1
|
Šilarová A, Hvid LG, Hradílek P, Dalgas U. Exercise-induced heat sensitivity in patients with multiple sclerosis: Definition, prevalence, etiology, and management-A scoping review. Mult Scler Relat Disord 2024; 90:105827. [PMID: 39213861 DOI: 10.1016/j.msard.2024.105827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND For persons with multiple sclerosis (pwMS), exercise is known to be safe and effective at treating several symptoms and it may even be disease-modifying. However, exercise can trigger heat intolerance, exercise-induced heat sensitivity (EIHS), which may cause some pwMS to refrain from exercise. No review has yet summarized the existing knowledge on EIHS in pwMS. Therefore, the purpose of the present review was to clarify the terminology, summarize both the prevalence of EIHS and the current knowledge of underlying mechanisms, and provide an overview of existing treatment options and clinical management of EIHS in pwMS. METHODS A scoping review was performed. RESULTS As no clear definition could be identified in the literature, we propose a definition of EIHS. Aspects related to EIHS are reported in 29-80 % of all pwMS. The mechanisms underlying EIHS are not well understood but seem to include axon demyelination, CNS lesions, abnormal sudomotor function and sweating, abnormal afferent thermosensory function, disease stability, and abnormal neuropsychological responses. The severity of EIHS depends on the applied exercise modality, intensity, and format, and can be further reduced when applying different cooling interventions or garments before and/or during exercise. CONCLUSION EIHS appears frequently in pwMS, but the underlying mechanisms are still only sparsely understood. EIHS severity depends on exercise-related factors and can be reduced by cooling interventions.
Collapse
Affiliation(s)
- Anna Šilarová
- Department of Rehabilitation and Sports Medicine, University Hospital Ostrava, Czechia; Faculty of Medicine, University of Ostrava, Czechia; Department of Clinical Neurosciences, University of Ostrava, Czechia.
| | - Lars G Hvid
- Exercise Biology, Dep. Public Health, Aarhus University, Denmark; The Danish MS Hospitals, Ry and Haslev, Denmark
| | - Pavel Hradílek
- Department of Clinical Neurosciences, University of Ostrava, Czechia; Department of Neurology, University Hospital Ostrava, Czechia
| | - Ulrik Dalgas
- Exercise Biology, Dep. Public Health, Aarhus University, Denmark
| |
Collapse
|
2
|
Reis J, Buguet A, Radomski M, Stella AB, Vásquez TC, Spencer PS. Neurological patients confronting climate change: A potential role for the glymphatic system and sleep. J Neurol Sci 2024; 458:122900. [PMID: 38310733 DOI: 10.1016/j.jns.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Interest in the health consequences of climate change (global warming, heatwaves) has increased in the neurological community. This review addresses the impact of elevated ambient temperatures and heatwaves on patients with neurological and mental health disorders, including multiple sclerosis, synucleinopathies, dementia, epilepsies, mental health, and stroke. Patients with such conditions are highly vulnerable during heatwaves because of functional disorders affecting sleep, thermoregulation, autonomic system reactivity, mood, and cognitive ability. Several medications may also increase the risk of heatstroke. Special attention is devoted to the involvement of common underlying mechanisms, such as sleep and the glymphatic system. Disease prevention and patient care during heatwaves are major issues for caregivers. Beyond the usual recommendations for individuals, we favor artificially induced acclimation to heat, which provides preventive benefits with proven efficacy for healthy adults.
Collapse
Affiliation(s)
- Jacques Reis
- Department of Neurology, University Hospital of Strasbourg, 67000 Strasbourg, France; Association RISE, 3 rue du Loir, 67205 Oberhausbergen, France.
| | - Alain Buguet
- Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France; 21 rue de Champfranc, 38630 Les Avenières Veyrins-Thuellin, France
| | - Manny Radomski
- Emeritus at the University of Toronto, Apt n° 2501, 2010 Islington Avenue, Toronto, ON M9P3S8, Canada
| | - Alex Buoite Stella
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Teresa Corona Vásquez
- División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico; Clinical Neurodegenerative Diseases Laboratory, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Willingham TB, Stowell J, Collier G, Backus D. Leveraging Emerging Technologies to Expand Accessibility and Improve Precision in Rehabilitation and Exercise for People with Disabilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:79. [PMID: 38248542 PMCID: PMC10815484 DOI: 10.3390/ijerph21010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
Physical rehabilitation and exercise training have emerged as promising solutions for improving health, restoring function, and preserving quality of life in populations that face disparate health challenges related to disability. Despite the immense potential for rehabilitation and exercise to help people with disabilities live longer, healthier, and more independent lives, people with disabilities can experience physical, psychosocial, environmental, and economic barriers that limit their ability to participate in rehabilitation, exercise, and other physical activities. Together, these barriers contribute to health inequities in people with disabilities, by disproportionately limiting their ability to participate in health-promoting physical activities, relative to people without disabilities. Therefore, there is great need for research and innovation focusing on the development of strategies to expand accessibility and promote participation in rehabilitation and exercise programs for people with disabilities. Here, we discuss how cutting-edge technologies related to telecommunications, wearables, virtual and augmented reality, artificial intelligence, and cloud computing are providing new opportunities to improve accessibility in rehabilitation and exercise for people with disabilities. In addition, we highlight new frontiers in digital health technology and emerging lines of scientific research that will shape the future of precision care strategies for people with disabilities.
Collapse
Affiliation(s)
- T. Bradley Willingham
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
- Department of Physical Therapy, Georgia State University, Atlanta, GA 30302, USA
| | - Julie Stowell
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
- Department of Physical Therapy, Georgia State University, Atlanta, GA 30302, USA
| | - George Collier
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
| | - Deborah Backus
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
| |
Collapse
|
4
|
Zawadka-Kunikowska M, Rzepiński Ł, Cieślicka M, Klawe JJ, Tafil-Klawe M. Association between Daytime Sleepiness, Fatigue and Autonomic Responses during Head-Up Tilt Test in Multiple Sclerosis Patients. Brain Sci 2023; 13:1342. [PMID: 37759943 PMCID: PMC10526123 DOI: 10.3390/brainsci13091342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
We aimed to assess dynamic changes in hemodynamic and autonomic function in response to the head-up tilt test (HUTT) in patients with multiple sclerosis (MS) compared to healthy controls (HCs) and evaluate its relationship with the patients' reported daytime sleepiness and fatigue symptoms. A total of 58 MS patients and 30 HCs were included in the analysis. Fatigue and sleepiness were evaluated using the Chalder Fatigue Scale (CFQ) and the Epworth Sleepiness Scale (ESS), respectively. Hemodynamic response, baroreflex sensitivity, heart rate variability, and systolic and diastolic blood pressure (BP) variability (SBPV, DBPV) parameters were calculated at rest, and in response to the HUTT. The MS patients displayed attenuated BP responses coupled with a more pronounced decrease in cardiac index as well as a reduced increase in the low frequency (LFnu) of DBPV (p = 0.021) and the sympathovagal ratio (p = 0.031) in the latter-phase orthostatic challenge compared to HCs. In MS patients, the ESS score showed no correlation with CFQ or clinical disease outcomes, but exhibited a moderate correlation with LFnu of BPVrest. Fatigue and disease variants predicted blood pressure response to HUTT. These findings underscore the importance of subjective daytime sleepiness and fatigue symptoms and their role in blood pressure regulation in MS patients.
Collapse
Affiliation(s)
- Monika Zawadka-Kunikowska
- Department of Human Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.C.); (M.T.-K.)
| | - Łukasz Rzepiński
- Sanitas–Neurology Outpatient Clinic, Dworcowa 110, 85-010 Bydgoszcz, Poland;
- Department of Neurology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Mirosława Cieślicka
- Department of Human Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.C.); (M.T.-K.)
| | - Jacek J. Klawe
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland;
| | - Małgorzata Tafil-Klawe
- Department of Human Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.C.); (M.T.-K.)
| |
Collapse
|
5
|
Christogianni A, Bibb R, Filingeri D. Body temperatures, thermal comfort, and neuropsychological responses to air temperatures ranging between 12°C and 39°C in people with Multiple Sclerosis. Physiol Behav 2023; 266:114179. [PMID: 37019295 DOI: 10.1016/j.physbeh.2023.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
The negative effects of thermal stress on Multiple Sclerosis (MS)' symptoms have long been known. However, the underlying mechanisms of MS heat and cold intolerance remain unclear. The aim of this study was to evaluate body temperatures, thermal comfort, and neuropsychological responses to air temperatures between 12 to 39°C in people with MS compared to healthy controls (CTR). Twelve MS (5 males/7 females; age: 48.3±10.8 years; EDSS range: 1-7) and 11 CTR participants (4 males /7 females; age: 47.5±11.3 years) underwent two 50-min trials in a climatic chamber. Air temperature was ramped from 24°C to either 39°C (HEAT) or 12°C (COLD) and we continuously monitored participants' mean skin (Tsk) and rectal temperatures (Trec), heart rate and mean arterial pressure. We recorded participants' self-reported thermal sensation and comfort, mental and physical fatigue, and we assessed their cognitive performance (information processing). Changes in mean Tsk and Trec did not differ between MS and CTR neither during HEAT nor COLD. However, at the end of the HEAT trial, 83% of MS participants and 36% of CTR participants reported being "uncomfortable". Furthermore, self-reports of mental and physical fatigue increased significantly in MS but not CTR (p<0.05), during both HEAT and COLD. Information processing was lower in MS vs. CTR (p<0.05); yet this cognitive impairment was not exacerbated by HEAT nor COLD (p>0.05). Our findings indicate that neuropsychological factors (i.e. discomfort and fatigue) could contribute to MS heat and cold intolerance in the absence of deficits in the control of body temperature.
Collapse
Affiliation(s)
- Aikaterini Christogianni
- THERMOSENSELAB, School of Design and Creative Arts, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - Richard Bibb
- School of Design and Creative Arts, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - Davide Filingeri
- THERMOSENSELAB, School of Design and Creative Arts, Loughborough University, Loughborough, LE11 3TU, United Kingdom; THERMOSENSELAB, Skin Sensing Research Group, School of Health Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
| |
Collapse
|
6
|
Albergoni M, Storelli L, Preziosa P, Rocca MA, Filippi M. The insula modulates the effects of aerobic training on cardiovascular function and ambulation in multiple sclerosis. J Neurol 2023; 270:1672-1681. [PMID: 36509982 PMCID: PMC9744365 DOI: 10.1007/s00415-022-11513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Impairment of cardiovascular control is common in multiple sclerosis (MS), possibly due to damage of strategic brain regions such as the insula. Aerobic training (AT) targets cardiopulmonary system and may represent a neuroprotective strategy. PURPOSE To investigate whether insular damage (T2-hyperintense lesions and volume) is associated with cardiovascular fitness (CF) and influences AT effects in MS. METHODS Sixty-one MS patients were randomized to an AT intervention group (MS-AT) and a motor training control group (MS-C). At baseline and after training (24 sessions over 2-3 months), peak of oxygen consumption (VO2max), heart rate reserve (HRR), 6-min walk test (6MWT) and whole brain and insula MRI data were collected. Two healthy control (HC) groups were enrolled for CF and MRI data analysis. RESULTS At baseline, MS patients vs HC showed impaired VO2max, HRR and 6MWT (p < 0.001) and widespread gray matter atrophy, including bilateral insula. In MS patients, left insula T2-lesion volume correlated with HRR (r = 0.27, p = 0.042). After training, MS-AT, especially those without insular T2-hyperintense lesions, showed 6MWT improvement (p < 0.05) and a stable insular volume, whereas MS-C showed left insular volume loss (p < 0.001). CONCLUSIONS By increasing 6MWT performance, our results suggest that AT may improve walking capacity and submaximal measure of CF in MS patients. Such beneficial effect may be modulated by insula integrity.
Collapse
Affiliation(s)
- Matteo Albergoni
- grid.18887.3e0000000417581884Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Loredana Storelli
- grid.18887.3e0000000417581884Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Paolo Preziosa
- grid.18887.3e0000000417581884Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy ,grid.18887.3e0000000417581884Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A. Rocca
- grid.18887.3e0000000417581884Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy ,grid.18887.3e0000000417581884Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
7
|
Patejdl R, Zettl UK. The pathophysiology of motor fatigue and fatigability in multiple sclerosis. Front Neurol 2022; 13:891415. [PMID: 35968278 PMCID: PMC9363784 DOI: 10.3389/fneur.2022.891415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple Sclerosis (MS) is a heterogeneous immune mediated disease of the central nervous system (CNS). Fatigue is one of the most common and disabling symptom of MS. It interferes with daily activities on the level of cognition and motor endurance. Motor fatigue can either result from lesions in cortical networks or motor pathways (“primary fatigue”) or it may be a consequence of detraining with subsequent adaptions of muscle and autonomic function. Programmed exercise interventions are used frequently to increase physical fitness in MS-patients. Studies investigating the effects of training on aerobic capacity, objective endurance and perceived fatigability have yielded heterogenous results, most likely due to the heterogeneity of interventions and patients, but probably also due to the non-uniform pathophysiology of fatigability among MS-patients. The aim of this review is to summarize the current knowledge on the pathophysiology of motor fatigability with special reference to the basic exercise physiology that underlies our understanding of both pathogenesis and treatment interventions.
Collapse
Affiliation(s)
- Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- *Correspondence: Robert Patejdl
| | - Uwe K. Zettl
- Department of Neurology, Clinical Neuroimmunology Section, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
8
|
Heat and cold sensitivity in Multiple Sclerosis: a patient-centred perspective on triggers, symptoms, and thermal resilience practices. Mult Scler Relat Disord 2022; 67:104075. [DOI: 10.1016/j.msard.2022.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
|
9
|
Ghasemi P, Mazaheri R, Tabesh MR, Ali AR, Sahraian MA, Fard HS, Abolhasani M. Effect of Endurance Training on Cardiopulmonary Fitness in people with Multiple Sclerosis. Mult Scler Relat Disord 2022; 64:103911. [DOI: 10.1016/j.msard.2022.103911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
|
10
|
Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H. Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult Scler Relat Disord 2022; 59:103557. [PMID: 35092946 PMCID: PMC8785368 DOI: 10.1016/j.msard.2022.103557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
Abstract
Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Ana Maria Teixeira
- University of Coimbra, Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes F-35000, France; Institut International des Sciences du Sport (2I2S), Irodouer 35850, France.
| |
Collapse
|
11
|
Acute Response of Stress System in Multiple Sclerosis. ARCHIVES OF NEUROSCIENCE 2021. [DOI: 10.5812/ans.115781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: It has long been suspected that exposure to stress is a major factor that can increase the risk of Multiple Sclerosis (MS) and exacerbate it, as a stress-related disorder. Therefore, we conducted this study to investigate the response of the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic-adrenal-medullar (SAM) system to acute social stress. Methods: A total of 46 MS patients and 23 age-sex-matched healthy controls were recruited in the study. The Trier Social Stress Test (TSST) was used to induce acute psychosocial stress. We measured salivary cortisol (SC) to evaluate the HPA axis. In addition, electrocardiography (ECG) was recorded to evaluate the SAM system based on the linear and non-linear features of Heart Rate Variation (HRV). Then, SC and HRV were measured before and after the stress exposure. We also used the Depression Anxiety Stress Scale (DASS) and Emotional Visual Analog Scale (EVAS) to conduct the psychometric assessment and evaluate the perceived stress level, respectively. Results: The mean age of the MS group was 35.38 ± 15 years, with a mean disease duration of 7.4 ± 60. Besides, the HC group's mean age was 35.8 ± 9 years. There were no significant differences in demographic features and DASS scores between the two groups. In response to TSST, both MS and healthy individuals showed a significant increase in the SC levels and EVAS scores, as well as changes in the HRV indices. Notably, significant differences were also found between the two groups regarding the basic and post-stress SC levels, EVAS score, and HRV indices. Unlike the HC group, the SC level returned to its baseline after recovery in the MS group, and the sympathetic tone was more sensitive. Conclusions: Our results indicated that both MS and healthy individuals respond to acute stress regarding neuroendocrine assessment; however, patients with multiple sclerosis show some impairments in this response.
Collapse
|
12
|
Vargas NT, Chapman CL, Ji W, Johnson BD, Gathercole R, Schlader ZJ. Increased skin wetness independently augments cool-seeking behaviour during passive heat stress. J Physiol 2020; 598:2775-2790. [PMID: 32347543 DOI: 10.1113/jp279537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/11/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Skin wetness occurring secondary to the build-up of sweat on the skin provokes thermal discomfort, the precursor to engaging in cool-seeking behaviour. Associative evidence indicates that skin wetness stimulates cool-seeking behaviour to a greater extent than increases in core and mean skin temperatures. The independent contribution of skin wetness to cool-seeking behaviour during heat stress has never been established. We demonstrate that skin wetness augments cool-seeking behaviour during passive heat stress independently of differential increases in skin temperature and core temperature. We also identify that perceptions of skin wetness were not elevated despite increases in actual skin wetness. These data support the proposition that afferent signalling from skin wetness enhances the desire to engage in cool-seeking behaviour during passive heat stress. ABSTRACT This study tested the hypothesis that elevations in skin wetness augments cool-seeking behaviour during passive heat stress. Twelve subjects (6 females, age: 24 ± 2 y) donned a water-perfused suit circulating 34 °C water and completed two trials resting supine in a 28.5 ± 0.4 °C environment. The trials involved a 20 min baseline period (26 ± 3% relative humidity (RH)), 60 min while ambient humidity was maintained at 26±3% RH (LOW) or increased to 67 ± 5% RH (HIGH), followed by 60 min passive heat stress (HS) where the water temperature in the suit was incrementally increased to 50 °C. Subjects were able to seek cooling when their neck was thermally uncomfortable by pressing a button. Each button press initiated 30 s of -20 °C fluid perfusing through a custom-made device secured against the skin on the dorsal neck. Mean skin (Tskin ) and core (Tcore ) temperatures, mean skin wetness (Wskin ) and neck device temperature (Tdevice ) were measured continuously. Cool-seeking behaviour was determined from total time receiving cooling (TTcool ) and cumulative button presses. Tskin and Tcore increased during HS (P < 0.01) but were not different between conditions (P ≥ 0.11). Wskin was elevated in HIGH vs. LOW during HS (60 min: by + 0.06 ± 0.07 a.u., P ≤ 0.04). Tdevice was lower in HIGH vs. LOW at 40-50 min of HS (P ≤ 0.01). TTcool was greater for HIGH (330 ± 172 s) vs. LOW (225 ± 167 s, P < 0.01), while the number of cumulative button presses was greater from 40-60 min in HS for HIGH vs. LOW (P ≤ 0.04). Increased skin wetness amplifies the engagement in cool-seeking behaviour during passive heat stress.
Collapse
Affiliation(s)
- Nicole T Vargas
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA.,Thermal Ergonomics Laboratory, Discipline of Exercise and Sport Science, The University of Sydney, Sydney, NSW, Australia
| | - Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Wenjie Ji
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
13
|
Rampichini S, Gervasoni E, Cattaneo D, Rovaris M, Grosso C, Maggioni MA, Merati G. Impaired heart rate recovery after sub-maximal physical exercise in people with multiple sclerosis. Mult Scler Relat Disord 2020; 40:101960. [PMID: 32032843 DOI: 10.1016/j.msard.2020.101960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 01/07/2020] [Accepted: 01/18/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Heart Rate Recovery (HRR) after a physical exercise has been poorly investigated in people with multiple sclerosis (PwMS). OBJECTIVE To evaluate the kinetics of HRR and its autonomic modulation in PwMS and to elucidate the interplay between HRR and subjective fatigue. METHODS ECG was digitally acquired during rest (5 min), submaximal exercise (4 min at 10 W of upper limb cycling) and recovery (3 min) in 17 PwMS (EDSS: 5.9 ± 1.2, mean±standard deviation) and 17 healthy control (HC) subjects. Short-term (first 30 s) and long-term (up to180 s) validated indices of HRR were calculated. The time course of the parasympathetic index of heart rate variability RMSSD (Root Mean Square of Successive Differences) was computed every 30 s of recovery. Subjective fatigue was evaluated by the Borg scale applied to breathing and upper limbs. RESULTS In comparison with HC, the short-term HRR indices were significantly slower (P < 0.05) in PwMS, whereas the long-term ones did not. The time course of RMSSD was significantly different in PwMS (P < 0.05). HRR and HRV indexes did not correlate with fatigue perception and baseline HRV values. CONCLUSION The cardiac parasympathetic reactivation from a submaximal exercise was blunted in PwMS, thereby slowing the short-term phase of HRR. This may contribute to the higher cardiovascular risk in PwMS, but the mechanism needs further investigation. The parasympathetic impairment during post-exercise HR reactivation cannot be predicted by baseline HRV values and may therefore be revealed only by an appropriate provocative low-intensity physical test.
Collapse
Affiliation(s)
- Susanna Rampichini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | - Martina Anna Maggioni
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Center for Space Medicine and Extreme Environments, Charitéplatz 1, 10117 Berlin, Germany
| | - Giampiero Merati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi, Milano, Italy
| |
Collapse
|
14
|
Allen DR, Huang MU, Morris NB, Chaseling GK, Frohman EM, Jay O, Davis SL. Impaired Thermoregulatory Function during Dynamic Exercise in Multiple Sclerosis. Med Sci Sports Exerc 2019; 51:395-404. [PMID: 30779715 DOI: 10.1249/mss.0000000000001821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Impairments in sudomotor function during passive whole-body heating have been reported in multiple sclerosis (MS), a demyelinating disease of the CNS that disrupts autonomic function. However, the capability of the thermoregulatory system to control body temperature during exercise has never been assessed in MS. Thus, the aim of the present study was to test the hypothesis that thermoregulatory function is impaired in MS patients compared with healthy controls (CON) exercising at similar rates of metabolic heat production. METHODS Sweating and skin blood flow responses were compared between 12 individuals diagnosed with relapsing-remitting MS (9 females, 3 males) and 12 sex-, age-, mass-, and BSA-matched CON during a single bout of cycling exercise (rate of metabolic heat production: ∼4.5 W·kg) for 60 min in a climate-controlled room (25°C, 30% RH). RESULTS Individuals with MS exhibited an attenuated increase in cumulative whole-body sweat loss after 30 min (MS, 72 ± 51 g; CON, 104 ± 37 g; P = 0.04) and 60 min (MS, 209 ± 94 g; CON, 285 ± 62 g; P = 0.02), as well as lower sweating thermosensitivity (MS, 0.49 ± 0.26 mg·cm·min·°C; CON, 0.86 ± 0.30 mg·cm·min·°C; P = 0.049). Despite evidence for thermoregulatory dysfunction, there were no differences between MS and CON in esophageal or rectal temperatures at 30- or 60-min time points (P > 0.05). Cutaneous vasculature responses were also not different in MS compared with CON (P > 0.05). CONCLUSION Taken together, MS blunts sweating responses during exercise while cutaneous vasculature responses are preserved. Altered mechanisms of body temperature regulation in persons with MS may lead to temporary worsening of disease symptoms and limit exercise tolerance under more thermally challenging conditions.
Collapse
Affiliation(s)
- Dustin R Allen
- Applied Physiology and Wellness, Southern Methodist University, Dallas, TX.,Department of Health Sciences, Boston University, Boston, MA
| | - M U Huang
- Applied Physiology and Wellness, Southern Methodist University, Dallas, TX
| | - Nathan B Morris
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, AUSTRALIA
| | - Georgia K Chaseling
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, AUSTRALIA
| | - Elliot M Frohman
- Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, AUSTRALIA.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, AUSTRALIA
| | - Scott L Davis
- Applied Physiology and Wellness, Southern Methodist University, Dallas, TX.,Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
15
|
Abstract
Wilhelm Uhthoff, known for his contributions to both neurology and neuro-ophthalmology, was a German ophthalmologist who specialized in neurologic disorders. The eponym "Uhthoff's phenomenon" was first used to describe the reversible, transient blurring of vision in patients with multiple sclerosis during exercise. Subsequently, it was discovered that this neurologic sign not only was triggered by physical exertion but also by other homeostatic disruptions such as hot baths, menstruation, and high external temperatures. Here, we take a look at the life and career of Wilhelm Uhthoff and discuss the basis behind this phenomenon.
Collapse
Affiliation(s)
| | - Mattia Rosso
- Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, MA, USA
| | - Jonathan D Santoro
- Department of Neurology, Children's Hospital Los Angeles, Los Angeles, CA, USA/Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Griggs KE, Stephenson BT, Price MJ, Goosey-Tolfrey VL. Heat-related issues and practical applications for Paralympic athletes at Tokyo 2020. Temperature (Austin) 2019; 7:37-57. [PMID: 32166104 PMCID: PMC7053936 DOI: 10.1080/23328940.2019.1617030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
International sporting competitions, including the Paralympic Games, are increasingly being held in hot and/or humid environmental conditions. Thus, a greater emphasis is being placed on preparing athletes for the potentially challenging environmental conditions of the host cities, such as the upcoming Games in Tokyo in 2020. However, evidence-based practices are limited for the impairment groups that are eligible to compete in Paralympic sport. This review aims to provide an overview of heat-related issues for Paralympic athletes alongside current recommendations to reduce thermal strain and technological advancements in the lead up to the Tokyo 2020 Paralympic Games. When competing in challenging environmental conditions, a number of factors may contribute to an athlete's predisposition to heightened thermal strain. These include the characteristics of the sport itself (type, intensity, duration, modality, and environmental conditions), the complexity and severity of the impairment and classification of the athlete. For heat vulnerable Paralympic athletes, strategies such as the implementation of cooling methods and heat acclimation can be used to combat the increase in heat strain. At an organizational level, regulations and specific heat policies should be considered for several Paralympic sports. Both the utilization of individual strategies and specific heat health policies should be employed to ensure that Paralympics athletes' health and sporting performance are not negatively affected during the competition in the heat at the Tokyo 2020 Paralympic Games.
Collapse
Affiliation(s)
- Katy E. Griggs
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ben T. Stephenson
- Loughborough Performance Centre, English Institute of Sport, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Michael J. Price
- School of Life Sciences, Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Victoria L. Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
17
|
Habek M, Crnošija L, Gabelić T, Barun B, Adamec I, Junaković A, Ruška B, Pavičić T, Krbot Skorić M. Longitudinal assessment of autonomic nervous system in patients with first demyelinating event suggestive of multiple sclerosis. Eur J Neurol 2019; 26:1377-1383. [PMID: 31099944 DOI: 10.1111/ene.13989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE As a high proportion of people with clinically isolated syndrome (pwCIS) exhibit sympathetic adrenergic and sudomotor dysfunction, the aim of this study was to investigate the evolution of autonomic nervous system (ANS) abnormalities in pwCIS over a 2-year follow-up. METHODS This was a prospective cohort study in which 121 pwCIS were enrolled and followed for 2 years. After 2-year follow-up, data were available for 84 pwCIS. ANS symptoms were evaluated with the Composite Autonomic System Score-31 (COMPASS-31) and results of the ANS tests were expressed using the Composite Autonomic Scoring Scale (CASS) at baseline and visit at month 24. Symptomatic dysautonomia was defined if the patient had a COMPASS-31 value above the median of the whole cohort at baseline evaluation (COMPASS-31 > 6.79) and CASS score >0. RESULTS Complete CASS data at baseline and month 24 were available for 62 patients; in 24 (38.7%) patients there was worsening, in 16 (25.8%) there was improvement and in 22 (35.5%) there was no change in CASS score. In 90% of pwCIS (72 of 80) there was no change in parasympathetic nervous system tests, whereas 47.3% (35 of 74) had either worsening or improvement in sympathetic adrenergic and 28.6% (20 of 70) had either worsening or improvement in sudomotor function. A multivariable regression model identified the total number of T2 lesions as an independent predictor for worsening of symptomatic dysautonomia. No predictors for worsening or improving of CASS score were identified. CONCLUSION A substantial proportion of pwCIS experienced worsening of ANS abnormalities during the 2-year follow-up and magnetic resonance imaging parameters seemed to predict these abnormalities.
Collapse
Affiliation(s)
- M Habek
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - L Crnošija
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Zagreb, Croatia
| | - T Gabelić
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - B Barun
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - I Adamec
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Zagreb, Croatia
| | - A Junaković
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Zagreb, Croatia
| | - B Ruška
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - T Pavičić
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - M Krbot Skorić
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Zagreb, Croatia.,Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
HUBBARD ELIZABETHA, MOTL ROBERTW, FERNHALL BO. Acute High-Intensity Interval Exercise in Multiple Sclerosis with Mobility Disability. Med Sci Sports Exerc 2019; 51:858-867. [DOI: 10.1249/mss.0000000000001866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Dutton RA. Medical and Musculoskeletal Concerns for the Wheelchair Athlete: A Review of Preventative Strategies. Curr Sports Med Rep 2019; 18:9-16. [PMID: 30624329 DOI: 10.1249/jsr.0000000000000560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adaptive sports refers to organized sporting activities that are practiced by individuals with disabilities and are worthwhile to maintain physical and psychological health. As adaptive sports participation continues to rise, health care providers must have an enhanced understanding of injury and illness patterns specific to the adaptive athlete. Early recognition and prevention are important to ensure safe and successful participation in sport. The present review aims to provide a framework for diagnosis and prevention of common conditions specific to the wheelchair athlete. In particular, autonomic dysreflexia, impaired thermoregulation, urinary tract infection, and pressure injuries, as well as shoulder pain, upper-extremity entrapment neuropathies, and osteoporotic fractures will be discussed.
Collapse
Affiliation(s)
- Rebecca A Dutton
- University of New Mexico, Department of Orthopaedics and Rehabilitation
| |
Collapse
|
20
|
Cardiac autonomic function during postural changes and exercise in people with multiple sclerosis: A cross-sectional study. Mult Scler Relat Disord 2018; 24:85-90. [PMID: 29982110 DOI: 10.1016/j.msard.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/22/2018] [Accepted: 06/02/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND People with multiple sclerosis (PwMS) often develop an autonomic dysfunction (AD), which onset should be assessed early at a subclinical level, as it may interfere with pharmacological treatments and exercise. OBJECTIVE To evaluate basal cardiac autonomic tone, its modulations during sit-to-stand, sub-maximal exercise and recovery in PwMS without clinical overt AD and its relationships with fatigue perception. METHODS Twenty-three PwMS (55 ± 8 yrs [mean ± SD]; EDSS score 5.7 ± 1.3) and 20 age-matched healthy controls (HC; 55 ± 8yrs) were enrolled. ECG was digitally acquired during:1) sitting at rest (low sympathetic activation); 2) standing (light sympathetic activation); and 3) during light exercise (moderate sympathetic activation) and recovery. Parasympathetic and sympatho-vagal parameters of heart rate (HR) variability in time and frequency domains were calculated from beat series. RESULTS HR was slightly but not significantly higher in PwMS compared to HC in all experimental conditions. Parasympathetic indexes were significantly lower (p < 0.05) in PwMS compared to HC during baseline sitting and post-exercise recovery, whereas sympathovagal parameters were similar in both groups. No correlation between autonomic tone and perceived fatigue was observed. CONCLUSION Parasympathetic tone appears to be impaired in PwMS basal and post-exercise conditions, but not during postural challenge and exercise. In addition, AD does not affect perceived fatigue.
Collapse
|
21
|
Davis SL, Jay O, Wilson TE. Thermoregulatory dysfunction in multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:701-714. [PMID: 30459034 DOI: 10.1016/b978-0-444-64074-1.00042-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a progressive neurologic disorder that disrupts axonal myelin in the central nervous system. Demyelination produces alterations in saltatory conduction, slowed conduction velocity, and a predisposition to conduction block. An estimated 60-80% of MS patients experience temporary worsening of clinical signs and neurologic symptoms with heat exposure (Uhthoff's phenomenon). This heat intolerance in MS is related to the detrimental effects of increased temperature on action potential propagation in demyelinated axons, resulting in conduction slowing and/or block. Additionally, MS may produce impaired neural control of autonomic and endocrine functions. Isolating and interpreting mechanisms responsible for autonomic dysfunction due to MS can be difficult as it may involve sensory impairments, altered neural integration within the central nervous system, impaired effector responses, or combinations of all of these factors. MS lesions occur in areas of the brain responsible for the control and regulation of body temperature and thermoregulatory effector responses, resulting in impaired neural control of sudomotor pathways or neural-induced changes in eccrine sweat glands, as evidenced by observations of reduced sweating responses in MS patients. Although not comprehensive, some evidence exists concerning treatments (cooling, precooling, and pharmacologic) for the MS patient to preserve function and decrease symptom worsening during heat stress. This review focuses on four main themes influencing current understanding of thermoregulatory dysfunction in MS: (1) heat intolerance; (2) central regulation of body temperature; (3) thermoregulatory effector responses; and (4) countermeasures to improve or maintain function during thermal stress.
Collapse
Affiliation(s)
- Scott L Davis
- Department of Applied Physiology and Wellness, Southern Methodist University, Dallas, TX, United States.
| | - Ollie Jay
- Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Thad E Wilson
- Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, IN, United States
| |
Collapse
|
22
|
Keytsman C, Hansen D, Wens I, O. Eijnde B. Impact of high-intensity concurrent training on cardiovascular risk factors in persons with multiple sclerosis – pilot study. Disabil Rehabil 2017; 41:430-435. [DOI: 10.1080/09638288.2017.1395086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Charly Keytsman
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building A, Diepenbeek, Belgium
| | - Dominique Hansen
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building A, Diepenbeek, Belgium
| | - Inez Wens
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building A, Diepenbeek, Belgium
| | - Bert O. Eijnde
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building A, Diepenbeek, Belgium
| |
Collapse
|
23
|
Halabchi F, Alizadeh Z, Sahraian MA, Abolhasani M. Exercise prescription for patients with multiple sclerosis; potential benefits and practical recommendations. BMC Neurol 2017; 17:185. [PMID: 28915856 PMCID: PMC5602953 DOI: 10.1186/s12883-017-0960-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/04/2017] [Indexed: 11/05/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) can result in significant mental and physical symptoms, specially muscle weakness, abnormal walking mechanics, balance problems, spasticity, fatigue, cognitive impairment and depression. Patients with MS frequently decrease physical activity due to the fear from worsening the symptoms and this can result in reconditioning. Physicians now believe that regular exercise training is a potential solution for limiting the reconditioning process and achieving an optimal level of patient activities, functions and many physical and mental symptoms without any concern about triggering the onset or exacerbation of disease symptoms or relapse. MAIN BODY Appropriate exercise can cause noteworthy and important improvements in different areas of cardio respiratory fitness (Aerobic fitness), muscle strength, flexibility, balance, fatigue, cognition, quality of life and respiratory function in MS patients. Aerobic exercise training with low to moderate intensity can result in the improvement of aerobic fitness and reduction of fatigue in MS patients affected by mild or moderate disability. MS patients can positively adapt to resistance training which may result in improved fatigue and ambulation. Flexibility exercises such as stretching the muscles may diminish spasticity and prevent future painful contractions. Balance exercises have beneficial effects on fall rates and better balance. Some general guidelines exist for exercise recommendation in the MS population. The individualized exercise program should be designed to address a patient's chief complaint, improve strength, endurance, balance, coordination, fatigue and so on. An exercise staircase model has been proposed for exercise prescription and progression for a broad spectrum of MS patients. CONCLUSION Exercise should be considered as a safe and effective means of rehabilitation in MS patients. Existing evidence shows that a supervised and individualized exercise program may improve fitness, functional capacity and quality of life as well as modifiable impairments in MS patients.
Collapse
Affiliation(s)
- Farzin Halabchi
- Sports and Exercise Medicine, Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alizadeh
- Sports and Exercise Medicine, Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Neurology, MS fellowship, MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Sports and Exercise Medicine, MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Sports and Exercise medicine, Sina MS Research Center, Department of Sports Medicine, Sina Hospital, Hassan Abad Square, Tehran, Iran
| |
Collapse
|
24
|
Majeed F, Yar T, Alsunni A, Alhawaj AF, AlRahim A, Alzaki M. Synergistic effect of energy drinks and overweight/obesity on cardiac autonomic testing using the Valsalva maneuver in university students. Ann Saudi Med 2017; 37:181-188. [PMID: 28578355 PMCID: PMC6150576 DOI: 10.5144/0256-4947.2017.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Obesity and caffeine consumption may lead to autonomic disturbances that can result in a wide range of cardiovascular disorders. OBJECTIVES To determine autonomic disturbances produced by the synergistic effects of overweight or obesity (OW/OB) and energy drinks. DESIGN Cross-sectional, analytical. SETTING Physiology department at a university in Saudi Arabia. SUBJECTS AND METHODS University students, 18-22 years of age, of normal weight (NW) and OW/OB were recruited by convenience sampling. Autonomic testing by the Valsalva ratio (VR) along with systolic and diastolic blood pressure, pulse pressure, and mean arterial blood pressure were measured at baseline (0 minute) and 60 minutes after energy drink consumption. MAIN OUTCOME MEASURE(S) Autonomic disturbance, hemodynamic changes. RESULTS In 50 (27 males and 23 females) subjects, 21 NW and 29 OW/OB, a significant decrease in VR was observed in OW/OB subjects and in NW and OW/OB females at 60 minutes after energy drink consumption. Values of systolic and diastolic blood pressure, pulse pressure and mean arterial blood pressure were also significantly higher in OW/OB and in females as compared to NW and males. BMI was negatively correlated with VR and diastolic blood pressure at 60 minutes. CONCLUSION Obesity and energy drinks alter autonomic functions. In some individuals, OW/OB may augment these effects. LIMITATIONS Due to time and resource restraints, only the acute effects of energy drinks were examined.
Collapse
Affiliation(s)
- Farrukh Majeed
- Dr. Farrukh Majeed, Department of Physiology,, College of Medicine,, University of Dammam,, Al-Rakha, Dammam 31451, Saudi Arabia, +966 13 333 5132, , ORCID: http://orcid.org/0000-0002-2987-601X
| | | | | | | | | | | |
Collapse
|
25
|
Allen DR, Huang M, Parupia IM, Dubelko AR, Frohman EM, Davis SL. Impaired sweating responses to a passive whole body heat stress in individuals with multiple sclerosis. J Neurophysiol 2017; 118:7-14. [PMID: 28275061 DOI: 10.1152/jn.00897.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 01/11/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS), disrupting autonomic function. The aim of this study was to test the hypothesis that individuals with MS have blunted control of thermoregulatory reflex increases in sweat rate (SR) and cutaneous vasodilation compared with controls during a passive whole body heat stress (WBH). Eighteen individuals with relapsing-remitting MS and 18 healthy controls (Con) participated in the study. Core temperature (Tcore), skin temperature, heart rate, arterial blood pressure (10-min intervals), skin blood flow (laser-Doppler flux, LDF), and SR were continuously measured during normothermic baseline (34°C water perfusing a tube-lined suit) and WBH (increased Tcore 0.8°C via 48°C water perfusing the suit). Following WBH, local heaters were warmed to 42°C, inducing peak cutaneous vasodilation at the site of LDF collection. Cutaneous vascular conductance (CVC) was calculated as the ratio of LDF to mean arterial pressure and expressed as a percentage of peak achieved during local heating. Individuals with MS had attenuated SR responses to WBH (ΔSR from baseline: Con, 0.65 ± 0.27; MS, 0.42 ± 0.17 mg·cm-2·min-1, P = 0.003), whereas Δ%CVC42C from baseline was similar between groups (Con, 42 ± 16%; MS, 38 ± 12%, P = 0.39). SR responses were blunted as a function of Tcore in MS (interaction: group × Tcore, P = 0.03), of which differences were evident at ΔTcore 0.7°C and 0.8°C (P < 0.05). No interaction was observed in Δ%CVC42C Taken together, the findings show MS blunts sweating responses, whereas control of the cutaneous vasculature is preserved, in response to WBH.NEW & NOTEWORTHY This study is the first to assess the reflex control of the thermoregulatory system in individuals living with multiple sclerosis (MS). The novel findings are twofold. First, attenuated increases in sweat rate in subjects with MS compared with healthy controls were observed in response to a moderate increase (0.8°C) in core temperature via passive whole body heat stress. Second, it appears the reflex control of the cutaneous vasculature is preserved in MS.
Collapse
Affiliation(s)
- Dustin R Allen
- Department of Applied Physiology & Wellness, Southern Methodist University, Dallas, Texas; and
| | - Mu Huang
- Department of Applied Physiology & Wellness, Southern Methodist University, Dallas, Texas; and
| | - Iqra M Parupia
- Department of Applied Physiology & Wellness, Southern Methodist University, Dallas, Texas; and
| | - Ariana R Dubelko
- Department of Applied Physiology & Wellness, Southern Methodist University, Dallas, Texas; and
| | - Elliot M Frohman
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott L Davis
- Department of Applied Physiology & Wellness, Southern Methodist University, Dallas, Texas; and .,Department of Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
26
|
Habek M, Crnošija L, Lovrić M, Junaković A, Krbot Skorić M, Adamec I. Sympathetic cardiovascular and sudomotor functions are frequently affected in early multiple sclerosis. Clin Auton Res 2016; 26:385-393. [DOI: 10.1007/s10286-016-0370-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/06/2016] [Indexed: 11/28/2022]
|
27
|
Dervis S, Coombs GB, Chaseling GK, Filingeri D, Smoljanic J, Jay O. A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat. J Appl Physiol (1985) 2015; 120:615-23. [PMID: 26702025 DOI: 10.1152/japplphysiol.00906.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022] Open
Abstract
We sought to determine 1) the influence of adiposity on thermoregulatory responses independently of the confounding biophysical factors of body mass and metabolic heat production (Hprod); and 2) whether differences in adiposity should be accounted for by prescribing an exercise intensity eliciting a fixed Hprod per kilogram of lean body mass (LBM). Nine low (LO-BF) and nine high (HI-BF) body fat males matched in pairs for total body mass (TBM; LO-BF: 88.7 ± 8.4 kg, HI-BF: 90.1 ± 7.9 kg; P = 0.72), but with distinctly different percentage body fat (%BF; LO-BF: 10.8 ± 3.6%; HI-BF: 32.0 ± 5.6%; P < 0.001), cycled for 60 min at 28.1 ± 0.2 °C, 26 ± 8% relative humidity (RH), at a target Hprod of 1) 550 W (FHP trial) and 2) 7.5 W/kg LBM (LBM trial). Changes in rectal temperature (ΔTre) and local sweat rate (LSR) were measured continuously while whole body sweat loss (WBSL) and net heat loss (Hloss) were estimated over 60 min. In the FHP trial, ΔTre (LO-BF: 0.66 ± 0.21 °C, HI-BF: 0.87 ± 0.18 °C; P = 0.02) was greater in HI-BF, whereas mean LSR (LO-BF 0.52 ± 0.19, HI-BF 0.43 ± 0.15 mg·cm(-2)·min(-1); P = 0.19), WBSL (LO-BF 586 ± 82 ml, HI-BF 559 ± 75 ml; P = 0.47) and Hloss (LO-BF 1,867 ± 208 kJ, HI-BF 1,826 ± 224 kJ; P = 0.69) were all similar. In the LBM trial, ΔTre (LO-BF 0.82 ± 0.18 °C, HI-BF 0.54 ± 0.19 °C; P < 0.001), mean LSR (LO-BF 0.59 ± 0.20, HI-BF 0.38 ± 0.12 mg·cm(-2)·min(-1); P = 0.04), WBSL (LO-BF 580 ± 106 ml, HI-BF 381 ± 68 ml; P < 0.001), and Hloss (LO-BF 1,884 ± 277 kJ, HI-BF 1,341 ± 184 kJ; P < 0.001) were all greater at end-exercise in LO-BF. In conclusion, high %BF individuals demonstrate a greater ΔTre independently of differences in mass and Hprod, possibly due to a lower mean specific heat capacity or impaired sudomotor control. However, thermoregulatory responses of groups with different adiposity levels should not be compared using a fixed Hprod in watts per kilogram lean body mass.
Collapse
Affiliation(s)
- Sheila Dervis
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Geoff B Coombs
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Georgia K Chaseling
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia; and
| | - Davide Filingeri
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia; and
| | | | - Ollie Jay
- School of Human Kinetics, University of Ottawa, Ottawa, Canada; Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia; and Charles Perkins Centre, University of Sydney, New South Wales, Australia
| |
Collapse
|
28
|
|