1
|
Zhu J, Yang L, Xia J, Zhou N, Zhu J, Zhu H, Chen J, Qing K, Duan CW. Interleukin-27 Promotes the Generation of Myeloid-derived Suppressor Cells to Alleviate Graft-versus-host Disease. Transplantation 2024:00007890-990000000-00771. [PMID: 38773837 DOI: 10.1097/tp.0000000000005069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
BACKGROUND Stimulation of myeloid-derived suppressor cell (MDSC) formation represents a potential curative therapeutic approach for graft-versus-host disease (GVHD), which significantly impacts the prognosis of allogeneic hematopoietic stem cell transplantation. However, the lack of an effective strategy for inducing MDSC production in vivo has hindered their clinical application. In our previous study, MDSC expansion was observed in interleukin (IL)-27-treated mice. METHODS In this study, we overexpressed exogenous IL-27 in mice using a recombinant adeno-associated virus vector to investigate its therapeutic and exacerbating effects in murine GVHD models. RESULTS In our study, we demonstrated that exogenous administration of IL-27 significantly suppressed GVHD development in a mouse model. We found that IL-27 treatment indirectly inhibited the proliferation and activation of donor T cells by rapidly expanding recipient and donor myeloid cells, which act as MDSCs after irradiation or under inflammatory conditions, rather than through regulatory T-cell expansion. Additionally, IL-27 stimulated MDSC expansion by enhancing granulocyte-monocyte progenitor generation. Notably, we verified that IL-27 signaling in donor T cells exerted an antagonistic effect on GVHD prevention and treatment. Further investigation revealed that combination therapy involving IL-27 and T-cell depletion exhibited remarkable preventive effects on GVHD in both mouse and xenogeneic GVHD models. CONCLUSIONS Collectively, these findings suggest that IL-27 promotes MDSC generation to reduce the incidence of GVHD, whereas targeted activation of IL-27 signaling in myeloid progenitors or its combination with T-cell depletion represents a potential strategy for GVHD therapy.
Collapse
Affiliation(s)
- Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xia
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neng Zhou
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayao Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Zhu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Qing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cai-Wen Duan
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Amorim Sacramento L, Farias Amorim C, G. Lombana C, Beiting D, Novais F, P. Carvalho L, M. Carvalho E, Scott P. CCR5 promotes the migration of pathological CD8+ T cells to the leishmanial lesions. PLoS Pathog 2024; 20:e1012211. [PMID: 38709823 PMCID: PMC11098486 DOI: 10.1371/journal.ppat.1012211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/16/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Cytolytic CD8+ T cells mediate immunopathology in cutaneous leishmaniasis without controlling parasites. Here, we identify factors involved in CD8+ T cell migration to the lesion that could be targeted to ameliorate disease severity. CCR5 was the most highly expressed chemokine receptor in patient lesions, and the high expression of CCL3 and CCL4, CCR5 ligands, was associated with delayed healing of lesions. To test the requirement for CCR5, Leishmania-infected Rag1-/- mice were reconstituted with CCR5-/- CD8+ T cells. We found that these mice developed smaller lesions accompanied by a reduction in CD8+ T cell numbers compared to controls. We confirmed these findings by showing that the inhibition of CCR5 with maraviroc, a selective inhibitor of CCR5, reduced lesion development without affecting the parasite burden. Together, these results reveal that CD8+ T cells migrate to leishmanial lesions in a CCR5-dependent manner and that blocking CCR5 prevents CD8+ T cell-mediated pathology.
Collapse
Affiliation(s)
- Laís Amorim Sacramento
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Claudia G. Lombana
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fernanda Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Lucas P. Carvalho
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Muniz–Fiocruz, Salvador, Bahia, Brazil
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Edgar M. Carvalho
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Muniz–Fiocruz, Salvador, Bahia, Brazil
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Savaş EM, Yegin ZA, Kök Mİ, Karayel HT, Özkurt ZN, Bozer MN, Çamoğlu M, Gülbahar Ö. Hypomagnesemia May Predict Better Survival and Reduced Nonrelapse Mortality in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Transplant Proc 2024; 56:386-393. [PMID: 38365511 DOI: 10.1016/j.transproceed.2024.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Magnesium (Mg) is an essential element that is required as a cofactor for many cellular reactions, including immunologic pathways. The aim of this study was to investigate the potential impact of serum Mg levels on allogeneic hematopoietic stem cell transplantation (alloHSCT) outcomes. METHODS Medical records of 340 alloHSCT recipients (median age: 45 [18-71] years; M/F: 210/130) were reviewed for this retrospective study. Serum Mg levels on days -28, -7, 0, +7, +14, +21, +30, +60, and +90 were included in the analysis. RESULTS Serum Mg+14 levels predicted nonrelapse mortality (NRM) (P = .025) and had a significant impact on the development of mucositis (P = .027), fungal infection (P = .006), engraftment syndrome (P < .001), sinusoidal obstruction syndrome (SOS) (P = .001), cytomegalovirus (CMV) reactivation (P = .039), and acute graft vs host disease (GvHD) (P < .001). Based on the optimal threshold of serum Mg+14 level (1.33 mg/dL; area under the curve: 0.581 [0.515-0.648]; P = .018), the study group was divided into 2 subgroups as low- and high-Mg+14. The incidence of acute GvHD (P = .002), SOS (P = .013), engraftment syndrome (P = .013), CMV reactivation (P = .001), and Epstein Barr virus reactivation (P = .005) was significantly lower in low-Mg+14 group. The probability of overall survival (OS) was significantly better (P = .002), whereas NRM was lower in the low-Mg+14 group (P = .001). CONCLUSION Hypomagnesemia seems to provide a considerable advantage for the post-transplant outcome, which may confirm its potential role in the immunologic microenvironment and adaptive immunity.
Collapse
Affiliation(s)
- Emine Merve Savaş
- Gazi University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Zeynep Arzu Yegin
- Gazi University Faculty of Medicine, Department of Hematology, Ankara, Turkey.
| | - Münevver İrem Kök
- Gazi University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Hande Tuğba Karayel
- Gazi University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Zübeyde Nur Özkurt
- Gazi University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Merve Nazlı Bozer
- Gazi University Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey
| | - Melike Çamoğlu
- Gazi University Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey
| | - Özlem Gülbahar
- Gazi University Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| |
Collapse
|
4
|
Sacramento LA, Amorim CF, Lombana CG, Beiting D, Novais F, Carvalho LP, Carvalho EM, Scott P. CCR5 promotes the migration of CD8 + T cells to the leishmanial lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561700. [PMID: 37873253 PMCID: PMC10592772 DOI: 10.1101/2023.10.10.561700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cytolytic CD8+ T cells mediate immunopathology in cutaneous leishmaniasis without controlling parasites. Here, we identify factors involved in CD8+ T cell migration to the lesion that could be targeted to ameliorate disease severity. CCR5 was the most highly expressed chemokine receptor in patient lesions, and the high expression of CCL3 and CCL4, CCR5 ligands, was associated with delayed healing of lesions. To test the requirement for CCR5, Leishmania-infected Rag1-/- mice were reconstituted with CCR5-/- CD8+ T cells. We found that these mice developed smaller lesions accompanied by a reduction in CD8+ T cell numbers compared to controls. We confirmed these findings by showing that the inhibition of CCR5 with maraviroc, a selective inhibitor of CCR5, reduced lesion development without affecting the parasite burden. Together, these results reveal that CD8+ T cells migrate to leishmanial lesions in a CCR5-dependent manner and that blocking CCR5 prevents CD8+ T cell-mediated pathology.
Collapse
Affiliation(s)
- Laís Amorim Sacramento
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA
| | - Claudia G. Lombana
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA
| | - Daniel Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA
| | - Fernanda Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lucas P. Carvalho
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Muniz – Fiocruz, Salvador, Bahia, 40296-710, Brazil
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, 40110-060, Brazil
| | - Edgar M. Carvalho
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Muniz – Fiocruz, Salvador, Bahia, 40296-710, Brazil
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, 40110-060, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA
| |
Collapse
|
5
|
Wang S, Huo J, Liu Y, Chen L, Ren X, Li X, Wang M, Jin P, Huang J, Nie N, Zhang J, Shao Y, Ge M, Zheng Y. Impaired immunosuppressive effect of bone marrow mesenchymal stem cell-derived exosomes on T cells in aplastic anemia. Stem Cell Res Ther 2023; 14:285. [PMID: 37794484 PMCID: PMC10552221 DOI: 10.1186/s13287-023-03496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Previous studies have verified the dysfunction of mesenchymal stem cells (MSCs) for immunoregulation in acquired aplastic anemia (AA) patients. Exosomes derived from MSCs can partially substitute MSCs acting as immune regulator. Dysfunction of exosomes (Exos) derived from AA-MSC (AA-Exos) may play a key role in immunologic dissonance. METHOD In this study, CD3 + T cells were collected and cocultured with AA-Exos and exosomes derived from HD-MSC (HD-Exos). The proliferation, differentiation and activation of CD3 + T cells were detected to compare the immunosuppressive effects between AA-Exos and HD-Exos. An immune-mediated murine model of AA was structured to compare the therapeutic effect of AA-Exos and HD-Exos. Furthermore, total RNA including miRNA from exosomes we purified and total RNA of CD3 + T cells were extracted for RNA-seq in order to construct the miRNA-mRNA network for interactions and functional analysis. RESULTS AA-Exos had impaired inhibition effects on CD3 + T cells in terms of cell proliferation, activation and differentiation compared with exosomes from HD-Exos. HD-Exos showed a more effective rescue of AA mice compared to AA-Exos. Importantly, we found some differentially expressed miRNA involved in immune response, such as miR-199, miR-128 and miR-486. The Gene Ontology analysis of differentially expressed genes (DEGs) revealed involvement of various cellular processes, such as lymphocyte chemotaxis, lymphocyte migration and response to interferon-gamma. The Kyoto Encyclopedia of Genes and Genomes analysis illustrated upregulation of critical pathways associated with T cell function after coculturing with AA-Exos compared with HD-Exos, such as graft-versus-host disease, Th17 cell differentiation and JAK-STAT signaling pathway. A miRNA-mRNA network was established to visualize the interaction between them. CONCLUSION In summary, AA-Exos had impaired immunosuppressive effect on T cells, less ability to rescue AA mice and differently expressed miRNA profile, which might partly account for the pathogenesis of AA as well as provide a new target of AA treatment.
Collapse
Affiliation(s)
- Shichong Wang
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiali Huo
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yilin Liu
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Lingyun Chen
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiang Ren
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xingxin Li
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Min Wang
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Peng Jin
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jinbo Huang
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Neng Nie
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jing Zhang
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yingqi Shao
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Meili Ge
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Yizhou Zheng
- Diagnostic and Therapeutic Center for Anemic Diseases, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
6
|
Deol S, Donahue PS, Mitrut RE, Hammitt-Kess IJ, Ahn J, Zhang B, Leonard JN. Comparative Evaluation of Synthetic Cytokines for Enhancing Production and Performance of NK92 Cell-Based Therapies. GEN BIOTECHNOLOGY 2023; 2:228-246. [PMID: 37363412 PMCID: PMC10286265 DOI: 10.1089/genbio.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Off-the shelf immune cell therapies are potentially curative and may offer cost and manufacturing advantages over autologous products, but further development is needed. The NK92 cell line has a natural killer-like phenotype, has efficacy in cancer clinical trials, and is safe after irradiation. However, NK92 cells lose activity post-injection, limiting efficacy. This may be addressed by engineering NK92 cells to express stimulatory factors, and comparative analysis is needed. Thus, we systematically explored the expression of synthetic cytokines for enhancing NK92 cell production and performance. All synthetic cytokines evaluated (membrane-bound IL2 and IL15, and engineered versions of Neoleukin-2/15, IL15, IL12, and decoy resistant IL18) enhanced NK92 cell cytotoxicity. Engineered cells were preferentially expanded by expressing membrane-bound but not soluble synthetic cytokines, without compromising the radiosensitivity required for safety. Some membrane-bound cytokines conferred cell-contact independent paracrine activity, partly attributable to extracellular vesicles. Finally, we characterized interactions within consortia of differently engineered NK92 cells.
Collapse
Affiliation(s)
- Simrita Deol
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Patrick S. Donahue
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Roxana E. Mitrut
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Iva J. Hammitt-Kess
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jihae Ahn
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bin Zhang
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
7
|
Potential of TCR sequencing in graft-versus-host disease. Bone Marrow Transplant 2023; 58:239-246. [PMID: 36477111 PMCID: PMC10005964 DOI: 10.1038/s41409-022-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Graft-versus-host disease (GvHD) remains one of the major complications following allogeneic haematopoietic stem cell transplantation (allo-HSCT). GvHD can occur in almost every tissue, with the skin, liver, and intestines being the mainly affected organs. T cells are implicated in initiating GvHD. T cells identify a broad range of antigens and mediate the immune response through receptors on their surfaces (T cell receptors, TCRs). The composition of TCRs within a T cell population defines the TCR repertoire of an individual, and this repertoire represents exposure to self and non-self proteins. Monitoring the changes in the TCR repertoire using TCR sequencing can provide an indication of the dynamics of a T cell population. Monitoring the frequency and specificities of specific TCR clonotypes longitudinally in different conditions and specimens (peripheral blood, GvHD-affected tissue samples) can provide insights into factors modulating immune reactions following allogeneic transplantation and will help to understand the underlying mechanisms mediating GvHD. This review provides insights into current studies of the TCR repertoire in GvHD and potential future clinical implications of TCR sequencing.
Collapse
|
8
|
Teng Y, Xia L, Huang Z, Yao L, Wu Q. Long noncoding RNA LINC01882 ameliorates aGVHD via skewing CD4 + T cell differentiation toward Treg cells. Am J Physiol Cell Physiol 2023; 324:C395-C406. [PMID: 36409171 DOI: 10.1152/ajpcell.00323.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe T cell-mediated immune response after allogeneic hematopoietic stem cell transplantation (allo-HSCT), the molecular mechanisms remain to be elucidated and novel treatments are necessary to be developed. In the present study, we found that the expression of long noncoding RNA (lncRNA) LINC01882 decreased significantly in the peripheral blood CD4+ T lymphocytes of patients with aGVHD than non-aGVHD patients. In addition, lncRNA LINC01882 overexpression promoted Treg differentiation but exhibited no effects on Th17 percentages, while its knockdown resulted in opposite effects. Mechanistically, lncRNA LINC01882 could competitively bind with let-7b-5p to prevent the degradation of its target gene smad2, which acts as a promoter in Treg differentiation. Furthermore, the mice cotransplanted with LINC01882-overexpressed CD4+ T cells with PBMCs had a lower histological GVHD score and higher survival rate compared with control mice. In conclusion, our study discloses a novel LINC01882/let-7b-5p/smad2 pathway in the modulation of aGVHD and indicates that lncRNA LINC01882 could be a promising biomarker and therapeutic target for patients with aGVHD.
Collapse
Affiliation(s)
- Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenli Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Doglio M, Crossland RE, Alho AC, Penack O, Dickinson AM, Stary G, Lacerda JF, Eissner G, Inngjerdingen M. Cell-based therapy in prophylaxis and treatment of chronic graft-versus-host disease. Front Immunol 2022; 13:1045168. [PMID: 36466922 PMCID: PMC9714556 DOI: 10.3389/fimmu.2022.1045168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic allogeneic stem cell transplantation (allo-SCT) is a curative option for patients with hematological malignancies. However, due to disparities in major and minor histocompatibility antigens between donor and recipient, severe inflammatory complications can occur, among which chronic graft-versus-host disease (cGVHD) can be life-threatening. A classical therapeutic approach to the prevention and treatment of cGVHD has been broad immunosuppression, but more recently adjuvant immunotherapies have been tested. This review summarizes and discusses immunomodulatory approaches with T cells, including chimeric antigen receptor (CAR) and regulatory T cells, with natural killer (NK) cells and innate lymphoid cells (ILCs), and finally with mesenchymal stromal cells (MSC) and extracellular vesicles thereof. Clinical studies and pre-clinical research results are presented likewise.
Collapse
Affiliation(s)
- Matteo Doglio
- Experimental Haematology Unit, Division of Immunology Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana C. Alho
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Olaf Penack
- Department of Hematology, Oncology, and Cancer Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Alcyomics Ltd, Newcastle upon Tyne, United Kingdom
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - João F. Lacerda
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Characterization of Hepatic Dysfunction in Subjects Diagnosed With Chronic GVHD by NIH Consensus Criteria. Transplant Cell Ther 2022; 28:747.e1-747.e10. [DOI: 10.1016/j.jtct.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022]
|
11
|
Pendlebury GA, Bongiorno MA, Lackey JN. Aggressive Cutaneous Squamous Cell Carcinomas Following Treatment for Graft-versus-Host Disease: A Case Report and Review of Risk Factors. Dermatopathology (Basel) 2022; 9:122-130. [PMID: 35466244 PMCID: PMC9036292 DOI: 10.3390/dermatopathology9020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
A 19-year-old female with a history of pre-B cell acute lymphocytic leukemia (ALL) presented with two aggressive cutaneous squamous cell carcinomas (C-SCC) in the right hand. The patient was diagnosed with pre-B cell ALL at four years of age. She underwent chemotherapy with initial remission. However, recurrence of the pre-B cell ALL required an unrelated allogeneic cord hematopoietic stem cell transplant (alloHSCT). Post-transplant, the patient developed Graft-Versus-Host Disease (GVHD), which was treated with immunosuppressant therapy for six years until resolution. Fourteen years following the transplant, the patient developed a morbilliform drug eruption secondary to clindamycin. She consequently received prednisone treatment. During the treatment period, the patient developed a new ulcerated and tender nodule on the dorsal aspect of her right hand. Further histopathological biopsy confirmed the diagnosis of C-SCC, which required excision. Ten months following the excision, the patient developed an additional C-SCC nodule on the same right hand, separated by 2.6 cm from the prior C-SCC. She was referred for a ray resection procedure. This case illustrates a patient with multiple risk factors that may have contributed to the continued development of C-SCC. Such risk factors include: a prolonged course of immunosuppressant medications and voriconazole treatment. Additional research is needed to investigate the etiologies and risks of C-SCC development in patients who require a transplant and long-duration immunosuppressive therapy.
Collapse
Affiliation(s)
- Gehan A. Pendlebury
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Correspondence:
| | - Michelle A. Bongiorno
- Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA;
| | - Jeffrey N. Lackey
- Department of Dermatology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
12
|
Fabian KP, Hodge JW. The emerging role of off-the-shelf engineered natural killer cells in targeted cancer immunotherapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:266-276. [PMID: 34761106 PMCID: PMC8560822 DOI: 10.1016/j.omto.2021.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that recognize and clear infected and transformed cells. The importance of NK cells in tumor surveillance underlies the development of NK cell therapy as cancer treatment. The NK-92 cell line has been successfully modified to express high-affinity CD16 receptor for antibody-dependent cellular cytotoxicity and/or chimeric antigen receptors (CARs) that can recognize antigens expressed on tumor cells and mediate NK cell activation. Since there is no need for human leukocyte antigen matching or prior exposure to the tumor antigens, NK-92 provides an opportunity for the development of next-generation off-the-shelf cell therapy platforms. CAR-engineered NK-92 cells have demonstrated robust antitumor activity in in vitro and in vivo preclinical studies, propelling the clinical development of CAR NK-92 cells. Preliminary phase 1 data indicate that CAR NK-92 can be safely administered in the clinic. In this review, we provide an overview of recent advances in the research and clinical application of this novel cell immunotherapy.
Collapse
Affiliation(s)
- Kellsye P Fabian
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B09, Bethesda, MD 20892, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B09, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Liu H, Yu Z, Tang B, Miao S, Qin C, Li Y, Liang Z, Shi Y, Zhang Y, Wang Q, Yan M, Song Z, Ren H, Dong Y. LYG1 Deficiency Attenuates the Severity of Acute Graft-Versus-Host Disease via Skewing Allogeneic T Cells Polarization Towards Treg Cells. Front Immunol 2021; 12:647894. [PMID: 34262560 PMCID: PMC8273552 DOI: 10.3389/fimmu.2021.647894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a lethal complication after allogeneic hematopoietic stem cell transplantation. The mechanism involves the recognition of host antigens by donor-derived T cells which induces augmented response of alloreactive T cells. In this study, we characterized the role of a previously identified novel classical secretory protein with antitumor function-LYG1 (Lysozyme G-like 1), in aGVHD. LYG1 deficiency reduced the activation of CD4+ T cells and Th1 ratio, but increased Treg ratio in vitro by MLR assay. By using major MHC mismatched aGVHD model, LYG1 deficiency in donor T cells or CD4+ T cells attenuated aGVHD severity, inhibited CD4+ T cells activation and IFN-γ expression, promoted FoxP3 expression, suppressed CXCL9 and CXCL10 expression, restrained allogeneic CD4+ T cells infiltrating in target organs. The function of LYG1 in aGVHD was also confirmed using haploidentical transplant model. Furthermore, administration of recombinant human LYG1 protein intraperitoneally aggravated aGVHD by promoting IFN-γ production and inhibiting FoxP3 expression. The effect of rhLYG1 could partially be abrogated with the absence of IFN-γ. Furthermore, LYG1 deficiency in donor T cells preserved graft-versus-tumor response. In summary, our results indicate LYG1 regulates aGVHD by the alloreactivity of CD4+ T cells and the balance of Th1 and Treg differentiation of allogeneic CD4+ T cells, targeting LYG1 maybe a novel therapeutic strategy for preventing aGVHD.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zhengyu Yu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Shengchao Miao
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Chenchen Qin
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yongjin Shi
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yang Zhang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Qingya Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Miao Yan
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zhengyang Song
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Selection, Expansion, and Unique Pretreatment of Allogeneic Human Natural Killer Cells with Anti-CD38 Monoclonal Antibody for Efficient Multiple Myeloma Treatment. Cells 2021; 10:cells10050967. [PMID: 33919155 PMCID: PMC8143171 DOI: 10.3390/cells10050967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular immunotherapy is becoming a new pillar in cancer treatment after recent striking results in different clinical trials with chimeric antigen receptor T cells. However, this innovative therapy is not exempt from challenges such as off-tumor toxicity, tumor recurrence in heterogeneous tumors, and affordability. To surpass these limitations, we exploit the unique anti-tumor characteristics of natural killer (NK) cells. In this study, we aimed to obtain a clinically relevant number of allogeneic NK cells derived from peripheral blood (median of 14,050 million cells from a single donor) to target a broad spectrum of solid and liquid tumor types. To boost their anti-tumor activity, we combined allogeneic NK cells with the approved anti-cluster of differentiation 38 (CD-38) monoclonal antibody Daratumumab to obtain a synergistic therapeutic effect against incurable multiple myeloma. The combination therapy was refined with CD16 polymorphism donor selection and uncomplicated novel in vitro pretreatment to avoid undesired fratricide, increasing the in vitro therapeutic effect against the CD-38 positive multiple myeloma cell line by more than 20%. Time-lapse imaging of mice with established human multiple myeloma xenografts revealed that combination therapy of selected and pretreated NK cells with Daratumumab presented tumor volumes 43-fold smaller than control ones. Combination therapy with an allogeneic source of fully functional NK cells could be beneficial in future clinical settings to circumvent monoclonal antibodies' low therapeutic efficiency due to NK cell dysfunctionality in MM patients.
Collapse
|
15
|
Tsai H, Zeng X, Liu L, Xin S, Wu Y, Xu Z, Zhang H, Liu G, Bi Z, Su D, Yang M, Tao Y, Wang C, Zhao J, Eriksson JE, Deng W, Cheng F, Chen H. NF45/NF90-mediated rDNA transcription provides a novel target for immunosuppressant development. EMBO Mol Med 2021; 13:e12834. [PMID: 33555115 PMCID: PMC7933818 DOI: 10.15252/emmm.202012834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Herein, we demonstrate that NFAT, a key regulator of the immune response, translocates from cytoplasm to nucleolus and interacts with NF45/NF90 complex to collaboratively promote rDNA transcription via triggering the directly binding of NF45/NF90 to the ARRE2-like sequences in rDNA promoter upon T-cell activation in vitro. The elevated pre-rRNA level of T cells is also observed in both mouse heart or skin transplantation models and in kidney transplanted patients. Importantly, T-cell activation can be significantly suppressed by inhibiting NF45/NF90-dependent rDNA transcription. Amazingly, CX5461, a rDNA transcription-specific inhibitor, outperformed FK506, the most commonly used immunosuppressant, both in terms of potency and off-target activity (i.e., toxicity), as demonstrated by a series of skin and heart allograft models. Collectively, this reveals NF45/NF90-mediated rDNA transcription as a novel signaling pathway essential for T-cell activation and as a new target for the development of safe and effective immunosuppressants.
Collapse
Affiliation(s)
- Hsiang‐i Tsai
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious DiseaseShenzhen People's Hospital2 Clinical Medical College of Jinan UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Regional Immunity and DiseasesMedicine School of Shenzhen UniversityShenzhenChina
| | - Longshan Liu
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shengchang Xin
- State Key Laboratory of Coordination ChemistryInstitute of Chemistry and Biomedical SciencesSchool of Life SciencesNanjing UniversityNanjingChina
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Huanxi Zhang
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Zirong Bi
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Min Yang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Yijing Tao
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Changxi Wang
- Organ Transplant CentermThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jing Zhao
- State Key Laboratory of Coordination ChemistryInstitute of Chemistry and Biomedical SciencesSchool of Life SciencesNanjing UniversityNanjingChina
| | - John E Eriksson
- Cell BiologyBiosciencesFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Centre for BiotechnologyUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
16
|
Bruscolini A, Gharbiya M, Sacchetti M, Plateroti R, Ralli M, Moramarco A, Greco A, Lambiase A. Involvement of ocular surface in graft-versus-host disease: An update from immunopathogenesis to treatment. J Cell Physiol 2021; 236:6190-6199. [PMID: 33507561 DOI: 10.1002/jcp.30304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 01/14/2023]
Abstract
Graft-versus-host disease is a common complication of hematopoietic stem cell transplantation and the ocular surface is a main target of inflammatory reaction.
Collapse
Affiliation(s)
- Alice Bruscolini
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Magda Gharbiya
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Marta Sacchetti
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Rocco Plateroti
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
17
|
Tahmaz V, Wiesen MHJ, Gehlsen U, Sauerbier L, Stern ME, Holtick U, Gathof B, Scheid C, Müller C, Steven P. Detection of systemic immunosuppressants in autologous serum eye drops (ASED) in patients with severe chronic ocular graft versus host disease. Graefes Arch Clin Exp Ophthalmol 2021; 259:121-128. [PMID: 32812133 PMCID: PMC7790777 DOI: 10.1007/s00417-020-04865-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Chronic graft versus host disease is a major consequence after allogeneic stem cell transplantation (allo-SCT) and has great impact on patients' morbidity and mortality. Besides the skin, liver, and intestines, the eyes are most commonly affected, manifesting as severe ocular surface disease. Treatment protocols include topical steroids, cyclosporine, tacrolimus, and ASED. Since these patients often receive systemic immunosuppressant therapy from their oncologists, a topical re-administration of these drugs via ASED with potentially beneficial or harmful effects is possible. The purpose of the study was to determine whether and to which extent systemic immunosuppressants are detectable in ASED. METHODS A total of 34 samples of ASED from 16 patients with hemato-oncological malignancies after allo-SCT were collected during the manufacturing process and screened for levels of cyclosporine, mycophenolic acid, everolimus, and tacrolimus via liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The study followed the tenets of the Declaration of Helsinki and informed consent was obtained from the subjects after explanation of the nature and possible consequences of the study. RESULTS Cyclosporine was found in 18 ASED samples in concentrations ranging from 6.5-105.0 ng/ml (32.0 ± 22.8 ng/ml, mean ± SD). The concentration range of mycophenolic acid in 19 samples was 0.04-25.0 mg/l (4.0 ± 5.4 mg/l, mean ± SD). Everolimus and tacrolimus concentrations were well below the respective limits of quantification (< 0.6 and < 0.5 ng/ml) of the established LC-MS/MS method in all samples. CONCLUSIONS Our study suggests that orally administered cyclosporine and mycophenolic acid for the treatment of systemic GvHD, but not everolimus and tacrolimus, are distinctly detectable in ASED in relevant concentrations. It is highly likely that these agents affect topical therapy of ocular GvHD. However, the extent of this effect needs to be evaluated in further studies.
Collapse
Affiliation(s)
- Volkan Tahmaz
- Division for Dry-eye disease and ocular GvHD, Department of Ophthalmology, University of Cologne Medical Faculty and University Hospital of Cologne, Cologne, Germany
- Cluster of Excellence: Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Martin H J Wiesen
- Center of Pharmacology, Department of Therapeutic Drug Monitoring, University Hospital of Cologne, Cologne, Germany
| | - Uta Gehlsen
- Division for Dry-eye disease and ocular GvHD, Department of Ophthalmology, University of Cologne Medical Faculty and University Hospital of Cologne, Cologne, Germany
- Cluster of Excellence: Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Laura Sauerbier
- Division for Dry-eye disease and ocular GvHD, Department of Ophthalmology, University of Cologne Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Michael E Stern
- Division for Dry-eye disease and ocular GvHD, Department of Ophthalmology, University of Cologne Medical Faculty and University Hospital of Cologne, Cologne, Germany
- ImmunEyez LLC., Irvine, CA, USA
| | - Udo Holtick
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, University of Cologne, Cologne, Germany
| | - Christof Scheid
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Carsten Müller
- Center of Pharmacology, Department of Therapeutic Drug Monitoring, University Hospital of Cologne, Cologne, Germany
| | - Philipp Steven
- Division for Dry-eye disease and ocular GvHD, Department of Ophthalmology, University of Cologne Medical Faculty and University Hospital of Cologne, Cologne, Germany.
- Cluster of Excellence: Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
18
|
Individual HLA alleles and risk of graft-versus-host disease after haematopoietic stem cell transplantation from HLA-identical siblings. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Ghesani N, Gavane S, Hafez A, Kostakoglu L. PET in Lymphoma. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Ahmed Z, Vierling JM. Graft-Versus-Host Disease. LIVER IMMUNOLOGY 2020:551-582. [DOI: 10.1007/978-3-030-51709-0_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Geng G, Yu X, Jiang J, Yu X. Aetiology and pathogenesis of paraneoplastic autoimmune disorders. Autoimmun Rev 2019; 19:102422. [PMID: 31733369 DOI: 10.1016/j.autrev.2019.102422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
Paraneoplastic autoimmune disorders (PAD) represent a group of autoimmune diseases associated with neoplasms. As a consequence of a remote autoimmunity-mediated effect, PAD are found in multiple organs or tissues, including the skin, blood and nervous system. Compared with non-paraneoplastic autoimmune diseases, PAD have different aetiologies, pathologies, disease symptoms and treatment responses. There are two main origins of autoimmunity in PAD: neoplasm-mediated dysregulated homeostasis in immune cells/organs and in autoantigens. Pathologically, PAD are mediated predominantly by either autoantibodies or autoreactive T-cells. In the past decade, significant progress has been achieved in increasing our understanding of the aetiology and pathology of PAD. In this review article, we aim to provide a comprehensive overview of the recent advances in this field.
Collapse
Affiliation(s)
- Guojun Geng
- Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xiuyi Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jie Jiang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, 23845, Borstel, Germany.
| |
Collapse
|
22
|
Wu Y, Bastian D, Schutt S, Nguyen H, Fu J, Heinrichs J, Xia C, Yu XZ. Essential Role of Interleukin-12/23p40 in the Development of Graft-versus-Host Disease in Mice. Biol Blood Marrow Transplant 2015; 21:1195-204. [PMID: 25846718 PMCID: PMC4466028 DOI: 10.1016/j.bbmt.2015.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/19/2015] [Indexed: 11/27/2022]
Abstract
Graft-versus-host disease (GVHD), in both its acute (aGVHD) and chronic (cGVHD) forms, remains a major obstacle impeding successful allogeneic hematopoietic stem cell transplantation (allo-HSCT). T cells, in particular pathogenic T helper (Th) 1 and Th17 subsets, are a driving force for the induction of GVHD. IL-12 and IL-23 cytokines share a common p40 subunit and play a critical role in driving Th1 differentiation and in stabilizing the Th17 phenotype, respectively. In our current study, we hypothesized that p40 is an essential cytokine in the development of GVHD. By using p40-deficient mice, we found that both donor- and host-derived p40 contribute to the development of aGVHD. Neutralization of p40 with an anti-p40 mAb inhibited Th1- and Th17-polarization in vitro. Furthermore, anti-p40 treatment reduced aGVHD severity while preserving the graft-versus-leukemia (GVL) activity. Alleviation of aGVHD was associated with an increase of Th2 differentiation and a decrease of Th1 and Th17 effector T cells in the GVHD target organs. In addition, anti-p40 treatment attenuated the severity of sclerodermatous cGVHD. These results provide a strong rationale that blockade of p40 may represent a promising therapeutic strategy in preventing and treating aGVHD and cGVHD while sparing the GVL effect after allo-HSCT.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/pharmacology
- Bone Marrow Transplantation/adverse effects
- Cell Differentiation
- Disease Models, Animal
- Gene Expression
- Graft vs Host Disease/etiology
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Graft vs Host Disease/therapy
- Graft vs Leukemia Effect
- Histocompatibility Testing
- Humans
- Interleukin-12 Subunit p40/deficiency
- Interleukin-12 Subunit p40/genetics
- Interleukin-12 Subunit p40/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Depletion
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Primary Cell Culture
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Th2 Cells/immunology
- Th2 Cells/pathology
- Transplantation, Homologous
Collapse
Affiliation(s)
- Yongxia Wu
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Steven Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Jianing Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica Heinrichs
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Changqing Xia
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China; Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
23
|
Yew PY, Alachkar H, Yamaguchi R, Kiyotani K, Fang H, Yap KL, Liu HT, Wickrema A, Artz A, van Besien K, Imoto S, Miyano S, Bishop MR, Stock W, Nakamura Y. Quantitative characterization of T-cell repertoire in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant 2015; 50:1227-34. [PMID: 26052909 PMCID: PMC4559843 DOI: 10.1038/bmt.2015.133] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 12/25/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is one of curative treatment options for patients with hematologic malignancies. Although GVHD mediated by the donor's T lymphocytes remains the most challenging toxicity of allo-HSCT, graft-versus-leukemia (GVL) effect targeting leukemic cells, has an important role in affecting the overall outcome of patients with AML. Here we comprehensively characterized the TCR repertoire in patients who underwent matched donor or haplo-cord HSCT using next-generation sequencing approach. Our study defines the functional kinetics of each TCRA and TCRB clone, and changes in T-cell diversity (with identification of CDR3 sequences) and the extent of clonal expansion of certain T-cells. Using this approach, our study demonstrates that higher percentage of cord-blood cells at 30 days after transplant was correlated with higher diversity of TCR repertoire, implicating the role of cord-chimerism in enhancing immune recovery. Importantly, we found that GVHD and relapse, exclusive of each other, were correlated with lower TCR repertoire diversity and expansion of certain T-cell clones. Our results highlight novel insights into the balance between GVHD and GVL effect, suggesting that higher diversity early after transplant possibly implies lower risks of both GVHD and relapse following the HSCT transplantation.
Collapse
Affiliation(s)
- P Y Yew
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - H Alachkar
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - R Yamaguchi
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - K Kiyotani
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - H Fang
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - K L Yap
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - H T Liu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - A Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - A Artz
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - K van Besien
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - S Imoto
- Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Miyano
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - M R Bishop
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - W Stock
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Y Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA.,Department of Surgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Karabon L, Markiewicz M, Partyka A, Pawlak-Adamska E, Tomkiewicz A, Dzierzak-Mietla M, Kyrcz-Krzemien S, Frydecka I. A CT60G>A polymorphism in the CTLA-4 gene of the recipient may confer susceptibility to acute graft versus host disease after allogeneic hematopoietic stem cell transplantation. Immunogenetics 2015; 67:295-304. [PMID: 25940108 PMCID: PMC4427628 DOI: 10.1007/s00251-015-0840-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022]
Abstract
T cell activation plays a crucial role in the development of acute graft versus host disease (aGvHD). Cytotoxic T cell antigen-4 (CTLA-4) is a co-inhibitory molecule that negatively regulates T cell activation, differentiation, and proliferation. Single-nucleotide polymorphisms (SNPs) in CTLA-4 gene may affect its function. Inconsistent observations have been reported regarding the associations of CTLA-4 SNPs with complications after hematopoietic stem cell transplantation (HSCT). Moreover, the majority of the observations were focused on the donors' SNPs. Recently, a few studies have shown that recipients' genetic variations in the CTLA-4 gene might influence HSCT results. The aim of our study was to determine the influence of the CTLA-4 gene polymorphisms of the donors and the recipients on the outcome of HSCT. Altogether, 312 donor-recipient pairs were genotyped for the CTLA-4c.49A>G (rs231775) and CT60G>A (rs3087243) SNPs using the TaqMan®SNP Genotyping Assays. In this study, it was shown that the recipients' CT60G>A[GG] genotype, the myeloablative conditioning regimen, and HSCT from an unrelated donor were independent aGvHD risk factors (odds ratio (OR) 2.63, 95% confidence intervals (95% CI) 1.45-4.59, p = 0.001; OR 2.68, 95% CI 1.65-4.07, p = 0.00003; and OR 1.87, 95 % CI 1.02-3.24, p = 0.04, respectively). Moreover, haplotype analysis revealed that possessing allele A in both of the SNPs decreased the risk of aGvHD approximately 1.5-fold (RR 0.69, p = 0.008). Our data suggest that the CT60G>A[GG] genotype in the recipient has an impact on aGvHD development, especially in patients receiving transplants from unrelated donors together with the myeloablative conditioning regimen.
Collapse
Affiliation(s)
- Lidia Karabon
- Department of Experimental Therapy, L. Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Science, R. Weigl 12, 53-114, Wroclaw, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Acute graft-versus-host disease of the kidney in allogeneic rat bone marrow transplantation. PLoS One 2014; 9:e115399. [PMID: 25541735 PMCID: PMC4277361 DOI: 10.1371/journal.pone.0115399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/21/2014] [Indexed: 01/06/2023] Open
Abstract
Allogeneic hematopoietic cell or bone marrow transplantation (BMT) causes graft-versus-host-disease (GVHD). However, the involvement of the kidney in acute GVHD is not well-understood. Acute GVHD was induced in Lewis rats (RT1l) by transplantation of Dark Agouti (DA) rat (RT1(a)) bone marrow cells (6.0 × 10(7) cells) without immunosuppression after lethal irradiation (10 Gy). We examined the impact of acute GVHD on the kidney in allogeneic BMT rats and compared them with those in Lewis-to-Lewis syngeneic BMT control and non-BMT control rats. In syngeneic BMT and non-BMT control rats, acute GVHD did not develop by day 28. In allogeneic BMT rats, severe acute GVHD developed at 21-28 days after BMT in the skin, intestine, and liver with decreased body weight (>20%), skin rush, diarrhea, and liver dysfunction. In the kidney, infiltration of donor-type leukocytes was by day 28. Mild inflammation characterized by infiltration of CD3(+) T-cells, including CD8(+) T-cells and CD4(+) T-cells, and CD68(+) macrophages to the interstitium around the small arteries was noted. During moderate to severe inflammation, these infiltrating cells expanded into the peritubular interstitium with peritubular capillaritis, tubulitis, acute glomerulitis, and endarteritis. Renal dysfunction also developed, and the serum blood urea nitrogen (33.9 ± 4.7 mg/dL) and urinary N-acetyl-β-D-glucosaminidase (NAG: 31.5 ± 15.5 U/L) levels increased. No immunoglobulin and complement deposition was detected in the kidney. In conclusion, the kidney was a primary target organ of acute GVHD after BMT. Acute GVHD of the kidney was characterized by increased levels of urinary NAG and cell-mediated injury to the renal microvasculature and renal tubules.
Collapse
|
26
|
Aharoni R. Immunomodulation neuroprotection and remyelination - the fundamental therapeutic effects of glatiramer acetate: a critical review. J Autoimmun 2014; 54:81-92. [PMID: 24934599 DOI: 10.1016/j.jaut.2014.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a multifaceted heterogeneous disease with various patterns of tissue damage. In addition to inflammation and demyelination, widespread axonal and neuronal pathologies are central components of this disease. MS therapies aim to restrain the pathological processes, enhance protective mechanisms, and prevent disease progression. The amino acid copolymer, glatiramer acetate (GA, Copaxone), an approved treatment for MS, has a unique mode of action. Evidence from the animal model experimental autoimmune encephalomyelitis (EAE) and from MS patients indicates that GA affects various levels of the innate and the adaptive immune response, inducing deviation from the pro-inflammatory to the anti-inflammatory pathways. This includes competition for the binding of antigen presenting cells, driving dendritic cells, monocytes, and B-cells towards anti-inflammatory responses, induction of Th2/3 and T-regulatory cells, and downregulating of both Th1 and Th-17 cells. The immune cells induced by GA reach the inflamed disease organ and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings have revealed that in addition to its immunomodulatory activities GA promotes neuroprotective repair processes such as neurotrophic factors secretion and remyelination. This review aims to provide a comprehensive overview on the diverse mechanism of action of GA in EAE/MS, in particular on the in situ effect of GA and its ability to generate neuroprotection and repair in the CNS. In view of its immunomodulatory activity, the beneficial effects of GA in various models of additional autoimmune related pathologies, such as immune rejection and inflammatory bowel disease (IBD), are also presented.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
27
|
Raza A, Vierling JM. Graft-Versus-Host Disease. LIVER IMMUNOLOGY 2014:425-441. [DOI: 10.1007/978-3-319-02096-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
A distinct evolution of the T-cell repertoire categorizes treatment refractory gastrointestinal acute graft-versus-host disease. Blood 2013; 121:4955-62. [PMID: 23652802 DOI: 10.1182/blood-2013-03-489757] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroid refractory gastrointestinal (GI) acute graft-versus-host disease (aGVHD) is a major cause of mortality in hematopoietic stem cell transplantation (HCT) without immune markers to establish a diagnosis or guide therapy. We found that T-cell receptor β (TCRβ) complementarity-determining region 3 repertoire sequencing reveals patterns that could eventually serve as a disease biomarker of T-cell alloreactivity in aGVHD. We identified T-cell clones in GI biopsies in a heterogeneous group of 15 allogeneic HCT patients with GI aGVHD symptoms. Seven steroid-refractory aGVHD patients showed a more conserved TCRβ clonal structure between different biopsy sites in the GI tract than 8 primary therapy-responsive patients. Tracking GI clones identified longitudinally at endoscopy in the blood also revealed an increased clonal expansion in patients with steroid-refractory disease. Immune repertoire sequencing-based methods could enable a novel personalized way to guide diagnosis and therapy in diseases where T-cell activity is a major determinant.
Collapse
|
29
|
Aharoni R. The mechanism of action of glatiramer acetate in multiple sclerosis and beyond. Autoimmun Rev 2012; 12:543-53. [PMID: 23051633 DOI: 10.1016/j.autrev.2012.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/19/2012] [Indexed: 12/24/2022]
Abstract
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), the immune system reacts again self myelin constitutes in the central nervous system (CNS), initiating a detrimental inflammatory cascade that leads to demyelination as well as axonal and neuronal pathology. The amino acid copolymer glatiramer acetate (GA, Copaxone) is an approved first-line treatment for MS that has a unique mode of action. Accumulated evidence from EAE-induced animals and from MS patients indicates that GA affects various levels of the innate and the adaptive immune response, generating deviation from the pro-inflammatory to the anti-inflammatory pathway. This review aims to provide a comprehensive perspective on the diverse mechanism of action of GA in EAE/MS, in particular on the in situ immunomodulatory effect of GA and its ability to generate neuroprotective repair consequences in the CNS. In view of its immunomodulatory activity, the beneficial effect of GA in various models of other autoimmune related pathologies, such as immune rejection and inflammatory bowel disease (IBD) is noteworthy.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
30
|
Verner J, Kabathova J, Tomancova A, Pavlova S, Tichy B, Mraz M, Brychtova Y, Krejci M, Zdrahal Z, Trbusek M, Volejnikova J, Sedlacek P, Doubek M, Mayer J, Pospisilova S. Gene expression profiling of acute graft-vs-host disease after hematopoietic stem cell transplantation. Exp Hematol 2012; 40:899-905.e5. [PMID: 22771791 DOI: 10.1016/j.exphem.2012.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/12/2012] [Accepted: 06/23/2012] [Indexed: 11/15/2022]
Abstract
Acute graft-vs-host disease (aGVHD) is a frequent, life-threatening complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Despite that, there are no reliable molecular markers reflecting the onset or clinical course of aGVHD. We performed a pilot study on gene expression profiling in peripheral blood mononuclear cells taken from 15 patients with hematological malignancies who underwent allo-HSCT and developed aGVHD. Based on survival rates after aGVHD, patients were divided into two groups-favorable (all patients alive; median follow-up 40 months) vs unfavorable group (all patients died; median survival 2 months). Two-hundred and eighty genes differentially expressed between these two groups were identified; among them, genes responsible for cytokine signaling, inflammatory response, and regulation of cell cycle were over-represented; interleukin-8, G0S2, ANXA3, and NR4A2 were upregulated in the unfavorable group, CDKN1C was downregulated in the same group. Interestingly, the same genes were also described as overexpressed in connection with autoimmune diseases. This indicates an involvement of similar immune regulatory pathways also in aGVHD. Our data support use of gene expression profiling at aGVHD onset for a prediction of its outcomes.
Collapse
Affiliation(s)
- Jan Verner
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lage D, Pimentel VN, Soares TCB, Souza EM, Metze K, Cintra ML. Perforin and granzyme B expression in oral and cutaneous lichen planus - a comparative study. J Cutan Pathol 2011; 38:973-8. [DOI: 10.1111/j.1600-0560.2011.01781.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Sato M, Goto-Koshino Y, Mochizuki H, Fujino Y, Ohno K, Tsujimoto H. Perfusion method for harvesting bone marrow cells from dogs. Am J Vet Res 2011; 72:1344-8. [DOI: 10.2460/ajvr.72.10.1344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Zhang C, Chen XH, Zhang X, Gao L, Gao L, Kong PY, Peng XG, Sun AH, Wang QY. Regulation of acute graft-versus-host disease by human umbilical cord blood derived stromal cells in haploidentical stem cell transplantation in mice through very late activation antigen-4. Clin Immunol 2011; 139:94-101. [DOI: 10.1016/j.clim.2011.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/16/2010] [Accepted: 01/13/2011] [Indexed: 12/13/2022]
|
34
|
Pimentel VN, de Matos LS, Soares TCB, Adam R, Metze K, Correa MEP, de Souza CA, Cintra ML. Perforin and granzyme B involvement in oral lesions of lichen planus and chronic GVHD. J Oral Pathol Med 2011; 39:741-6. [PMID: 20618609 DOI: 10.1111/j.1600-0714.2010.00917.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Oral lesions of lichen planus and chronic graft-vs.-host disease (cGVHD) have similar clinical and histological features, but distinct etiology. Apoptosis induced by cytotoxic T lymphocyte has been proposed as a mechanism of keratinocytes death. Cytotoxicity can be mediated by granules containing granzyme B and perforin. Since common features can reflect similarities in immunological mechanisms, we studied the role of those molecules in both diseases. METHODS We analyzed 29 cases of oral lichen planus and 27 of oral cGVHD. The sections were studied on H&E, perforin and granzyme B staining. RESULTS The total means (epithelium plus connective tissue number) of the granzyme B- and perforin-positive cells were significantly higher in cGVHD than in oral lichen planus lesions (P<0.05). Also, it was found that the higher the number of perforin+ cells, the higher the number of granzyme-B+ cells in the epithelium and in the connective tissue for both groups (P < 0.05). In oral lichen planus, the number of single apoptotic bodies had a positive correlation with connective tissue granzyme immunostaining and a negative correlation with perforin (P<0.01). On the contrary, in oral cGVHD, the number of apoptotic body clusters presented a positive correlation with connective tissue perforin (P<0.01). CONCLUSIONS Our findings indicate that apoptosis in oral lichen planus seems to be correlated with granzyme B release, while in oral cGVHD, perforin seems to be more important. Although these diseases present clinical and histological similarities, subtle differences seem to exist in their pathogenetic mechanisms.
Collapse
|
35
|
Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo. Cell Immunol 2011; 271:67-72. [DOI: 10.1016/j.cellimm.2011.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/16/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
|
36
|
Blockade of osteopontin reduces alloreactive CD8+ T cell-mediated graft-versus-host disease. Blood 2010; 117:1723-33. [PMID: 21119110 DOI: 10.1182/blood-2010-04-281659] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Graft-versus-host disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is caused by alloreactive donor T cells that trigger host tissue damage. The inflammatory environment inside recipients is critical for GVHD pathogenesis, but the underpinning mechanisms remain elusive. Using mouse model of human GVHD, we demonstrate osteopontin (OPN), a potent proinflammatory cytokine, plays an important role in regulating activation, migration, and survival of alloreactive T cells during GVHD. OPN was significantly elevated after irradiation and persisted throughout the course of GVHD. Blockade of OPN attenuated GVHD with reduced accumulation of donor T cells in recipient organs. Amelioration was the result of migration and survival suppression caused by anti-OPN treatment on donor-derived T cells for 2 reasons. First, OPN promoted the migration and infiltration of naive and alloreactive CD8(+) T cells into host organs. Second, it also facilitated activation and viability of donor-derived CD8(+) T cells via synergizing with T-cell receptor/CD3 signaling. Finally, anti-OPN treatment retained graft-versus-leukemia effect of alloreactive CD8(+) T cells. This study demonstrates, to our knowledge for the first time, the critical effect of OPN in the initiation and persistence of CD8(+) T cell-mediated GVHD and validates OPN as a potential target in GVHD prevention.
Collapse
|
37
|
Efficient Activation of LRH-1–specific CD8+ T-cell Responses From Transplanted Leukemia Patients by Stimulation With P2X5 mRNA-electroporated Dendritic Cells. J Immunother 2009; 32:539-51. [DOI: 10.1097/cji.0b013e3181987c22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Focal segmental glomerulosclerosis as a complication of graft-versus-host disease. Nat Rev Nephrol 2009; 5:236-40. [DOI: 10.1038/nrneph.2009.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Chung HJ, Lee JH, Kwon SW. Significance of donor-derived isoagglutinins in ABO-Incompatible hematopoietic stem cell transplantation. J Clin Lab Anal 2009; 22:383-90. [PMID: 19021268 DOI: 10.1002/jcla.20269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in isoagglutinin titers may have implications in the occurrence of hematological complications such as pure red cell aplasia or immune-mediated hemolysis. Furthermore, isoagglutinin titers could reflect immunohematological reconstitution after transplantation. The objective of this study was to examine the relationship between donor-derived isoagglutinins (DDIs) and graft-versus-host disease (GVHD). In total, 114 patients who underwent ABO-incompatible allogeneic hematopoietic stem cell transplantation (HSCT) were analyzed. Among these patients, 27.7% demonstrated increased donor-derived isoagglutinins (IDDIs) against red blood cells (RBCs) of the recipient, and 32.8% of the patients showed DDIs that were not against RBCs of the recipient. Patients with acute GVHD and DDIs against RBCs of the recipient tended to have higher incidences of IDDIs that occurred before posttransplant day 60 compared with patients without acute GVHD (17.3 vs. 3.9%, P=0.058). In patients with acute GVHD, IDDIs occurred significantly earlier (mean, day 32 vs. 181, P=0.046), the period of elevation was shorter (mean, day 36 vs. 134, P=0.033), and the donors were younger (mean, 28 vs. 36 years, P=0.01) than those without GVHD. Moreover, significant correlations were found between IDDIs and acute GVHD. Taken together, these data underscore a possible role for humoral immunity in GVHD after HSCT.
Collapse
Affiliation(s)
- Hee-Jung Chung
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | | |
Collapse
|
40
|
Abstract
In April 2007, an international Colloquium bridging scientific and clinical disciplines was held to discuss the role of cellular and tissue damage in the initiation, development and persistence of autoimmune disease. Five potential etiologic and pathophysiologic processes fundamental to autoimmune disease (i.e. inflammation, infection, apoptosis, environmental exposure and genetics) were the focus of the presentations and integrative discussions at the Colloquium. The information presented on these topics is condensed in this review. Inflammation has close clinico-pathologic associations with autoimmunity, but future analyses will require better definition and metrics of inflammation, particularly for the earliest cellular and molecular components dependent on recruitment of elements of innate immunity. Although infection may be associated with increased levels of autoantibodies, most infections and virtually all vaccinations in humans lack well-established links to autoimmune diseases. Further application of well-designed, long-term epidemiologic and population-based studies is urgently needed to relate antecedent exposures with later occurring stigmata of autoimmunity with a goal of discerning potentially susceptible individuals or subpopulations. Suspect infections requiring closer interrogation include EB virus (SLE and other diseases), HCV (autoimmune hepatitis), beta hemolytic streptococci (rheumatic carditis) and Helicobacter pylori (autoimmune gastritis) among others. And even if a micro-organism was to be incriminated, mechanisms of initiation/perpetuation of autoimmunity continue to challenge investigators. Plausible mechanisms include potentiation and diversion of innate immunity; exposure or spillage of intracellular autoantigens; or provision of autoantigenic mimics. Integrity of apoptosis as a critical safeguard against autoimmunity was discussed in the contexts of over-reactivity causing autoantigens to gain enhanced exposure to the immune system, or under-reactivity producing insufficient elimination of autoreactive clones of lymphocytes. Although environmental agents are widely believed to serve as necessary "triggers" of autoimmune disease in genetically predisposed individuals, only a few such agents (mainly drugs and some nutrients) have been clearly identified and their mechanism of action defined. Finally an essential genetic foundation underlies all these hazards for autoimmunity in the form of risk-associated polymorphisms in immunoregulatory genes. They may be predictive of future or impending disease.
Collapse
Affiliation(s)
- Ian R Mackay
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
41
|
|
42
|
Hodgkin’s Disease and Lymphomas. Clin Nucl Med 2008. [DOI: 10.1007/978-3-540-28026-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
|
44
|
Askew D, Zhou L, Wu C, Chen G, Gilliam AC. Absence of Cutaneous TNFα-Producing CD4+ T Cells and TNFα may Allow for Fibrosis Rather than Epithelial Cytotoxicity in Murine Sclerodermatous Graft-Versus-Host Disease, a Model for Human Scleroderma. J Invest Dermatol 2007; 127:1905-14. [PMID: 17429441 DOI: 10.1038/sj.jid.5700813] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Graft-versus-host disease (GVHD) is a complication of hematopoietic cell transplantation and is a major source of morbidity and mortality. Two main forms of GVHD occur: cytotoxic GVHD (Cyt GVHD), in which TNFalpha is a critical cytokine in epithelial injury, and sclerodermatous GVHD (Scl GVHD), in which TGFbeta plays a major role in fibrosis. To understand the critical early events in GVHD and scleroderma, we are studying a murine model that uses differences in minor histocompatibility antigens to generate Scl GVHD. We asked the question: what is the immune environment in this model that promotes fibrosis rather than the epithelial injury of Cyt GVHD? We found that in Scl GVHD, cutaneous CD4+ T cells produced IFNgamma and IL-2 but not TNFalpha, also absent by gene array analysis. The role of cutaneous CD4+ T cells in Scl GVHD may not be an active process through production of TGFbeta, but may rather be a passive one due to lack of antigen-presenting cell (APC) support for CD4+ T cells and failure to produce TNFalpha, a potent inhibitor of TGFbeta-induced fibrosis as well as inducer of keratinocyte apoptosis. These APC-T cell interactions and the cytokine environment promote fibrosis rather than cytotoxic epithelial injury in skin in Scl GVHD.
Collapse
Affiliation(s)
- David Askew
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio 44106-0528, USA.
| | | | | | | | | |
Collapse
|
45
|
Kano Y, Sakuma K, Shiohara T. Sclerodermoid graft-versus-host disease-like lesions occurring after drug-induced hypersensitivity syndrome. Br J Dermatol 2007; 156:1061-3. [PMID: 17381460 DOI: 10.1111/j.1365-2133.2007.07784.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Tamouza R, Busson M, Rocha V, Fortier C, Haddad Y, Brun M, Boukouaci W, Bleux H, Socié G, Krishnamoorthy R, Toubert A, Gluckman E, Charron D. Homozygous status for HLA-E*0103 confers protection from acute graft-versus-host disease and transplant-related mortality in HLA-matched sibling hematopoietic stem cell transplantation. Transplantation 2006; 82:1436-40. [PMID: 17164714 DOI: 10.1097/01.tp.0000244598.92049.dd] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The posttransplant period following hematopoietic stem cell transplantation (HSCT) is potentially high risk for developing survival-compromising complications, many of which are known to be under the control of immunogenetic factors. Given the dual role of human leukocyte antigen (HLA)-E molecules in innate and adaptive immune processes, we analyzed the impact of HLA-E polymorphism in genoidentical HSCT setting. METHODS We analyzed 187 HLA-genoidentical sibling pairs for HLA-E polymorphism. To explore its potential association with the incidence of acute and chronic graft versus host disease (aGVHD, cGVHD), severe infections, risk for transplant-related mortality (TRM), and overall survival, HLA-E locus was genotyped by a polymerase chain-reaction-sequence-specific primer (PCR-SSP) strategy. RESULTS Multivariate analysis, taking into account the patient-, donor- and transplant-related factors, showed that the incidence of aGVHD and TRM at day 180 were low when the genotype was HLA-E*0103/E*0103, either in the donor or in the recipient, the pairs being identical for HLA-E alleles (hazard ratio [HR]=0.71, P=0.009; and HR=0.42, P=0.04, respectively). We also found a trend towards association between E*0103 homozygosity and improved survival (P=0.05). There was no association between HLA-E polymorphism and incidence of severe infections. CONCLUSIONS These data suggest that the homozygous state for HLA-E*0103 allele behaves as a protective genetic factor against aGVHD and TRM and likely contributes to improved survival in HLA-genoidentical bone marrow transplantation.
Collapse
Affiliation(s)
- Ryad Tamouza
- Assistance publique- Hôpitaux de Paris/Groupement Hôspitalier et Universitaire Nord, Institut Universitaire d'Hématologie, et Institut National de la Santé et de la Recherche Médicale U662, Hôpital Saint-Louis, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vojdani A, Erde J. Regulatory T cells, a potent immunoregulatory target for CAM researchers: modulating tumor immunity, autoimmunity and alloreactive immunity (III). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2006; 3:309-16. [PMID: 16951715 PMCID: PMC1513145 DOI: 10.1093/ecam/nel047] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Accepted: 06/12/2006] [Indexed: 12/11/2022]
Abstract
Regulatory T (T(reg)) cells are the major arbiter of immune responses, mediating actions through the suppression of inflammatory and destructive immune reactions. Inappropriate T(reg) cell frequency or functionality potentiates the pathogenesis of myriad diseases with ranging magnitudes of severity. Lack of suppressive capability hinders restraint on immune responses involved in autoimmunity and alloreactivity, while excessive suppressive capacity effectively blocks processes necessary for tumor destruction. Although the etiology of dysfunctional T(reg) cell populations is under debate, the ramifications, and their mechanisms, are increasingly brought to light in the medical community. Methods that compensate for aberrant immune regulation may not address the underlying complications; however, they hold promise for the alleviation of debilitating immune system-related disorders. The dominant immunoregulatory nature of T(reg) cells, coupled with recent mechanistic knowledge of natural immunomodulatory compounds, highlights the importance of T(reg) cells to practitioners and researchers of complementary and alternative medicine (CAM).
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., 8693 Wilshire Boulevard, Suite 200, Beverly Hills, CA 90211, USA.
| | | |
Collapse
|
48
|
Ajuebor MN, Carey JA, Swain MG. CCR5 in T Cell-Mediated Liver Diseases: What’s Going On? THE JOURNAL OF IMMUNOLOGY 2006; 177:2039-45. [PMID: 16887960 DOI: 10.4049/jimmunol.177.4.2039] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chemokine receptor CCR5 came into worldwide prominence a decade ago when it was identified as one of the major coreceptors for HIV infectivity. However, subsequent studies suggested an important modulatory role for CCR5 in the inflammatory response. Specifically, CCR5 has been reported to directly regulate T cell function in autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and type 1 diabetes. Moreover, T cell-mediated immune responses are proposed to be critical in the pathogenesis of autoimmune and viral liver diseases, and recent clinical and experimental studies have also implicated CCR5 in the pathogenesis of autoimmune and viral liver diseases. Therefore, in this brief review, we highlight the evidence that supports an important role of CCR5 in the pathophysiology of T cell-mediated liver diseases with specific emphasis on autoimmune and viral liver diseases.
Collapse
MESH Headings
- Animals
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/metabolism
- Hepatitis, Autoimmune/physiopathology
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/physiopathology
- Hepatitis, Viral, Human/immunology
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/physiopathology
- Humans
- Liver Diseases/immunology
- Liver Diseases/metabolism
- Liver Diseases/physiopathology
- Receptors, CCR5/physiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Maureen N Ajuebor
- Gastrointestinal Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, Canada
| | | | | |
Collapse
|
49
|
Moalic V, Ferec C. La réaction du greffon contre l'hôte. ACTA ACUST UNITED AC 2006; 54:304-8. [PMID: 16530350 DOI: 10.1016/j.patbio.2006.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/27/2006] [Indexed: 10/24/2022]
Abstract
Graft vs host disease is a serious immunological complication of allogeneic haematopoietic cell transplantation, leading to a significant morbidity and mortality. It occurs when donor T lymphocyte react to foreign host cells. The physiopathology is a more complex process implicating host tissues damage caused by the conditioning regimen, cytokines, cellular effectors implicated in the immune response such as donor lymphocytes T, antigen presenting cells and mechanisms of apoptosis. This review focuses on the physiopathological basis, risk factors, clinical aspects; prevention and current management strategies to treat graft vs host disease. Recent developments in our understanding of this bone marrow transplantation complication have profoundly influenced the practice of allogeneic haematopoietic cell transplantation. There is a growing realisation of the importance of a graft vs leukaemia effect, strategy, which has encouraged the development of less conditioning regimens. Segregation between graft vs host effect and graft vs leukaemia effect is a key challenge, and could lead to new efficient and specific immunotherapy.
Collapse
Affiliation(s)
- V Moalic
- Laboratoire de génétique moléculaire et d'histocompatibilité, centre hospitalier universitaire Augustin-Morvan, 2, avenue Foch, 29200 Brest, France.
| | | |
Collapse
|