1
|
Bizanti A, Zhang Y, Harden SW, Chen J, Hoover DB, Gozal D, Shivkumar K, Cheng ZJ. Catecholaminergic axon innervation and morphology in flat-mounts of atria and ventricles of mice. J Comp Neurol 2023; 531:596-617. [PMID: 36591925 PMCID: PMC10499115 DOI: 10.1002/cne.25444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 01/03/2023]
Abstract
Sympathetic efferent axons regulate cardiac functions. However, the topographical distribution and morphology of cardiac sympathetic efferent axons remain insufficiently characterized due to the technical challenges involved in immunohistochemical labeling of the thick walls of the whole heart. In this study, flat-mounts of the left and right atria and ventricles of FVB mice were immunolabeled for tyrosine hydroxylase (TH), a marker of sympathetic nerves. Atrial and ventricular flat-mounts were scanned using a confocal microscope to construct montages. We found (1) In the atria: A few large TH-immunoreactive (IR) axon bundles entered both atria, branched into small bundles and then single axons that eventually formed very dense terminal networks in the epicardium, myocardium and inlet regions of great vessels to the atria. Varicose TH-IR axons formed close contact with cardiomyocytes, vessels, and adipocytes. Multiple intrinsic cardiac ganglia (ICG) were identified in the epicardium of both atria, and a subpopulation of the neurons in the ICG were TH-IR. Most TH-IR axons in bundles traveled through ICG before forming dense varicose terminal networks in cardiomyocytes. We did not observe varicose TH-IR terminals encircling ICG neurons. (2) In the left and right ventricles and interventricular septum: TH-IR axons formed dense terminal networks in the epicardium, myocardium, and vasculature. Collectively, TH labeling is achievable in flat-mounts of thick cardiac walls, enabling detailed mapping of catecholaminergic axons and terminal structures in the whole heart at single-cell/axon/varicosity scale. This approach provides a foundation for future quantification of the topographical organization of the cardiac sympathetic innervation in different pathological conditions.
Collapse
Affiliation(s)
- Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, and Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Kalyanam Shivkumar
- Department of Medicine, Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, California, USA
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Robinson FA, Mihealsick RP, Wagener BM, Hanna P, Poston MD, Efimov IR, Shivkumar K, Hoover DB. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol 2020. [PMID: 33036546 DOI: 10.1152/ajpheart.00681.2020;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) quickly reached pandemic proportions, and knowledge about this virus and coronavirus disease 2019 (COVID-19) has expanded rapidly. This review focuses primarily on mechanisms that contribute to acute cardiac injury and dysfunction, which are common in patients with severe disease. The etiology of cardiac injury is multifactorial, and the extent is likely enhanced by preexisting cardiovascular disease. Disruption of homeostatic mechanisms secondary to pulmonary pathology ranks high on the list, and there is growing evidence that direct infection of cardiac cells can occur. Angiotensin-converting enzyme 2 (ACE2) plays a central role in COVID-19 and is a necessary receptor for viral entry into human cells. ACE2 normally not only eliminates angiotensin II (Ang II) by converting it to Ang-(1-7) but also elicits a beneficial response profile counteracting that of Ang II. Molecular analyses of single nuclei from human hearts have shown that ACE2 is most highly expressed by pericytes. Given the important roles that pericytes have in the microvasculature, infection of these cells could compromise myocardial supply to meet metabolic demand. Furthermore, ACE2 activity is crucial for opposing adverse effects of locally generated Ang II, so virus-mediated internalization of ACE2 could exacerbate pathology by this mechanism. While the role of cardiac pericytes in acute heart injury by SARS-CoV-2 requires investigation, expression of ACE2 by these cells has broader implications for cardiac pathophysiology.
Collapse
Affiliation(s)
- Fulton A Robinson
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Ryan P Mihealsick
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter Hanna
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, University of California, Los Angeles, California.,Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California
| | - Megan D Poston
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, University of California, Los Angeles, California.,Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California
| | - Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
3
|
Robinson FA, Mihealsick RP, Wagener BM, Hanna P, Poston MD, Efimov IR, Shivkumar K, Hoover DB. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol 2020; 319:H1059-H1068. [PMID: 33036546 PMCID: PMC7789968 DOI: 10.1152/ajpheart.00681.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) quickly reached pandemic proportions, and knowledge about this virus and coronavirus disease 2019 (COVID-19) has expanded rapidly. This review focuses primarily on mechanisms that contribute to acute cardiac injury and dysfunction, which are common in patients with severe disease. The etiology of cardiac injury is multifactorial, and the extent is likely enhanced by preexisting cardiovascular disease. Disruption of homeostatic mechanisms secondary to pulmonary pathology ranks high on the list, and there is growing evidence that direct infection of cardiac cells can occur. Angiotensin-converting enzyme 2 (ACE2) plays a central role in COVID-19 and is a necessary receptor for viral entry into human cells. ACE2 normally not only eliminates angiotensin II (Ang II) by converting it to Ang-(1–7) but also elicits a beneficial response profile counteracting that of Ang II. Molecular analyses of single nuclei from human hearts have shown that ACE2 is most highly expressed by pericytes. Given the important roles that pericytes have in the microvasculature, infection of these cells could compromise myocardial supply to meet metabolic demand. Furthermore, ACE2 activity is crucial for opposing adverse effects of locally generated Ang II, so virus-mediated internalization of ACE2 could exacerbate pathology by this mechanism. While the role of cardiac pericytes in acute heart injury by SARS-CoV-2 requires investigation, expression of ACE2 by these cells has broader implications for cardiac pathophysiology.
Collapse
Affiliation(s)
- Fulton A Robinson
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Ryan P Mihealsick
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter Hanna
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, University of California, Los Angeles, California.,Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California
| | - Megan D Poston
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, University of California, Los Angeles, California.,Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California
| | - Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
4
|
Yamakawa M, Santosa SM, Chawla N, Ivakhnitskaia E, Del Pino M, Giakas S, Nadel A, Bontu S, Tambe A, Guo K, Han KY, Cortina MS, Yu C, Rosenblatt MI, Chang JH, Azar DT. Transgenic models for investigating the nervous system: Currently available neurofluorescent reporters and potential neuronal markers. Biochim Biophys Acta Gen Subj 2020; 1864:129595. [PMID: 32173376 DOI: 10.1016/j.bbagen.2020.129595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Recombinant DNA technologies have enabled the development of transgenic animal models for use in studying a myriad of diseases and biological states. By placing fluorescent reporters under the direct regulation of the promoter region of specific marker proteins, these models can localize and characterize very specific cell types. One important application of transgenic species is the study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. Furthermore, crucial molecular factors can also be screened via the transgenic approach, which may eventually play a major role in the development of therapeutic strategies against diseases like Alzheimer's or Parkinson's. This review describes currently available reporters and their uses in the literature as well as potential neural markers that can be leveraged to create additional, robust transgenic models for future studies.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Matthew Del Pino
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sebastian Giakas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arnold Nadel
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sneha Bontu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arjun Tambe
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Maria Soledad Cortina
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
5
|
Hoover DB, Poston MD, Brown S, Lawson SE, Bond CE, Downs AM, Williams DL, Ozment TR. Cholinergic leukocytes in sepsis and at the neuroimmune junction in the spleen. Int Immunopharmacol 2020; 81:106359. [PMID: 32143148 DOI: 10.1016/j.intimp.2020.106359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
The spleen is a key participant in the pathophysiology of sepsis and inflammatory disease. Many splenocytes exhibit a cholinergic phenotype, but our knowledge regarding their cholinergic biology and how they are affected by sepsis is incomplete. We evaluated effects of acute sepsis on the spleen using the cecal ligation and puncture (CLP) model in C57BL/6 and ChATBAC-eGFP mice. Quantification of cholinergic gene expression showed that choline acetyltransferase and vesicular acetylcholine transporter (VAChT) are present and that VAChT is upregulated in sepsis, suggesting increased capacity for release of acetylcholine (ACh). High affinity choline transporter is not expressed but organic acid transporters are, providing additional mechanisms for release. Flow cytometry studies identified subpopulations of cholinergic T and B cells as well as monocytes/macrophages. Neither abundance nor GFP intensity of cholinergic T cells changed in sepsis, suggesting that ACh synthetic capacity was not altered. Spleens have low acetylcholinesterase activity, and the enzyme is localized primarily in red pulp, characteristics expected to favor cholinergic signaling. For cellular studies, ACh was quantified by mass spectroscopy using d4-ACh internal standard. Isolated splenocytes from male mice contain more ACh than females, suggesting the potential for gender-dependent differences in cholinergic immune function. Isolated splenocytes exhibit basal ACh release, which can be increased by isoproterenol (4 and 24 h) or by T cell activation with antibodies to CD3 and CD28 (24 h). Collectively, these data support the concept that sepsis enhances cholinergic function in the spleen and that release of ACh can be triggered by stimuli via different mechanisms.
Collapse
Affiliation(s)
- Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Megan D Poston
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Stacy Brown
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Sarah E Lawson
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Cherie E Bond
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Anthony M Downs
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tammy R Ozment
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
6
|
Kaestner CL, Smith EH, Peirce SG, Hoover DB. Immunohistochemical analysis of the mouse celiac ganglion: An integrative relay station of the peripheral nervous system. J Comp Neurol 2019; 527:2742-2760. [PMID: 31021409 DOI: 10.1002/cne.24705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
Celiac ganglia are important sites of signal integration and transduction. Their complex neurochemical anatomy has been studied extensively in guinea pigs but not in mice. The goal of this study was to provide detailed neurochemical characterization of mouse celiac ganglia and noradrenergic nerves in two target tissues, spleen and stomach. A vast majority of mouse celiac neurons express a noradrenergic phenotype, which includes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, and the norepinephrine transporter. Over 80% of these neuron also express neuropeptide Y (NPY), and this coexpression is maintained by dissociated neurons in culture. Likewise, TH and NPY were colocalized in noradrenergic nerves throughout the spleen and in stomach blood vessels. Somatostatin was not detected in principal neurons but did occur in small, TH-negative cells presumed to be interneurons and in a few varicose nerve fibers. Cholinergic nerves provided the most abundant input to the ganglia, and small percentages of these also contained nitric oxide synthase or vasoactive intestinal polypeptide. A low-to-moderate density of nerves also stained separately for the latter markers. Additionally, nerve bundles and varicose nerve fibers containing the sensory neuropeptides, calcitonin gene-related polypeptide, and substance P, occurred at variable density throughout the ganglia. Collectively, these findings demonstrate that principal neurons of mouse celiac ganglia have less neurochemical diversity than reported for guinea pig and other species but receive input from nerves expressing an array of neurochemical markers. This profile suggests celiac neurons integrate input from many sources to influence target tissues by releasing primarily norepinephrine and NPY.
Collapse
Affiliation(s)
- Charlotte L Kaestner
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee
| | - Elizabeth H Smith
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee
| | - Stanley G Peirce
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|