by integrating and interacting input signals from acupuncture points and the sites of pain in the central nervous system. The brain nuclei involved in regulating visceral pain mainly include the nucleus of the solitary tract, parabrachial nucleus (PBN), locus coeruleus (LC), rostral ventromedial medulla (RVM), anterior cingulate cortex (ACC), paraventricular nucleus (PVN), and the amygdala. The neural circuits involved are PBN-amygdala, LC-RVM, amygdala-insula, ACC-amygdala, claustrum-ACC, bed nucleus of the stria terminalis-PVN and the PVN-ventral lateral septum circuit. Signals generated by acupuncture can modulate the central structures and interconnected neural circuits of multiple brain regions, including the medulla oblongata, cerebral cortex, thalamus, and hypothalamus. This analgesic process also involves the participation of various neurotransmitters and/or receptors, such as 5-hydroxytryptamine, glutamate, and enkephalin. In addition, acupuncture can regulate visceral pain by influencing functional connections between different brain regions and regulating glucose metabolism. However, there are still some limitations in the research efforts focusing on the specific brain mechanisms associated with the effects of acupuncture on the alleviation of visceral pain. Further animal experiments and clinical studies are now needed to improve our understanding of this area.
Collapse
Affiliation(s)
- Zhiqiang Dou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Na Su
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Ziyang Zhou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Aoyue Mi
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Luyao Xu
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Jiazheng Zhou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Sizhe Sun
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yanyi Liu
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Mingyao Hao
- External Treatment Center of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
- International Office, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| |
Collapse
|
4
|
Impaired visceral pain-related functions of the midbrain periaqueductal gray in rats with colitis. Brain Res Bull 2022; 182:12-25. [DOI: 10.1016/j.brainresbull.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022]
|
5
|
Bai Y, Chen YB, Qiu XT, Chen YB, Ma LT, Li YQ, Sun HK, Zhang MM, Zhang T, Chen T, Fan BY, Li H, Li YQ. Nucleus tractus solitarius mediates hyperalgesia induced by chronic pancreatitis in rats. World J Gastroenterol 2019; 25:6077-6093. [PMID: 31686764 PMCID: PMC6824279 DOI: 10.3748/wjg.v25.i40.6077] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Central sensitization plays a pivotal role in the maintenance of chronic pain induced by chronic pancreatitis (CP). We hypothesized that the nucleus tractus solitarius (NTS), a primary central site that integrates pancreatic afferents apart from the thoracic spinal dorsal horn, plays a key role in the pathogenesis of visceral hypersensitivity in a rat model of CP.
AIM To investigate the role of the NTS in the visceral hypersensitivity induced by chronic pancreatitis.
METHODS CP was induced by the intraductal injection of trinitrobenzene sulfonic acid (TNBS) in rats. Pancreatic hyperalgesia was assessed by referred somatic pain via von Frey filament assay. Neural activation of the NTS was indicated by immunohistochemical staining for Fos. Basic synaptic transmission within the NTS was assessed by electrophysiological recordings. Expression of vesicular glutamate transporters (VGluTs), N-methyl-D-aspartate receptor subtype 2B (NR2B), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subtype 1 (GluR1) was analyzed by immunoblotting. Membrane insertion of NR2B and GluR1 was evaluated by electron microscopy. The regulatory role of the NTS in visceral hypersensitivity was detected via pharmacological approach and chemogenetics in CP rats.
RESULTS TNBS treatment significantly increased the number of Fos-expressing neurons within the caudal NTS. The excitatory synaptic transmission was substantially potentiated within the caudal NTS in CP rats (frequency: 5.87 ± 1.12 Hz in CP rats vs 2.55 ± 0.44 Hz in sham rats, P < 0.01; amplitude: 19.60 ± 1.39 pA in CP rats vs 14.71 ± 1.07 pA in sham rats; P < 0.01). CP rats showed upregulated expression of VGluT2, and increased phosphorylation and postsynaptic trafficking of NR2B and GluR1 within the caudal NTS. Blocking excitatory synaptic transmission via the AMPAR antagonist CNQX and the NMDAR antagonist AP-5 microinjection reversed visceral hypersensitivity in CP rats (abdominal withdraw threshold: 7.00 ± 1.02 g in CNQX group, 8.00 ± 0.81 g in AP-5 group and 1.10 ± 0.27 g in saline group, P < 0.001). Inhibiting the excitability of NTS neurons via chemogenetics also significantly attenuated pancreatic hyperalgesia (abdominal withdraw threshold: 13.67 ± 2.55 g in Gi group, 2.00 ± 1.37 g in Gq group, and 2.36 ± 0.67 g in mCherry group, P < 0.01).
CONCLUSION Our findings suggest that enhanced excitatory transmission within the caudal NTS contributes to pancreatic pain and emphasize the NTS as a pivotal hub for the processing of pancreatic afferents, which provide novel insights into the central sensitization of painful CP.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Ying-Biao Chen
- Department of Anatomy, Fujian Health College, Fuzhou 350101, Fujian Province, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yan-Bing Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Li-Tian Ma
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Ying-Qi Li
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Hong-Ke Sun
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Bo-Yuan Fan
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
- Joint Laboratory of Neuroscience at Hainan Medical University and Fourth Military Medical University, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
6
|
Lv Q, Wu F, Gan X, Yang X, Zhou L, Chen J, He Y, Zhang R, Zhu B, Liu L. The Involvement of Descending Pain Inhibitory System in Electroacupuncture-Induced Analgesia. Front Integr Neurosci 2019; 13:38. [PMID: 31496944 PMCID: PMC6712431 DOI: 10.3389/fnint.2019.00038] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic pain is a major health problem, which can impair quality of life and reduce productivity. Electroacupuncture (EA), a modality of medicine based on the theories of Traditional Chinese Medicine (TCM), presents great therapeutic effects on chronic pain. Its clinical application has gained increasing popularity, and in parallel, more research has been performed on the mechanisms of EA-induced analgesia. The past decades have seen enormous advances both in neuronal circuitry of needle-insertion and in its molecular mechanism. EA may block pain by activating the descending pain inhibitory system, which originates in the brainstem and terminates at the spinal cord. This review article synthesizes corresponding studies to elucidate how EA alleviate pain via the mediation of this descending system. Much emphasis has been put on the implication of descending serotonergic and noradrenergic pathways in the process of pain modulation. Also, other important transmitters and supraspinal regions related to analgesic effects of EA have been demonstrated. Finally, it should be noticed that there exist some shortcomings involved in the animal experimental designed for EA, which account for conflicting results obtained by different studies.
Collapse
Affiliation(s)
- Qiuyi Lv
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Fengzhi Wu
- Journal Center of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiulun Gan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yinjia He
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Bixiu Zhu
- Department of Nephrology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Lanying Liu
- Department of Nephrology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
7
|
Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:680-693. [PMID: 29693214 DOI: 10.3758/s13415-018-0596-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Response conflicts play a prominent role in the flexible adaptation of behavior as they represent context-signals that indicate the necessity for the recruitment of cognitive control. Previous studies have highlighted the functional roles of the affectively aversive and arousing quality of the conflict signal in triggering the adaptation process. To further test this potential link with arousal, participants performed a response conflict task in two separate sessions with either transcutaneous vagus nerve stimulation (tVNS), which is assumed to activate the locus coeruleus-noradrenaline (LC-NE) system, or with neutral sham stimulation. In both sessions the N2 and P3 event-related potentials (ERP) were assessed. In line with previous findings, conflict interference, the N2 and P3 amplitude were reduced after conflict. Most importantly, this adaptation to conflict was enhanced under tVNS compared to sham stimulation for conflict interference and the N2 amplitude. No effect of tVNS on the P3 component was found. These findings suggest that tVNS increases behavioral and electrophysiological markers of adaptation to conflict. Results are discussed in the context of the potentially underlying LC-NE and other neuromodulatory (e.g., GABA) systems. The present findings add important pieces to the understanding of the neurophysiological mechanisms of conflict-triggered adjustment of cognitive control.
Collapse
|
8
|
Central and Peripheral Mechanism of Acupuncture Analgesia on Visceral Pain: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1304152. [PMID: 31186654 PMCID: PMC6521529 DOI: 10.1155/2019/1304152] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Background/Aims Despite the wide use of acupuncture for the management of visceral pain and the growing interest in the pathophysiology of visceral pain, there is no conclusive elucidation of the mechanisms behind the effects of acupuncture on visceral pain. This systematic review aims to provide an integrative understanding of the treatment mechanism of acupuncture for visceral pain. Methods Electronic and hand searches were conducted to identify studies that involved visceral pain and acupuncture. Results We retrieved 192 articles, out of which 46 studies were included in our review. The results of our review demonstrated that visceral pain behaviors were significantly alleviated in response to acupuncture treatment in groups treated with this intervention compared to in sham acupuncture or no-treatment groups. Changes in the concentrations of β-endorphin, epinephrine, cortisol, and prostaglandin E2 in plasma, the levels of c-Fos, substance P, corticotropin-releasing hormone, P2X3, acetylcholinesterase (AchE), N-methyl-D-aspartate (NMDA) receptors, and serotonin in the gut/spinal cord, and the neuronal activity of the thalamus were associated with acupuncture treatment in visceral pain. Conclusions Acupuncture reduced visceral pain behavior and induced significant changes in neuronal activity as well as in the levels of pain/inflammation-related cytokines and neurotransmitters in the brain-gut axis. Further researches on the thalamus and on a standard animal model are warranted to improve our knowledge on the mechanism of acupuncture that facilitates visceral pain modulation.
Collapse
|
9
|
Engineer ND, Kimberley TJ, Prudente CN, Dawson J, Tarver WB, Hays SA. Targeted Vagus Nerve Stimulation for Rehabilitation After Stroke. Front Neurosci 2019; 13:280. [PMID: 30983963 PMCID: PMC6449801 DOI: 10.3389/fnins.2019.00280] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 01/14/2023] Open
Abstract
Stroke is a leading cause of disability worldwide, and in approximately 60% of individuals, upper limb deficits persist 6 months after stroke. These deficits adversely affect the functional use of the upper limb and restrict participation in day to day activities. An important goal of stroke rehabilitation is to improve the quality of life by enhancing functional independence and participation in activities. Since upper limb deficits are one of the best predictors of quality of life after stroke, effective interventions targeting these deficits may represent a means to improve quality of life. An increased understanding of the neurobiological processes underlying stroke recovery has led to the development of targeted approaches to improve motor deficits. One such targeted strategy uses brief bursts of Vagus Nerve Stimulation (VNS) paired with rehabilitation to enhance plasticity and support recovery of upper limb function after chronic stroke. Stimulation of the vagus nerve triggers release of plasticity promoting neuromodulators, such as acetylcholine and norepinephrine, throughout the cortex. Timed engagement of neuromodulators concurrent with motor training drives task-specific plasticity in the motor cortex to improve function and provides the basis for paired VNS therapy. A number of studies in preclinical models of ischemic stroke demonstrated that VNS paired with rehabilitative training significantly improved the recovery of forelimb motor function compared to rehabilitative training without VNS. The improvements were associated with synaptic reorganization of cortical motor networks and recruitment of residual motor neurons controlling the impaired forelimb, demonstrating the putative neurobiological mechanisms underlying recovery of motor function. These preclinical studies provided the basis for conducting two multi-site, randomized controlled pilot trials in individuals with moderate to severe upper limb weakness after chronic ischemic stroke. In both studies, VNS paired with rehabilitation improved motor deficits compared to rehabilitation alone. The trials provided support for a 120-patient pivotal study designed to evaluate the efficacy of paired VNS therapy in individuals with chronic ischemic stroke. This manuscript will discuss the neurobiological rationale for VNS therapy, provide an in-depth discussion of both animal and human studies of VNS therapy for stroke, and outline the challenges and opportunities for the future use of VNS therapy.
Collapse
Affiliation(s)
| | - Teresa J. Kimberley
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, United States
| | | | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Queen Elizabeth University Hospital, University of Glasgow, Glasgow, United Kingdom
| | | | - Seth A. Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
10
|
Effect of electro-acupuncture on regulating the swallowing by activating the interneuron in ventrolateral medulla (VLM). Brain Res Bull 2018; 144:132-139. [PMID: 30502399 DOI: 10.1016/j.brainresbull.2018.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 02/08/2023]
Abstract
Ventrolateral medulla(VLM) was one of the essential part of central pattern generator(CPG) in swallowing and electro-acupuncture(EA) was an important intervention in swallowing disorder. But the effect and mechanism of EA at acupoints on swallowing were unknown. The present aim to detect the effect of EA at Lianquan (CV23) on swallowing and swallowing-related(SR) interneuron in VLM. Thirty-six Sprague-Dawley rats were operated and the swallowing reflex was induced through Double distilled water (DDW) infusion. Simultaneously, the numbers of swallowing were recorded. Then EA was given at Lianquan and Neiguan (PC6) and the neuron discharges in VLM were detected. A total of 72 neurons were recorded, 60 of which were correctly recorded after histology identification. Two types of SR neurons were found and the numbers of swallowing increased after EA at CV23 and PC6 compared with no EA group. The neuron response rates were 78.3% and 50% for EA at CV23 and PC6 respectively with significant difference (P < 0.05). Meanwhile, the neuron spike patterns were changed after EA at CV23 and PC6. In addition, twenty-four rats were used for immunofluorescence after EA at CV23 and PC6. The results showed that c-fos positive cells in CV23 group were 20.63±2.35, while PC6 group was 14.13±1.78 and 6.88±1.42 in control group. There were significant difference between them (P < 0.05). These results indicated that EA could regulate the swallowing function via activating the SR interneurons in VLM under the physiological condition.
Collapse
|
11
|
Yu L, Li L, Qin Q, Yu Y, Cui X, Rong P, Zhu B. Electroacupuncture Inhibits Visceral Nociception via Somatovisceral Interaction at Subnucleus Reticularis Dorsalis Neurons in the Rat Medulla. Front Neurosci 2018; 12:775. [PMID: 30425615 PMCID: PMC6218567 DOI: 10.3389/fnins.2018.00775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/05/2018] [Indexed: 01/09/2023] Open
Abstract
Electroacupuncture (EA) is an efficacious treatment for alleviating visceral pain, but the underlining mechanisms are not fully understood. This study investigated the role of medullary subnucleus reticularis dorsalis (SRD) neurons in the effects of EA on visceral pain. We recorded the discharges of SRD neurons extracellularly by glass micropipettes on anesthetized rats. The responses characteristics of SRD neurons to different intensities of EA (0.5, 1, 2, 4, 6, and 8 mA, 0.5 ms, and 2 Hz) on acupoints “Zusanli” (ST 36) and “Shangjuxu” (ST 37) before and during noxious colorectal distension (CRD) were analyzed. Our results indicated that SRD neurons responded to either a noxious EA stimulation ranging from 2 to 8 mA or to noxious CRD at 30 and 60 mmHg by increasing their discharge frequency at an intensity-dependent manner. However, during the stimulation of both CRD and EA, the increasing discharges of SRD neurons induced by CRD were significantly inhibited by 2–8 mA of EA. Furthermore, SRD neurons can encode the strength of EA, where a positive correlation between current intensity and the magnitude of neuronal responses to EA was observed within 2–6 mA. Yet, the responses of SRD neurons to EA stimulation reached a plateau when EA exceeded 6 mA. In addition, 0.5–1 mA of EA had no effect on CRD-induced nociceptive responses of SRD neurons. In conclusion, EA produced an inhibiting effect on visceral nociception in an intensity-dependent manner, which probably is due to the somatovisceral interaction at SRD neurons.
Collapse
Affiliation(s)
- Lingling Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingguang Qin
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yutian Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull 2018; 142:183-196. [PMID: 30031817 DOI: 10.1016/j.brainresbull.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/15/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
There is considerable clinical and experimental evidence that intestinal inflammation is associated with altered visceral nociceptive processing in the spinal cord and brain, but the underlying neuronal mechanisms, especially acting at the supraspinal level, remain unclear. Considering that the caudal ventrolateral medulla (CVLM) and the nucleus tractus solitarius (NTS) are the first sites for supraspinal processing of visceral pain signals, in the present study we evaluated the experimental colitis-induced changes in response properties of CVLM and NTS medullary neurons to noxious colorectal distension (CRD) in urethane-anesthetized adult male Wistar rats. To determine if gut inflammation alters the 5-HT3 receptor-dependent modulation of visceral pain-related CVLM and NTS cells, we examined the effects of intravenously administered selective 5-HT3 antagonist granisetron on ongoing and CRD-evoked activity of CVLM and NTS neurons in healthy control and colitic animals. In the absence of colonic pathology, the CVLM neurons were more excited by noxious CRD that the NTS cells, which demonstrated a greater tendency to be inhibited by the stimulation. The difference was eliminated after the development of colitis due to the increase in the proportion of CRD-excited neurons in both medullary regions associated with enhanced magnitude of the neuronal nociceptive responses. Intravenous granisetron (1 or 2 mg/kg) produced the dose-dependent suppression of the ongoing and evoked firing of CRD-excited cells within both the CVLM and NTS in normal conditions as well as was able to substantially reduce excitability of the caudal medullary neurons in the presence of colonic inflammation, arguing for the potential efficacy of the 5-HT3 receptor blockade with granisetron against both acute and inflammatory abdominal pain. Taken together, the data obtained can contribute to a deeper understanding of supraspinal serotonergic mechanisms responsible for the persistence of visceral hypersensitivity and hyperalgesia triggered by colonic inflammation.
Collapse
|
13
|
Ventura-Bort C, Wirkner J, Genheimer H, Wendt J, Hamm AO, Weymar M. Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on the P300 and Alpha-Amylase Level: A Pilot Study. Front Hum Neurosci 2018; 12:202. [PMID: 29977196 PMCID: PMC6021745 DOI: 10.3389/fnhum.2018.00202] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Recent research suggests that the P3b may be closely related to the activation of the locus coeruleus-norepinephrine (LC-NE) system. To further study the potential association, we applied a novel technique, the non-invasive transcutaneous vagus nerve stimulation (tVNS), which is speculated to increase noradrenaline levels. Using a within-subject cross-over design, 20 healthy participants received continuous tVNS and sham stimulation on two consecutive days (stimulation counterbalanced across participants) while performing a visual oddball task. During stimulation, oval non-targets (standard), normal-head (easy) and rotated-head (difficult) targets, as well as novel stimuli (scenes) were presented. As an indirect marker of noradrenergic activation we also collected salivary alpha-amylase (sAA) before and after stimulation. Results showed larger P3b amplitudes for target, relative to standard stimuli, irrespective of stimulation condition. Exploratory post hoc analyses, however, revealed that, in comparison to standard stimuli, easy (but not difficult) targets produced larger P3b (but not P3a) amplitudes during active tVNS, compared to sham stimulation. For sAA levels, although main analyses did not show differential effects of stimulation, direct testing revealed that tVNS (but not sham stimulation) increased sAA levels after stimulation. Additionally, larger differences between tVNS and sham stimulation in P3b magnitudes for easy targets were associated with larger increase in sAA levels after tVNS, but not after sham stimulation. Despite preliminary evidence for a modulatory influence of tVNS on the P3b, which may be partly mediated by activation of the noradrenergic system, additional research in this field is clearly warranted. Future studies need to clarify whether tVNS also facilitates other processes, such as learning and memory, and whether tVNS can be used as therapeutic tool.
Collapse
Affiliation(s)
| | - Janine Wirkner
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Hannah Genheimer
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Julia Wendt
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Alfons O. Hamm
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Mathias Weymar
- Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
14
|
Abstract
OBJECTIVES Many patients with painful chronic pancreatitis (CP) have insufficient effect of treatment, and the prevalence of adverse effects is high. Consequently, alternatives to conventional management are needed. We aimed to study the effect of acupuncture in painful CP. METHODS This was a prospective, single-blinded, randomized crossover trial. Fifteen patients with CP were assigned to a session of acupuncture followed by sham stimulation or vice versa. Patients rated clinical pain scores daily on a 0 to 10 visual analogue scale (VAS) and completed the Patient Global Impression of Change. For mechanistic linkage, resting state electroencephalograms were recorded and quantified by spectral power analysis to explore effects on central pain processing. RESULTS Acupuncture, compared with sham stimulation, caused more pain relief (2.0 ± 1.5 VAS vs 0.7 ± 0.8 VAS; P = 0.009). The effect, however, was short, and after 1-week follow-up, there was no difference in clinical pain scores between groups (P = 1.0) or the rating of Patient Global Impression of Change (P = 0.8). Electroencephalogram spectral power distributions between sham and acupuncture were comparable between groups (all P > 0.6). CONCLUSIONS The study presents proof-of-concept for the analgesic effect of acupuncture in pancreatic pain. Although the effect was short lasting, the framework may be used to conceptualize future trials of acupuncture in visceral pain.
Collapse
|
15
|
Neurobiological Mechanism of Acupuncture for Relieving Visceral Pain of Gastrointestinal Origin. Gastroenterol Res Pract 2017; 2017:5687496. [PMID: 28243252 PMCID: PMC5294365 DOI: 10.1155/2017/5687496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
It is currently accepted that the neural transduction pathways of gastrointestinal (GI) visceral pain include the peripheral and central pathways. Existing research on the neurological mechanism of electroacupuncture (EA) in the treatment of GI visceral pain has primarily been concerned with the regulation of relevant transduction pathways. The generation of pain involves a series of processes, including energy transduction of stimulatory signals in the sensory nerve endings (signal transduction), subsequent conduction in primary afferent nerve fibers of dorsal root ganglia, and transmission to spinal dorsal horn neurons, the ascending transmission of sensory signals in the central nervous system, and the processing of sensory signals in the cerebral cortex. Numerous peripheral neurotransmitters, neuropeptides, and cytokines participate in the analgesic process of EA in visceral pain. Although EA has excellent efficacy in the treatment of GI visceral pain, the pathogenesis of the disease and the analgesic mechanism of the treatment have not been elucidated. In recent years, research has examined the pathogenesis of GI visceral pain and its influencing factors and has explored the neural transduction pathways of this disease.
Collapse
|
16
|
Analgesic Neural Circuits Are Activated by Electroacupuncture at Two Sets of Acupoints. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3840202. [PMID: 27429635 PMCID: PMC4939346 DOI: 10.1155/2016/3840202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 11/17/2022]
Abstract
To investigate analgesic neural circuits activated by electroacupuncture (EA) at different sets of acupoints in the brain, goats were stimulated by EA at set of Baihui-Santai acupoints or set of Housanli acupoints for 30 min. The pain threshold was measured using the potassium iontophoresis method. The levels of c-Fos were determined with Streptavidin-Biotin Complex immunohistochemistry. The results showed pain threshold induced by EA at set of Baihui-Santai acupoints was 44.74% ± 4.56% higher than that by EA at set of Housanli acupoints (32.64% ± 5.04%). Compared with blank control, EA at two sets of acupoints increased c-Fos expression in the medial septal nucleus (MSN), the arcuate nucleus (ARC), the nucleus amygdala basalis (AB), the lateral habenula nucleus (HL), the ventrolateral periaqueductal grey (vlPAG), the locus coeruleus (LC), the nucleus raphe magnus (NRM), the pituitary gland, and spinal cord dorsal horn (SDH). Compared with EA at set of Housanli points, EA at set of Baihui-Santai points induced increased c-Fos expression in AB but decrease in MSN, the paraventricular nucleus of the hypothalamus, HL, and SDH. It suggests that ARC-PAG-NRM/LC-SDH and the hypothalamus-pituitary may be the common activated neural pathways taking part in EA-induced analgesia at the two sets of acupoints.
Collapse
|
17
|
Zhang YB, Guo ZD, Li MY, Fong P, Zhang JG, Zhang CW, Gong KR, Yang MF, Niu JZ, Ji XM, Lv GW. Gabapentin Effects on PKC-ERK1/2 Signaling in the Spinal Cord of Rats with Formalin-Induced Visceral Inflammatory Pain. PLoS One 2015; 10:e0141142. [PMID: 26512901 PMCID: PMC4626203 DOI: 10.1371/journal.pone.0141142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
Currently, the clinical management of visceral pain remains unsatisfactory for many patients suffering from this disease. While preliminary animal studies have suggested the effectiveness of gabapentin in successfully treating visceral pain, the mechanism underlying its analgesic effect remains unclear. Evidence from other studies has demonstrated the involvement of protein kinase C (PKC) and extracellular signal-regulated kinase1/2 (ERK1/2) in the pathogenesis of visceral inflammatory pain. In this study, we tested the hypothesis that gabapentin produces analgesia for visceral inflammatory pain through its inhibitory effect on the PKC-ERK1/2 signaling pathway. Intracolonic injections of formalin were performed in rats to produce colitis pain. Our results showed that visceral pain behaviors in these rats decreased after intraperitoneal injection of gabapentin. These behaviors were also reduced by intrathecal injections of the PKC inhibitor, H-7, and the ERK1/2 inhibitor, PD98059. Neuronal firing of wide dynamic range neurons in L6–S1 of the rat spinal cord dorsal horn were significantly increased after intracolonic injection of formalin. This increased firing rate was inhibited by intraperitoneal injection of gabapentin and both the individual and combined intrathecal application of H-7 and PD98059. Western blot analysis also revealed that PKC membrane translocation and ERK1/2 phosphorylation increased significantly following formalin injection, confirming the recruitment of PKC and ERK1/2 during visceral inflammatory pain. These effects were also significantly reduced by intraperitoneal injection of gabapentin. Therefore, we concluded that the analgesic effect of gabapentin on visceral inflammatory pain is mediated through suppression of PKC and ERK1/2 signaling pathways. Furthermore, we found that the PKC inhibitor, H-7, significantly diminished ERK1/2 phosphorylation levels, implicating the involvement of PKC and ERK1/2 in the same signaling pathway. Thus, our results suggest a novel mechanism of gabapentin-mediated analgesia for visceral inflammatory pain through a PKC-ERK1/2 signaling pathway that may be a future therapeutic target for the treatment of visceral inflammatory pain.
Collapse
Affiliation(s)
- Yan-bo Zhang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
- * E-mail:
| | - Zheng-dong Guo
- Department of Endocrinology, Affiliated Hospital of Taishan Medical University, Taian, China
| | - Mei-yi Li
- Department of Neurology, Shandong Taishan Chronic Disease Hospital, Taian, China
| | - Peter Fong
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Ji-guo Zhang
- Department of Pharmacology, College of Pharmacy, Taishan Medical University, Taian, China
| | - Can-wen Zhang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
| | - Ke-rui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Ming-feng Yang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
| | - Jing-zhong Niu
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
| | - Xun-ming Ji
- Hypoxia Medical Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo-wei Lv
- Hypoxia Medical Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
The Expression Patterns of c-Fos and c-Jun Induced by Different Frequencies of Electroacupuncture in the Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:343682. [PMID: 26491460 PMCID: PMC4603316 DOI: 10.1155/2015/343682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
Abstract
To investigate patterns of c-Fos and c-Jun expression induced by different frequencies of electroacupuncture (EA) in the brain, goats were stimulated by EA of 0, 2, 60, or 100 Hz at a set of "Baihui, Santai, Ergen, and Sanyangluo" points for 30 min. The pain threshold was measured using the potassium iontophoresis method. The levels of c-Fos and c-Jun were determined with Streptavidin-Biotin Complex immunohistochemistry. The results showed that the pain threshold induced by 60 Hz was 82.2% higher (P < 0.01) than that by 0, 2, or 100 Hz (6.5%, 35.2%, or 40.9%). EA induced increased c-Fos and c-Jun expression in most analgesia-related nuclei and areas in the brain. Sixty Hz EA increased more c-Fos or c-Jun expression than 2 Hz or 100 Hz EA in all the measured nuclei and areas except for the nucleus accumbens, the area septalis lateralis, the caudate nucleus, the nucleus amygdala basalis, and the locus coeruleus, in which c-Fos or c-Jun expressions induced by 60 Hz EA did not differ from those by 2 Hz or 100 Hz EA. It was suggested that 60 Hz EA activated more extensive neural circuits in goats, which may contribute to optimal analgesic effects.
Collapse
|
19
|
Electroacupuncture Treatment Improves Learning-Memory Ability and Brain Glucose Metabolism in a Mouse Model of Alzheimer's Disease: Using Morris Water Maze and Micro-PET. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:142129. [PMID: 25821477 PMCID: PMC4363614 DOI: 10.1155/2015/142129] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
Abstract
Introduction. Alzheimer's disease (AD) causes progressive hippocampus dysfunctions leading to the impairment of learning and memory ability and low level of uptake rate of glucose in hippocampus. What is more, there is no effective treatment for AD. In this study, we evaluated the beneficial and protective effects of electroacupuncture in senescence-accelerated mouse prone 8 (SAMP8). Method. In the electroacupuncture paradigm, electroacupuncture treatment was performed once a day for 15 days on 7.5-month-old SAMP8 male mice. In the normal control paradigm and AD control group, 7.5-month-old SAMR1 male mice and SAMP8 male mice were grabbed and bandaged while electroacupuncture group therapy, in order to ensure the same treatment conditions, once a day, 15 days. Results. From the Morris water maze (MWM) test, we found that the treatment of electroacupuncture can improve the spatial learning and memory ability of SAMP8 mouse, and from the micro-PET test, we proved that after the electroacupuncture treatment the level of uptake rate of glucose in hippocampus was higher than normal control group. Conclusion. These results suggest that the treatment of electroacupuncture may provide a viable treatment option for AD.
Collapse
|
20
|
Acupuncture for visceral pain: neural substrates and potential mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:609594. [PMID: 25614752 PMCID: PMC4295157 DOI: 10.1155/2014/609594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/13/2014] [Accepted: 12/13/2014] [Indexed: 12/17/2022]
Abstract
Visceral pain is the most common form of pain caused by varied diseases and a major reason for patients to seek medical consultation. Despite much advances, the pathophysiological mechanism is still poorly understood comparing with its somatic counterpart and, as a result, the therapeutic efficacy is usually unsatisfactory. Acupuncture has long been used for the management of numerous disorders in particular pain and visceral pain, characterized by the high therapeutic benefits and low adverse effects. Previous findings suggest that acupuncture depresses pain via activation of a number of neurotransmitters or modulators including opioid peptides, serotonin, norepinephrine, and adenosine centrally and peripherally. It endows us, by advancing the understanding of the role of ion channels and gut microbiota in pain process, with novel perspectives to probe the mechanisms underlying acupuncture analgesia. In this review, after describing the visceral innervation and the relevant afferent pathways, in particular the ion channels in visceral nociception, we propose three principal mechanisms responsible for acupuncture induced benefits on visceral pain. Finally, potential topics are highlighted regarding the future studies in this field.
Collapse
|