1
|
Angom RS, Wang Y, Wang E, Dutta S, Mukhopadhyay D. Conditional, Tissue-Specific CRISPR/Cas9 Vector System in Zebrafish Reveals the Role of Nrp1b in Heart Regeneration. Arterioscler Thromb Vasc Biol 2023; 43:1921-1934. [PMID: 37650323 PMCID: PMC10771629 DOI: 10.1161/atvbaha.123.319189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) technology-mediated genome editing has significantly improved the targeted inactivation of genes in vitro and in vivo in many organisms. Neuropilins play crucial roles in zebrafish heart regeneration, heart failure in mice, and electrical remodeling after myocardial infarction in rats. But the cell-specific functions of nrp1 have not been described before. In this study, we have investigated the role of nrp1 isoforms, including nrp1a and nrp1b, in cardiomyocytes during cardiac injury and regeneration in adult zebrafish hearts. METHODS In this study, we have reported a novel CRISPR-based vector system for conditional tissue-specific gene ablation in zebrafish. Specifically, the cardiac-specific cmlc2 promoter drives Cas9 expression to silence the nrp1 gene in cardiomyocytes in a heat-shock inducible manner. This vector system establishes a unique tool to regulate the gene knockout in both the developmental and adult stages and hence widens the possibility of loss-of-function studies in zebrafish at different stages of development and adulthood. Using this approach, we investigated the role of neuropilin isoforms nrp1a and nrp1b in response to cardiac injury and regeneration in adult zebrafish hearts. RESULTS We observed that both the isoforms (nrp1a and nrp1b) are upregulated after the cryoinjury. Interestingly, the nrp1b knockout significantly delayed heart regeneration and impaired cardiac function in the adult zebrafish after cryoinjury, demonstrated by reduced heart rate, ejection fractions, and fractional shortening. In addition, we show that the knockdown of nrp1b but not nrp1a induces activation of the cardiac remodeling genes in response to cryoinjury. CONCLUSIONS To our knowledge, this study is novel where we have reported a heat-shock-mediated conditional knockdown of nrp1a and nrp1b isoforms using CRISPR/Cas9 technology in the cardiomyocyte in zebrafish and furthermore have identified a crucial role for the nrp1b isoform in zebrafish cardiac remodeling and eventually heart function in response to injury.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL 32224
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN 55905
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL 32224
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL 32224
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL 32224
| |
Collapse
|
2
|
Xue G, Yang X, Zhan G, Wang X, Gao J, Zhao Y, Wang X, Li J, Pan Z, Xia Y. Sodium–Glucose cotransporter 2 inhibitor empagliflozin decreases ventricular arrhythmia susceptibility by alleviating electrophysiological remodeling post-myocardial-infarction in mice. Front Pharmacol 2022; 13:988408. [PMID: 36313361 PMCID: PMC9616207 DOI: 10.3389/fphar.2022.988408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Recent clinical trials indicate that sodium–glucose cotransporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in myocardial infarction (MI) patients, but the underlying mechanisms remain unknown. As arrhythmia often occurs during myocardial infarction, it is the main cause of death. Objective: The purpose of this study was to investigate the influence of empagliflozin (EMPA), an SGLT2 inhibitor, on cardiac electrophysiological remodeling and arrhythmia susceptibility of myocardial infarction mice. Methods: ECG was obtained from mice 1 week after MI to determine the QT interval. In an electrophysiological study and optical mapping was performed to evaluate the function of EMPA and underlying mechanisms of post-myocardial-infarction in mice. Results: EMPA treatment significantly reduced the QT interval of MI mice (MI + EMPA 50.24 ms vs. MI 64.68 ms). The membrane potential and intracellular Ca [Cai] were mapped from 13 MI hearts and five normal hearts using an optical mapping technique. A dynamic pacing protocol was used to determine action potential duration and [Cai] at baseline and after EMPA (10 umol/L) infusion. EMPA perfusion did not change the APD80 and CaT80 in normal ventricles while shortening them in an infarct zone, bordering zone, and remote zone of MI hearts at 200 ms, 150 ms, 120 ms, and 100 ms pacing cycle length. The conduction velocity of infarcted ventricles was 0.278 m/s and 0.533 m/s in normal ventricles at baseline (p < 0.05). After EMPA administration, the conduction velocity of infarcted ventricles increased to 0.363 m/s, whereas no significant changes were observed in normal ventricles. The action potential rise time, CaT rise time, and CaT tau time were improved after EMPA perfusion in infarcted ventricles, whereas no significant changes were observed in normal ventricles. EMPA decreases early afterdepolarizations premature ventricular beats, and ventricular fibrillation (VF) in infarcted ventricles. The number of phase singularities (baseline versus EMPA, 6.26 versus 3.25), dominant frequency (20.52 versus 10.675 Hz), and ventricular fibrillation duration (1.072 versus 0.361 s) during ventricular fibrillation in infarcted ventricles were all significantly decreased by EMPA. Conclusion: Treatment with EMPA improved post-MI electrophysiological remodeling and decreased substrate for VF of MI mice. The inhibitors of SGLT2 may be a new class of agents for the prevention of ventricle arrhythmia after chronic MI.
Collapse
Affiliation(s)
- Genlong Xue
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaolei Yang
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ge Zhan
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Ultrasound, The Affiliated Hospital of Innermongolia Medical University, Huhhot, China
| | - Jinghan Gao
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yong Zhao
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinying Wang
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiatian Li
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenwei Pan
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
- *Correspondence: Yunlong Xia, ; Zhenwei Pan,
| | - Yunlong Xia
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Yunlong Xia, ; Zhenwei Pan,
| |
Collapse
|
4
|
Rao P, Liu Z, Duan H, Dang S, Li H, Zhong L, Wang X, Wang L, Wang X. Pretreatment with neuregulin-1 improves cardiac electrophysiological properties in a rat model of myocardial infarction. Exp Ther Med 2019; 17:3141-3149. [PMID: 30936986 PMCID: PMC6434250 DOI: 10.3892/etm.2019.7306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
Neuregulin-1 (NRG-1) is considered to be a potential therapeutic agent for cardiovascular diseases due to its diverse protective effects. The aim of the present study was to investigate the effect of NRG-1 on cardiac electrophysiology in rats with myocardial infarction (MI). The rats were randomly divided into three groups: The sham operation group (SO; n=8); MI group (n=8); and the MI with recombinant human NRG (rhNRG)-1 administration group (NRG-1 group; 10 µg/kg; n=8). A rat MI model was established via ligation of the left anterior descending coronary artery. The rats in the NRG-1 group received a 10 µg/kg rhNRG-1 injection through the tail vein 30 min prior to ligation. Following 24 h of intervention, the field potential (FP) parameters, including the interspike interval (ISI), field potential duration (FPD), FPrise, FPmin, FPmax and conduction velocity (CV), were measured using microelectrode array technology. Subsequently, burst pacing was performed to assess ventricular arrhythmia (VA) susceptibility in the left ventricle. FP parameters in the MI group were significantly different when compared with those observed in the SO group. ISI, FPD, FPrise and FPmax in the infarct, peri-infarct and normal zones, as well as the CV of the infarct and peri-infarct zones, were all significantly decreased, and FPmin in the normal zone was increased (P<0.05). However, when compared with the MI group, NRG-1 prolonged the ISI and FPD in the 3 zones, and increased FPrise in the infarct zone, FPmax in the normal zone and CV in the peri-infarct zone; it also decreased FPmin in the normal zone (P<0.05). Furthermore, the incidence of VA was significantly reduced in the NRG-1 group when compared with the MI group (P<0.05). In conclusion, NRG-1 improved cardiac electrophysiological properties and reduced VA susceptibility in acute MI.
Collapse
Affiliation(s)
- Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan Pulmonary Hospital, Wuhan, Hubei 430060, P.R. China
| | - Ziqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan Pulmonary Hospital, Wuhan, Hubei 430060, P.R. China
| | - Huinan Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Cardiology, Wuhan Pulmonary Hospital, Wuhan, Hubei 430060, P.R. China
| | - Song Dang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan Pulmonary Hospital, Wuhan, Hubei 430060, P.R. China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Haikou, Hainan 570100, P.R. China
| | - Liang Zhong
- Department of Anesthesiology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei 430015, P.R. China
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan Pulmonary Hospital, Wuhan, Hubei 430060, P.R. China
| | - Long Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan Pulmonary Hospital, Wuhan, Hubei 430060, P.R. China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan Pulmonary Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|