1
|
Fontes MAP, Dos Santos Machado LR, Viana ACR, Cruz MH, Nogueira ÍS, Oliveira MGL, Neves CB, Godoy ACV, Henderson LA, Macefield VG. The insular cortex, autonomic asymmetry and cardiovascular control: looking at the right side of stroke. Clin Auton Res 2024:10.1007/s10286-024-01066-9. [PMID: 39316247 DOI: 10.1007/s10286-024-01066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Evidence from animal and human studies demonstrates that cortical regions play a key role in autonomic modulation with a differential role for some brain regions located in the left and right brain hemispheres. Known as autonomic asymmetry, this phenomenon has been demonstrated by clinical observations, by experimental models, and currently by combined neuroimaging and direct recordings of sympathetic nerve activity. Previous studies report peculiar autonomic-mediated cardiovascular alterations following unilateral damage to the left or right insula, a multifunctional key cortical region involved in emotional processing linked to autonomic cardiovascular control and featuring asymmetric characteristics. METHODS Based on clinical studies reporting specific damage to the insular cortex, this review aims to provide an overview of the prognostic significance of unilateral (left or right hemisphere) post-insular stroke cardiac alterations. In addition, we review experimental data aiming to unravel the central mechanisms involved in post-insular stroke cardiovascular complications. RESULTS AND CONCLUSION Current clinical and experimental data suggest that stroke of the right insula can present a worse cardiovascular prognosis.
Collapse
Affiliation(s)
- Marco Antônio Peliky Fontes
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil.
| | - Liliane Ramos Dos Santos Machado
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Clara Rocha Viana
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Matheus Henrique Cruz
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ícaro Santos Nogueira
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Marcela Gondim Lima Oliveira
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Christiane Braga Neves
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Caroline Ventris Godoy
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | | | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Guo J, Li Z, Gu H, Yang K, Liu Y, Lu J, Wang D, Jia J, Zhang J, Wang Y, Zhao X. Prevalence, risk factors and prognostic value of atrial fibrillation detected after stroke after haemorrhagic versus ischaemic stroke. Stroke Vasc Neurol 2024:svn-2023-002974. [PMID: 38365316 DOI: 10.1136/svn-2023-002974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Prior evidence suggests that atrial fibrillation detected after stroke (AFDAS) is distinct from known atrial fibrillation (KAF), with particular clinical characteristics and impacts on outcomes in ischaemic stroke. However, the results remained inconsistent in ischaemic stroke, and the role of AFDAS in haemorrhagic stroke remains unclear. Therefore, we aimed to estimate the prevalence, risk factors and prognostic value of AFDAS in haemorrhagic stroke in comparison with ischaemic stroke. METHODS This was a multicentre cohort study. Patients who had an ischaemic and haemorrhagic stroke hospitalised in the Chinese Stroke Center Alliance hospitals were enrolled and classified as AFDAS, KAF or sinus rhythm (SR) based on heart rhythm. Univariate and multivariate logistic regression analyses were used to assess the prevalence, characteristics, risk factors and outcomes of AFDAS, KAF and SR in different stroke subtypes. RESULTS A total of 913 163 patients, including 818 799 with ischaemic stroke, 83 450 with intracerebral haemorrhage (ICH) and 10 914 with subarachnoid haemorrhage (SAH), were enrolled. AFDAS was the most common in ischaemic stroke. There were differences in the risk factor profile between stroke subtypes; older age is a common independent risk factor shared by ischaemic stroke (OR 1.06, 95% CI 1.06 to 1.06), ICH (OR 1.08, 95% CI 1.07 to 1.09) and SAH (OR 1.07, 95% CI 1.05 to 1.10). Similar to KAF, AFDAS was associated with an increased risk of in-hospital mortality compared with SR in both ischaemic stroke (OR 2.23, 95% CI 1.94 to 2.56) and ICH (OR 2.84, 95% CI 1.84 to 4.38). DISCUSSION There are differences in the prevalence, characteristics and risk factors for AFDAS and KAF in different stroke subtypes. AFDAS was associated with an increased risk of mortality compared with SR in both ischaemic stroke and ICH. Rhythm monitoring and risk factor modification after both ischaemic and haemorrhagic stroke are essential in clinical practice. More emphasis and appropriate treatment should be given to AFDAS.
Collapse
Affiliation(s)
- Jiahuan Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Hongqiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaixuan Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanfang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Lu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dandan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiaokun Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
3
|
Qu Y, Yang Y, Sun X, Ma HY, Zhang P, Abuduxukuer R, Zhu HJ, Liu J, Zhang PD, Guo ZN. Heart Rate Variability in Patients with Spontaneous Intracerebral Hemorrhage and its Relationship with Clinical Outcomes. Neurocrit Care 2024; 40:282-291. [PMID: 36991176 DOI: 10.1007/s12028-023-01704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/22/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Although abnormal heart rate variability (HRV) is frequently observed in patients with spontaneous intracerebral hemorrhage (ICH), its time course and presentation of different indices remain unclear, and few studies have focused on its association with clinical outcomes. METHODS We prospectively recruited consecutive patients with spontaneous ICH between June 2014 and June 2021. HRV was evaluated twice during hospitalization (within 7 days and 10-14 days after stroke). Time and frequency domain indices were calculated. A modified Rankin Scale score ≥ 3 at 3 months was defined as a poor outcome. RESULTS Finally, 122 patients with ICH and 122 age- and sex-matched volunteers were included. Compared with controls, time domain and absolute frequency domain HRV parameters (total power, low frequency [LF], and high frequency [HF]) in the ICH group were significantly decreased within 7 days and 10-14 days. For relative values, normalized LF (LF%) and LF/HF were significantly higher, whereas normalized HF (HF%) was significantly lower, in the patient group than in the control group. Furthermore, LF% and HF% measured at 10-14 days were independently associated with 3-month outcomes. CONCLUSIONS HRV values were impaired significantly within 14 days after ICH. Furthermore, HRV indices measured 10-14 days after ICH were independently associated with 3-month outcomes.
Collapse
Affiliation(s)
- Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Hong-Yin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan-Deng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Kang K, Shi K, Liu J, Li N, Wu J, Zhao X. Autonomic dysfunction and treatment strategies in intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14544. [PMID: 38372446 PMCID: PMC10875714 DOI: 10.1111/cns.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 02/20/2024] Open
Abstract
AIMS Autonomic dysfunction with central autonomic network (CAN) damage occurs frequently after intracerebral hemorrhage (ICH) and contributes to a series of adverse outcomes. This review aims to provide insight and convenience for future clinical practice and research on autonomic dysfunction in ICH patients. DISCUSSION We summarize the autonomic dysfunction in ICH from the aspects of potential mechanisms, clinical significance, assessment, and treatment strategies. The CAN structures mainly include insular cortex, anterior cingulate cortex, amygdala, hypothalamus, nucleus of the solitary tract, ventrolateral medulla, dorsal motor nucleus of the vagus, nucleus ambiguus, parabrachial nucleus, and periaqueductal gray. Autonomic dysfunction after ICH is closely associated with neurological functional outcomes, cardiac complications, blood pressure fluctuation, immunosuppression and infection, thermoregulatory dysfunction, hyperglycemia, digestive dysfunction, and urogenital disturbances. Heart rate variability, baroreflex sensitivity, skin sympathetic nerve activity, sympathetic skin response, and plasma catecholamine concentration can be used to assess the autonomic functional activities after ICH. Risk stratification of patients according to autonomic functional activities, and development of intervention approaches based on the restoration of sympathetic-parasympathetic balance, would potentially improve clinical outcomes in ICH patients. CONCLUSION The review systematically summarizes the evidence of autonomic dysfunction and its association with clinical outcomes in ICH patients, proposing that targeting autonomic dysfunction could be potentially investigated to improve the clinical outcomes.
Collapse
Affiliation(s)
- Kaijiang Kang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Kaibin Shi
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jiexin Liu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Na Li
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jianwei Wu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
5
|
Hemorrhagic Cerebral Insults and Secondary Takotsubo Syndrome: Findings in a Novel In Vitro Model Using Human Blood Samples. Int J Mol Sci 2022; 23:ijms231911557. [PMID: 36232860 PMCID: PMC9569517 DOI: 10.3390/ijms231911557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Intracranial hemorrhage results in devastating forms of cerebral damage. Frequently, these results also present with cardiac dysfunction ranging from ECG changes to Takotsubo syndrome (TTS). This suggests that intracranial bleeding due to subarachnoid hemorrhage (SAH) disrupts the neuro-cardiac axis leading to neurogenic stress cardiomyopathy (NSC) of different degrees. Following this notion, SAH and secondary TTS could be directly linked, thus contributing to poor outcomes. We set out to test if blood circulation is the driver of the brain-heart axis by investigating serum samples of TTS patients. We present a novel in vitro model combining SAH and secondary TTS to mimic the effects of blood or serum, respectively, on blood-brain barrier (BBB) integrity using in vitro monolayers of an established murine model. We consistently demonstrated decreased monolayer integrity and confirmed reduced Claudin-5 and Occludin levels by RT-qPCR and Western blot and morphological reorganization of actin filaments in endothelial cells. Both tight junction proteins show a time-dependent reduction. Our findings highlight a faster and more prominent disintegration of BBB in the presence of TTS and support the importance of the bloodstream as a causal link between intracerebral bleeding and cardiac dysfunction. This may represent potential targets for future therapeutic inventions in SAH and TTS.
Collapse
|
6
|
Time course of beat-to-beat blood pressure variability and outcome in patients with spontaneous intracerebral haemorrhage. J Hypertens 2022; 40:1744-1750. [PMID: 35943102 DOI: 10.1097/hjh.0000000000003206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Increased blood pressure variability (BPV) over 24 h or longer was associated with poor clinical outcomes in patients with intracerebral haemorrhage (ICH). However, the characteristics of beat-to-beat BPV, a rapid assessment of BPV and its association with outcome in ICH patients remain unknown. METHODS We consecutively and prospectively recruited patients with ICH between June 2014 and December 2020. Five-minute noninvasive beat-to-beat recordings were measured serially at three time points, 1-2, 4-6 and 10-12 days after ICH onset. BPV was calculated using standard deviation (SD) and variation independent of mean (VIM). Favourable outcome was defined as modified Rankin Scale score of less than 2 at 90 days. RESULTS The analysis included 66 participants (54.12 ± 10.79 years; 71.2% men) and 66 age and sex-matched healthy controls. Compared with that in healthy adults, beat-to-beat BPV was significantly increased 1-2 days after ICH and was completely recovered 10-12 days later. BPV recorded 1-2 days after ICH onset was higher among patients with unfavourable outcomes than among those with favourable outcomes (all P < 0.05) and higher BPV on days 1-2 was independently associated with a 3-month unfavourable outcome after adjustment for major covariates. CONCLUSION Beat-to-beat BPV was significantly increased among patients with ICH and could be completely recovered 10-12 days later. In addition, beat-to-beat BPV 1-2 days after ICH was independently associated with prognosis and could be regarded as a potential prognostic predictor and effective therapeutic target in the future.
Collapse
|
7
|
Tomeo RA, Gomes-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Site-Specific Regulation of Stress Responses Along the Rostrocaudal Axis of the Insular Cortex in Rats. Front Neurosci 2022; 16:878927. [PMID: 35620667 PMCID: PMC9127339 DOI: 10.3389/fnins.2022.878927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The insular cortex (IC) has been described as a part of the central network implicated in the integration and processing of limbic information, being related to the behavioral and physiological responses to stressful events. Besides, a site-specific control of physiological functions has been reported along the rostrocaudal axis of the IC. However, a functional topography of the IC in the regulation of stress responses has never been reported. Therefore, this study aimed to investigate the impact of acute restraint stress in neuronal activation at different sites along the rostrocaudal axis of the IC. Furthermore, we evaluated the involvement of IC rostrocaudal subregions in the cardiovascular responses to acute restraint stress. We observed that an acute session of restraint stress increased the number of Fos-immunoreactive cells in the rostral posterior region of the IC, while fewer activated cells were identified in the anterior and caudal posterior regions. Bilateral injection of the non-selective synaptic inhibitor CoCl2 into the anterior region of the IC did not affect the blood pressure and heart rate increases and the sympathetically mediated cutaneous vasoconstriction to acute restraint stress. However, synaptic ablation of the rostral posterior IC decreased the restraint-evoked arterial pressure increase, whereas tachycardia was reduced in animals in which the caudal posterior IC was inhibited. Taken together, these pieces of evidence indicate a site-specific regulation of cardiovascular stress response along the rostrocaudal axis of the IC.
Collapse
Affiliation(s)
| | | | | | | | - Carlos C. Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
8
|
Schaeuble D, Myers B. Cortical–Hypothalamic Integration of Autonomic and Endocrine Stress Responses. Front Physiol 2022; 13:820398. [PMID: 35222086 PMCID: PMC8874315 DOI: 10.3389/fphys.2022.820398] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
The prevalence and severity of cardiovascular disease (CVD) are exacerbated by chronic stress exposure. While stress-induced sympathetic activity and elevated glucocorticoid secretion impair cardiovascular health, the mechanisms by which stress-responsive brain regions integrate autonomic and endocrine stress responses remain unclear. This review covers emerging literature on how specific cortical and hypothalamic nuclei regulate cardiovascular and neuroendocrine stress responses. We will also discuss the current understanding of the cellular and circuit mechanisms mediating physiological stress responses. Altogether, the reviewed literature highlights the current state of stress integration research, as well unanswered questions about the brain basis of CVD risk.
Collapse
|
9
|
Changes of Electrocardiogram and Myocardial Enzymes in Patients with Intracerebral Hemorrhage. DISEASE MARKERS 2022; 2022:9309444. [PMID: 35432629 PMCID: PMC9007683 DOI: 10.1155/2022/9309444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
Purpose Cardiac complications are common in patients with spontaneous intracerebral hemorrhage (ICH). The present study is aimed at observing the incidence of cardiac complications after ICH, so as at improving the understanding of the relationship between cardiac complications and ICH. Methods This is a retrospective study on analyzing electrocardiogram (ECG) and serum myocardial enzyme of 208 patients with ICH admitted to a tertiary hospital from 2018 to 2019. For each patient, demographics, medical history, clinical presentation, ECG, serum myocardial enzyme, and head CT on admission were reviewed. Mortality was noted. Results Among the 208 patients, 145 (69.71%) had one or more ECG abnormalities. The top three abnormalities were corrected QT interval (QTc) prolongation 52 (25%), ST depression 48 (23.08%), and T wave inversion 38 (18.27%). One hundred and thirty-nine patients (66.83%) had increased serum levels of at least one kind of myocardial enzyme, which were high-sensitive cardiac troponin T (hs-cTnT) 79 (37.98%), lactic dehydrogenase (LDH) 80 (38.46%), creatine kinase (CK) 57 (27.40%), and creatine kinase-myocardial subfraction (CKMB) 57 (27.40%). The logistic regression analysis showed the following: secondary intraventricular hemorrhage (SIVH) (odds ratio (OR) 5.32; 95% confidence interval (CI) 2.55–11.08; p < 0.001) and hematoma volume > 30 ml (OR 3.81; 95% CI 1.86–7.81; p < 0.001) were independent predictive factors of QTc prolongation; thalamus location (OR 5.79; 95% CI 1.94–17.28; p < 0.05), hematoma volume > 30 ml (OR 24.187; 95% CI 3.14-186.33; p < 0.05), insular involvement (OR 19.08; 95% CI 5.77-63.07; p < 0.001), and SIVH (OR 2.62; 95% CI 1.69-5.86; p < 0.05) were independent predictive factors of ST depression; insular involvement (OR 2.90; 95% CI 1.12–7.50; p < 0.05) and hematoma volume > 30 ml (OR 1.98; 95% CI 1.06–3.70; p < 0.05) were independent predictive factors of increase of CK; Glasgow Coma Scale (GCS) (OR 0.86; 95% CI 0.78–0.98; p < 0.05) and insular involvement (OR 5.56; 95% CI 1.98–15.62; p < 0.05) were independent predictive factors of increase of CKMB; SIVH (OR 2.05; 95% CI 1.07–3.92; p < 0.05) was independent predictive factor of increase of LDH; age (OR 1.03; 95% CI 1.01–1.06; p < 0.05), blood glucose on admission (OR 1.10; 95% CI 1.01–1.20; p < 0.05), and history of antiplatelet drug use (OR 3.50; 95% CI 1.01–12.12; p < 0.05) were independent predictive factors of hs-cTnT. All the injury indexes were not related to in-hospital mortality. Conclusion The study suggests that insular involvement, hematoma volume > 30 ml, and SIVH are the strongest risk factors for ECG abnormalities and elevated myocardial enzymes after ICH followed which are the risk factors such as GCS, age, admission blood glucose, and ICH location in the thalamus.
Collapse
|
10
|
Nagai M, Förster CY, Dote K. Sex Hormone-Specific Neuroanatomy of Takotsubo Syndrome: Is the Insular Cortex a Moderator? Biomolecules 2022; 12:biom12010110. [PMID: 35053258 PMCID: PMC8773903 DOI: 10.3390/biom12010110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Takotsubo syndrome (TTS), a transient form of dysfunction in the heart’s left ventricle, occurs predominantly in postmenopausal women who have emotional stress. Earlier studies support the concept that the human circulatory system is modulated by a cortical network (consisting of the anterior cingulate gyrus, amygdala, and insular cortex (Ic)) that plays a pivotal role in the central autonomic nervous system in relation to emotional stressors. The Ic plays a crucial role in the sympathovagal balance, and decreased levels of female sex hormones have been speculated to change functional cerebral asymmetry, with a possible link to autonomic instability. In this review, we focus on the Ic as an important moderator of the human brain–heart axis in association with sex hormones. We also summarize the current knowledge regarding the sex-specific neuroanatomy in TTS.
Collapse
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima 731-0293, Japan;
- Correspondence: ; Tel.: +81-82-815-5211; Fax: +81-82-814-1791
| | - Carola Yvette Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, D-97080 Würzburg, Germany;
| | - Keigo Dote
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima 731-0293, Japan;
| |
Collapse
|
11
|
Marins FR, Oliveira AC, Qadri F, Motta-Santos D, Alenina N, Bader M, Fontes MAP, Santos RAS. Alamandine but not angiotensin-(1-7) produces cardiovascular effects at the rostral insular cortex. Am J Physiol Regul Integr Comp Physiol 2021; 321:R513-R521. [PMID: 34346721 DOI: 10.1152/ajpregu.00308.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
Experiments aimed to evaluate the tissue distribution of Mas-related G protein-coupled receptor D (MrgD) revealed the presence of immunoreactivity for the MrgD protein in the rostral insular cortex (rIC), an important area for autonomic and cardiovascular control. To investigate the relevance of this finding, we evaluated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in urethane anesthetized rats. Unilateral microinjection of equimolar doses of alamandine (40 pmol/100 nL), angiotensin-(1-7), angiotensin II, angiotensin A, and Mas/MrgD antagonist d-Pro7-Ang-1-7 (50 pmol/100 nL), Mas antagonist A779 (100 pmol/100 nL), or vehicle (0.9% NaCl) were made in different rats (n = 4-6/group) into rIC. To verify the specificity of the region, a microinjection of alamandine was also performed into intermediate insular cortex (iIC). Microinjection of alamandine in rIC produced an increase in MAP (Δ = 15 ± 2 mmHg), HR (Δ = 36 ± 4 beats/min), and RSNA (Δ = 31 ± 4%), but was without effects at iIC. Strikingly, an equimolar dose of angiotensin-(1-7) at rIC did not produce any change in MAP, HR, and RSNA. Angiotensin II and angiotensin A produced only minor effects. Alamandine effects were not altered by A-779, a Mas antagonist, but were completely blocked by the Mas/MrgD antagonist d-Pro7-Ang-(1-7). Therefore, we have identified a brain region in which alamandine/MrgD receptor but not angiotensin-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to angiotensin-(1-7) in the brain.
Collapse
Affiliation(s)
- Fernanda Ribeiro Marins
- Laboratório de Hipertensão, Department of Physiology and Biophysics, Institute of Biological Sciences, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline Cristina Oliveira
- Laboratório de Hipertensão, Department of Physiology and Biophysics, Institute of Biological Sciences, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Daisy Motta-Santos
- Laboratório de Hipertensão, Department of Physiology and Biophysics, Institute of Biological Sciences, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité University Medicine, Berlin, Germany
| | - Marco Antonio Peliky Fontes
- Laboratório de Hipertensão, Department of Physiology and Biophysics, Institute of Biological Sciences, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza Santos
- Laboratório de Hipertensão, Department of Physiology and Biophysics, Institute of Biological Sciences, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Marins FR, Limborço-Filho M, Iddings JA, Xavier CH, Biancardi VC, Stern JE, Ramiro Diaz J, Oppenheimer SM, Filosa JA, Peliky Fontes MA. Tachycardia evoked from insular stroke in rats is dependent on glutamatergic neurotransmission in the dorsomedial hypothalamus. Eur J Neurol 2021; 28:3640-3649. [PMID: 34152065 DOI: 10.1111/ene.14987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Damage to the insula results in cardiovascular complications. In rats, activation of N-methyl-d-aspartate receptors (NMDARs) in the intermediate region of the posterior insular cortex (iIC) results in sympathoexcitation, tachycardia and arterial pressure increases. Similarly, focal experimental hemorrhage at the iIC results in a marked sympathetic-mediated increase in baseline heart rate. The dorsomedial hypothalamic region (DMH) is critical for the integration of sympathetic-mediated tachycardic responses. Here, whether responses evoked from the iIC are dependent on a synaptic relay in the DMH was evaluated. METHODS Wistar rats were prepared for injections into the iIC and DMH. Anatomical (tracing combined with immunofluorescence) and functional experiments (cardiovascular and sympathetic recordings) were performed. RESULTS The iIC sends dense projections to the DMH. Approximately 50% of iIC neurons projecting to the DMH express NMDARs, NR1 subunit. Blockade of glutamatergic receptors in the DMH abolishes the cardiovascular and autonomic responses evoked by the activation of NMDARs in the iIC (change in mean arterial pressure 7 ± 1 vs. 1 ± 1 mmHg after DMH blockade; change in heart rate 28 ± 3 vs. 0 ± 3 bpm after DMH blockade; change in renal sympathetic nerve activity 23% ± 1% vs. -1% ± 4% after DMH blockade). Experimental hemorrhage at the iIC resulted in a marked tachycardia (change 89 ± 14 bpm) that was attenuated by 65% ± 5% (p = 0.0009) after glutamatergic blockade at the DMH. CONCLUSIONS The iIC-induced tachycardia is largely dependent upon a glutamatergic relay in the DMH. Our study reveals the presence of an excitatory glutamatergic pathway from the iIC to the DMH that may be involved in the cardiovascular alterations observed after insular stroke.
Collapse
Affiliation(s)
- Fernanda Ribeiro Marins
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Limborço-Filho
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Carlos Henrique Xavier
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Vinicia C Biancardi
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, and Center for Neurosciences Research Initiative, Auburn University, Auburn, AL, USA
| | - Javier E Stern
- Department of Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Stephen M Oppenheimer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
13
|
Pal A, Ogren JA, Aysola RS, Kumar R, Henderson LA, Harper RM, Macey PM. Insular functional organization during handgrip in females and males with obstructive sleep apnea. PLoS One 2021; 16:e0246368. [PMID: 33600443 PMCID: PMC7891756 DOI: 10.1371/journal.pone.0246368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
STUDY OBJECTIVES Brain regulation of autonomic function in obstructive sleep apnea (OSA) is disrupted in a sex-specific manner, including in the insula, which may contribute to several comorbidities. The insular gyri have anatomically distinct functions with respect to autonomic nervous system regulation; yet, OSA exerts little effect on the organization of insular gyral responses to sympathetic components of an autonomic challenge, the Valsalva. We further assessed neural responses of insular gyri in people with OSA to a static handgrip task, which principally involves parasympathetic withdrawal. METHODS We measured insular function with blood oxygen level dependent functional MRI. We studied 48 newly-diagnosed OSA (age mean±std:46.5±9 years; AHI±std:32.6±21.1 events/hour; 36 male) and 63 healthy (47.2±8.8 years;40 male) participants. Subjects performed four 16s handgrips (1 min intervals, 80% subjective maximum strength) during scanning. fMRI time trends from five insular gyri-anterior short (ASG); mid short (MSG); posterior short (PSG); anterior long (ALG); and posterior long (PLG)-were assessed for within-group responses and between-group differences with repeated measures ANOVA (p<0.05) in combined and separate female-male models; age and resting heart-rate (HR) influences were also assessed. RESULTS Females showed greater right anterior dominance at the ASG, but no differences emerged between OSA and controls in relation to functional organization of the insula in response to handgrip. Males showed greater left anterior dominance at the ASG, but there were also no differences between OSA and controls. The males showed a group difference between OSA and controls only in the ALG. OSA males had lower left activation at the ALG compared to control males. Responses were mostly influenced by HR and age; however, age did not impact the response for right anterior dominance in females. CONCLUSIONS Insular gyri functional responses to handgrip differ in OSA vs controls in a sex-based manner, but only in laterality of one gyrus, suggesting anterior and right-side insular dominance during sympathetic activation but parasympathetic withdrawal is largely intact, despite morphologic injury to the overall structure.
Collapse
Affiliation(s)
- Amrita Pal
- UCLA School of Nursing, University of California, Los Angeles, California, United States of America
| | - Jennifer A. Ogren
- Department of Neurobiology, University of California, Los Angeles, California, United States of America
| | - Ravi S. Aysola
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, United States of America
| | - Rajesh Kumar
- Department of Anesthesiology, University of California, Los Angeles, California, United States of America
- Department of Radiological Sciences, University of California, Los Angeles, California, United States of America
| | - Luke A. Henderson
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Ronald M. Harper
- Department of Neurobiology, University of California, Los Angeles, California, United States of America
| | - Paul M. Macey
- UCLA School of Nursing, University of California, Los Angeles, California, United States of America
| |
Collapse
|
14
|
Autonomic response after hemorrhagic stroke in the right insular cortex: What is the common pathophysiology in rat and human?; Reply. Auton Neurosci 2021; 231:102772. [PMID: 33508528 DOI: 10.1016/j.autneu.2021.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 11/21/2022]
|
15
|
Nagai M, Dote K, Kato M. Autonomic response after hemorrhagic stroke in the right insular cortex: What is the common pathophysiology in rat and human? Auton Neurosci 2021; 230:102755. [DOI: 10.1016/j.autneu.2020.102755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/31/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
|