1
|
Dziadkowiak E, Baczyńska D, Waliszewska-Prosół M. MuSK Myasthenia Gravis-Potential Pathomechanisms and Treatment Directed against Specific Targets. Cells 2024; 13:556. [PMID: 38534400 DOI: 10.3390/cells13060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease in which autoantibodies target structures within the neuromuscular junction, affecting neuromuscular transmission. Muscle-specific tyrosine kinase receptor-associated MG (MuSK-MG) is a rare, often more severe, subtype of the disease with different pathogenesis and specific clinical features. It is characterized by a more severe clinical course, more frequent complications, and often inadequate response to treatment. Here, we review the current state of knowledge about potential pathomechanisms of the MuSK-MG and their therapeutic implications as well as ongoing research in this field, with reference to key points of immune-mediated processes involved in the background of myasthenia gravis.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | | |
Collapse
|
2
|
Huang Q, Li F, Zhao S. Spotlight on MuSK positive myasthenia gravis: clinical characteristics, treatment and outcomes. BMC Neurol 2022; 22:73. [PMID: 35246057 PMCID: PMC8895578 DOI: 10.1186/s12883-022-02593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background To investigate the clinical characteristics, treatments and outcomes of patients with myasthenia gravis with antibodies to muscle-specific tyrosine kinase (MuSK-MG). Methods We retrospectively reviewed the cases of 21 patients with confirmed MuSK-MG between January 2012 and January 2020 in our centre. Detailed clinical data and long-term follow-up information were summarized. Results Females (17/21, 81%) predominated among these MuSK-MG patients, and the mean age of onset in this group was 51.86 ± 16.16 years. MuSK-MG patients were divided into three subgroups according to the symptoms of muscle weakness at onset: ocular myasthenia gravis (OMG, 47.6%), bulbar myasthenia gravis (BMG, 42.9%), and generalized myasthenia gravis (GMG, 9.5%). The mean progression time from symptom onset to other muscle group involvement in OMG patients was 4.38 ± 2.54 months. Pyridostigmine bromide was adopted in 81.0% of patients, and 90.5% of patients received corticosteroids. Compared to usage in hospitals, the median daily dose of corticosteroids decreased significantly at the last follow-up. A total of 85.7% of patients received a long-term follow-up, with an average time of 1202.17 ± 976.73 days. At the end of the follow-up period, 4.8% of patients had achieved complete stable remission, 42.9% of patients had minimal manifestations, 19.0% had improved, the condition of 4.8% of patients remained unchanged, and 9.5% of patients died. Conclusion Female patients were more prevalent in this study, and MuSK-MG patients rapidly progressed to a generalized state. Although approximately 50% of MuSK-MG patients can achieve a favourable outcome with conventional immunosuppressants, complete stable remission is rare, and approximately 15% respond poorly. More effective medications should be explored in these patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02593-6.
Collapse
Affiliation(s)
- Qi Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450003, Henan, China
| | - Feng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450003, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
3
|
Zhang Z, Guan Y, Han J, Li M, Shi M, Deng H. Regional Features of MuSK Antibody-Positive Myasthenia Gravis in Northeast China. Front Neurol 2020; 11:516211. [PMID: 33123066 PMCID: PMC7566902 DOI: 10.3389/fneur.2020.516211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
Objective: To summarize the characteristics of muscle-specific receptor tyrosine kinase antibody-positive myasthenia gravis (MuSK-MG) in Northeast China. Methods: We retrospectively collected 183 confirmed MG patients and divided them into three groups based on the type of serum antibodies: MuSK-MG (14 cases), acetylcholine receptor (AChR)-MG (130 cases), and double-seronegative (DSN)-MG (39 cases). The clinical, diagnostic, therapeutic, and prognosis data were analyzed. Results: MuSK antibody was detected in 26.7% of seronegative MG. The mean age of onset in MuSK-MG was 53.2 ± 13.6 years. Fifty percent of MuSK-MG patients with an onset symptom of pure ocular muscle weakness. The time from onset to other muscle groups' involvement and the time from onset to myasthenic crisis had no significant difference among the three groups (P > 0.05). The proportion of Osserman classification I in MuSK-MG group was lower than that in DSN-MG group. The proportion of Osserman classification IV in MuSK-MG group was higher than that in the other two groups. The incidences of other coexisting autoimmune diseases in MuSK-MG group were higher. Prognosis after the treatment of steroid combined with tacrolimus for MuSK-MG was similar to AChR-MG treated with steroid combined with an immunosuppressant agent (P > 0.05). Conclusion: Patients with MuSK-MG in Northeast China have a modestly later onset age and a proportion of patients may have a mild form of the disease with delayed disease progression. We confirmed the existence of a rare ocular MuSK-MG phenotype, a high proportion of coexisting with other autoimmune diseases, and a good response to steroids combined with tacrolimus for our MuSK-MG series.
Collapse
Affiliation(s)
- Zunwei Zhang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Yujia Guan
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Jiale Han
- Department of Endocrinology, First Hospital of Jilin University, Changchun, China
| | - Mingming Li
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Miao Shi
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Hui Deng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Vilquin JT, Bayer AC, Le Panse R, Berrih-Aknin S. The Muscle Is Not a Passive Target in Myasthenia Gravis. Front Neurol 2020; 10:1343. [PMID: 31920954 PMCID: PMC6930907 DOI: 10.3389/fneur.2019.01343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease mediated by pathogenic antibodies (Ab) directed against components of the neuromuscular junction (NMJ), mainly the acetylcholine receptor (AChR). The etiological mechanisms are not totally elucidated, but they include a combination of genetic predisposition, triggering event(s), and hormonal components. MG disease is associated with defective immune regulation, chronic cell activation, inflammation, and the thymus is frequently abnormal. MG is characterized by muscle fatigability that is very invalidating and can be life-threatening when respiratory muscles are affected. MG is not cured, and symptomatic treatments with acetylcholinesterase inhibitors and immunosuppressors are life-long medications associated with severe side effects (especially glucocorticoids). While the muscle is the ultimate target of the autoimmune attack, its place and role are not thoroughly described, and this mini-review will focus on the cascade of pathophysiologic mechanisms taking place at the NMJ and its consequences on the muscle biology, function, and regeneration in myasthenic patients, at the histological, cellular, and molecular levels. The fine structure of the synaptic cleft is damaged by the Ab binding that is coupled to focal complement-dependent lysis in the case of MG with anti-AChR antibodies. Cellular and molecular reactions taking place in the muscle involve several cell types as well as soluble factors. Finally, the regenerative capacities of the MG muscle tissue may be altered. Altogether, the studies reported in this review demonstrate that the muscle is not a passive target in MG, but interacts dynamically with its environment in several ways, activating mechanisms of compensation that limit the pathogenic mechanisms of the autoantibodies.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| | | | - Rozen Le Panse
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| |
Collapse
|
5
|
A novel MuSK cell-based myasthenia gravis diagnostic assay. J Neuroimmunol 2019; 337:577076. [PMID: 31655425 DOI: 10.1016/j.jneuroim.2019.577076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
To improve the clinical diagnosis of neural autoimmune diseases, we developed an in-house muscle-specific kinase (MuSK) antibody cell-based assay (CBA) and compared its performance with RIA, ELISA, and other CBAs. Sera from patients with myasthenia gravis (MG) and other autoimmune diseases were analyzed. We found 46 (18.3%) MuSK-CBA Ab positive cases among 251 AChR-Ab negative cases [patients] and 4 (0.6%) MuSK-CBA Ab positive cases [among] the 624 AChR-Ab positive samples. Comparing these with available clinic assays, our highly specific CBA method is more sensitive than commercial ELISA and IFA(indirect immunofluorescence assay).
Collapse
|
6
|
Rivner MH, Pasnoor M, Dimachkie MM, Barohn RJ, Mei L. Muscle-Specific Tyrosine Kinase and Myasthenia Gravis Owing to Other Antibodies. Neurol Clin 2019; 36:293-310. [PMID: 29655451 DOI: 10.1016/j.ncl.2018.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Around 20% of patients with myasthenia gravis are acetylcholine receptor antibody negative; muscle-specific tyrosine kinase antibodies (MuSK) were identified as the cause of myasthenia gravis in 30% to 40% of these cases. Anti MuSK myasthenia gravis is associated with specific clinical phenotypes. One is a bulbar form with fewer ocular symptoms. Others show an isolated head drop or symptoms indistinguishable from acetylcholine receptor-positive myasthenia gravis. These patients usually respond well to immunosuppressive therapy, but not as well to cholinesterase inhibitors. Other antibodies associated with myasthenia gravis, including low-density lipoprotein receptor-related protein 4, are discussed.
Collapse
Affiliation(s)
- Michael H Rivner
- EMG Lab, Augusta University, 1120 15th Street, BP-4390, Augusta, GA 30912, USA.
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, 3599 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66103, USA
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 4017, Kansas City, KS 66160, USA
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, CA-2014, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Trampert DC, Hubers LM, van de Graaf SF, Beuers U. On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1401-1409. [DOI: 10.1016/j.bbadis.2017.07.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
|
8
|
Morren J, Li Y. Myasthenia gravis with muscle-specific tyrosine kinase antibodies: A narrative review. Muscle Nerve 2018; 58:344-358. [DOI: 10.1002/mus.26107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- John Morren
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S90; Cleveland Ohio 44195 USA
| | - Yuebing Li
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S90; Cleveland Ohio 44195 USA
| |
Collapse
|
9
|
Mori S, Motohashi N, Takashima R, Kishi M, Nishimune H, Shigemoto K. Immunization of mice with LRP4 induces myasthenia similar to MuSK-associated myasthenia gravis. Exp Neurol 2017; 297:158-167. [PMID: 28823823 DOI: 10.1016/j.expneurol.2017.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
Since the first report of experimental animal models of myasthenia gravis (MG) with autoantibodies against low-density lipoprotein receptor-related protein 4 (LRP4), there have not been any major reports replicating the pathogenicity of anti-LRP4 antibodies (Abs). Recent clinical studies have cast doubt on the specificity and pathogenicity of anti-LRP4 antibodies for MG, highlighting the need for further research. In this study, we purified antigens corresponding to the extracellular region of human LRP4 stably expressed with chaperones in 293 cells and used these antigens to immunize female A/J mice. Immunization with LRP4 protein caused mice to develop myasthenia having similar electrophysiological and histological features as are observed in MG patients with circulating Abs against muscle-specific kinase (MuSK). Our results clearly demonstrate that active immunization of mice with LRP4 proteins causes myasthenia similar to the MG induced by anti-MuSK Abs. Further experimental and clinical studies are required to prove the pathogenicity of anti-LRP4 Abs in MG patients.
Collapse
Affiliation(s)
- Shuuichi Mori
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Norio Motohashi
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Rumi Takashima
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masahiko Kishi
- Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Kazuhiro Shigemoto
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
10
|
Lo YL, Najjar RP, Teo KY, Tow SL, Loo JL, Milea D. A reappraisal of diagnostic tests for myasthenia gravis in a large Asian cohort. J Neurol Sci 2017; 376:153-158. [PMID: 28431604 DOI: 10.1016/j.jns.2017.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disease characterized by weakness of bodily skeletal muscles. Office-based diagnostic tests such as repetitive nerve stimulation (RNS), single fiber electromyography (SFEMG), and the ice test, are used to refine the differential clinical diagnosis of this disease. Evaluating the clinical sensitivity and specificity of these tests, however, may be confounded by lack of a gold standard, non-blinding, incorporation bias, use of non-representative populations and retrospective data. OBJECTIVE In this study comprising a large Asian cohort of 127 patients recruited from a Neuro-ophthalmology clinic, we minimized aforementioned confounders and tested the diagnostic value of 3 office-based tests against 2 reference standards of MG by virtue of clinical features, antibody assay and response to treatment. RESULTS Regardless of the reference standard used, the ice and SFEMG tests displayed a higher sensitivity (86.0 to 97.3%) compared to the RNS test (21.3 to 30.6%). Conversely, the specificity of the ice (31.3%) and SFEMG (21.7% and 17.2%) tests were reduced compared to the RNS test (82.6% and 84.4%). The combined use of the ice test and SFEMG, improved the specificity of MG diagnosis to 63.6% and 64.3%, without affecting the sensitivity of those tests. CONCLUSION Our findings indicate, in an Asian population, high sensitivity of the SFEMG test and suggest the ice test as a valid, affordable and less technically demanding approach to diagnose MG with ocular involvement. Both ice test and SFEMG alone, however, yielded poor specificity. We suggest that the combination of SFEMG and ice test provides a more reliable diagnosis of MG.
Collapse
Affiliation(s)
- Yew Long Lo
- Duke-NUS Graduate Medical School, Singapore; National Neuroscience Institute, Singapore General Hospital, Singapore.
| | - Raymond P Najjar
- Duke-NUS Graduate Medical School, Singapore; Singapore Eye Research Institute, Singapore
| | - Kelvin Y Teo
- Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore
| | - Sharon L Tow
- Duke-NUS Graduate Medical School, Singapore; Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore; National University Hospital, Singapore
| | - Jing Liang Loo
- Duke-NUS Graduate Medical School, Singapore; Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dan Milea
- Duke-NUS Graduate Medical School, Singapore; Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore
| |
Collapse
|
11
|
MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK. J Neuroimmunol 2016; 295-296:84-92. [DOI: 10.1016/j.jneuroim.2016.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 11/18/2022]
|
12
|
The Myotonic Plot Thickens: Electrical Myotonia in Antimuscle-Specific Kinase Myasthenia Gravis. Case Rep Neurol Med 2016; 2015:242691. [PMID: 26770848 PMCID: PMC4681818 DOI: 10.1155/2015/242691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/22/2015] [Indexed: 11/18/2022] Open
Abstract
Electrical myotonia is known to occur in a number of inherited and acquired disorders including myotonic dystrophies, channelopathies, and metabolic, toxic, and inflammatory myopathies. Yet, electrical myotonia in myasthenia gravis associated with antibodies against muscle-specific tyrosine kinase (MuSK) has not been previously reported. We describe two such patients, both of whom had a typical presentation of proximal muscle weakness with respiratory failure in the context of a significant electrodecrement in repetitive nerve stimulation. In both cases, concentric needle examination revealed electrical myotonia combined with myopathic motor unit morphology and early recruitment. These findings suggest that MuSK myasthenia should be included within the differential diagnosis of disorders with electrical myotonia.
Collapse
|
13
|
TIPE2 Play a Negative Role in TLR4-Mediated Autoimmune T Helper 17 Cell Responses in Patients with Myasthenia Gravis. J Neuroimmune Pharmacol 2015; 10:635-44. [DOI: 10.1007/s11481-015-9638-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/18/2015] [Indexed: 02/01/2023]
|
14
|
Abstract
The peer-reviewed publications in the field of autoimmunity published in 2013 represented a significant proportion of immunology articles and grew since the previous year to indicate that more immune-mediated phenomena may recognize an autoimmune mechanism and illustrated by osteoarthritis and atherosclerosis. As a result, our understanding of the mechanisms of autoimmunity is becoming the paradigm for translational research in which the progress in disease pathogenesis for both tolerance breakdown and inflammation perpetuation is rapidly followed by new treatment approaches and clinical management changes. The similarities across the autoimmune disease spectrum outnumber differences, particularly when treatments are compared. Indeed, the therapeutics of autoimmune diseases are based on a growing armamentarium that currently includes monoclonal antibodies and small molecules which act by targeting molecular markers or intracellular mediators with high specificity. Among the over 100 conditions considered as autoimmune, the common grounds are well illustrated by the data reported for systemic lupus erythematosus and rheumatoid arthritis or by the plethora of studies on Th17 cells and biomarkers, particularly serum autoantibodies. Further, we are particularly intrigued by studies on the genomics, epigenetics, and microRNA at different stages of disease development or on the safe and effective use of abatacept acting on the costimulation of T and B cells in rheumatoid arthritis. We are convinced that the data published in 2013 represent a promising background for future developments that will exponentially impact the work of laboratory and clinical scientists over the next years.
Collapse
|
15
|
Damoiseaux J, Andrade LE, Fritzler MJ, Shoenfeld Y. Autoantibodies 2015: From diagnostic biomarkers toward prediction, prognosis and prevention. Autoimmun Rev 2015; 14:555-63. [PMID: 25661979 DOI: 10.1016/j.autrev.2015.01.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 12/29/2022]
Abstract
At the 12th International Workshop on Autoantibodies and Autoimmunity (IWAA), organized in August 2014 in Sao Paulo, Brazil, more than 300 autoimmunologists gathered to discuss the status of many novel autoantibodies in clinical practice, and to envisage additional value of autoantibodies in terms of prediction, prognosis and prevention of autoimmune diseases. Two separate workshops were dedicated to standardization and harmonization of autoantibody testing and nomenclature: International Autoantibody Standardization (IAS) and International Consensus on ANA Patterns (ICAP). It was apparent to all in attendance that the discovery and elucidation of novel autoantibodies did not slow down, but that multiple challenges lay ahead of us in order to apply these discoveries to effective and efficient clinical practice. Importantly, this requires optimal bidirectional communication between clinicians and laboratory specialists, as well as close collaboration with the diagnostic industry. This paper is a report on the 12th IWAA in combination with a review of the recent developments in the field of autoantibodies.
Collapse
Affiliation(s)
- Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Luis E Andrade
- Rheumatology Division, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Immunology Division, Fleury Medicine and Health Laboratories, Sao Paulo, Brazil
| | - Marvin J Fritzler
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
16
|
Fan X, Lin C, Han J, Jiang X, Zhu J, Jin T. Follicular Helper CD4 + T Cells in Human Neuroautoimmune Diseases and Their Animal Models. Mediators Inflamm 2015; 2015:638968. [PMID: 26300592 PMCID: PMC4537760 DOI: 10.1155/2015/638968] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/16/2015] [Indexed: 01/27/2023] Open
Abstract
Follicular helper CD4+ T (TFH) cells play a fundamental role in humoral immunity deriving from their ability to provide help for germinal center (GC) formation, B cell differentiation into plasma cells and memory cells, and antibody production in secondary lymphoid tissues. TFH cells can be identified by a combination of markers, including the chemokine receptor CXCR5, costimulatory molecules ICOS and PD-1, transcription repressor Bcl-6, and cytokine IL-21. It is difficult and impossible to get access to secondary lymphoid tissues in humans, so studies are usually performed with human peripheral blood samples as circulating counterparts of tissue TFH cells. A balance of TFH cell generation and function is critical for protective antibody response, whereas overactivation of TFH cells or overexpression of TFH-associated molecules may result in autoimmune diseases. Emerging data have shown that TFH cells and TFH-associated molecules may be involved in the pathogenesis of neuroautoimmune diseases including multiple sclerosis (MS), neuromyelitis optica (NMO)/neuromyelitis optica spectrum disorders (NMOSD), and myasthenia gravis (MG). This review summarizes the features of TFH cells, including their development, function, and roles as well as TFH-associated molecules in neuroautoimmune diseases and their animal models.
Collapse
Affiliation(s)
- Xueli Fan
- Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Chenhong Lin
- Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Jinming Han
- Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Xinmei Jiang
- Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Jie Zhu
- Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 14186 Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Phillips WD, Christadoss P, Losen M, Punga AR, Shigemoto K, Verschuuren J, Vincent A. Guidelines for pre-clinical animal and cellular models of MuSK-myasthenia gravis. Exp Neurol 2014; 270:29-40. [PMID: 25542979 DOI: 10.1016/j.expneurol.2014.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 11/17/2022]
Abstract
Muscle-specific tyrosine kinase (MuSK) autoantibodies are the hallmark of a form of myasthenia gravis (MG) that can challenge the neurologist and the experimentalist. The clinical disease can be difficult to treat effectively. MuSK autoantibodies affect the neuromuscular junction in several ways. When added to muscle cells in culture, MuSK antibodies disperse acetylcholine receptor clusters. Experimental animals actively immunized with MuSK develop MuSK autoantibodies and muscle weakness. Weakness is associated with reduced postsynaptic acetylcholine receptor numbers, reduced amplitudes of miniature endplate potentials and endplate potentials, and failure of neuromuscular transmission. Similar impairments have been found in mice injected with IgG from MG patients positive for MuSK autoantibody (MuSK-MG). The active and passive models have begun to reveal the mechanisms by which MuSK antibodies disrupt synaptic function at the neuromuscular junction, and should be valuable in developing therapies for MuSK-MG. However, translation into new and improved treatments for patients requires procedures that are not too cumbersome but suitable for examining different aspects of MuSK function and the effects of potential therapies. Study design, conduct and analysis should be carefully considered and transparently reported. Here we review what has been learnt from animal and culture models of MuSK-MG, and offer guidelines for experimental design and conduct of studies, including sample size determination, randomization, outcome parameters and precautions for objective data analysis. These principles may also be relevant to the increasing number of other antibody-mediated diseases that are now recognized.
Collapse
Affiliation(s)
- W D Phillips
- School of Medical Sciences (Physiology) and Bosch Institute, Anderson Stuart Bldg (F13), University of Sydney, NSW 2006, Australia.
| | - P Christadoss
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - M Losen
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - A R Punga
- Institute of Neuroscience, Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden.
| | - K Shigemoto
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | - J Verschuuren
- Department of Neurology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - A Vincent
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Heldal AT, Eide GE, Romi F, Owe JF, Gilhus NE. Repeated acetylcholine receptor antibody-concentrations and association to clinical myasthenia gravis development. PLoS One 2014; 9:e114060. [PMID: 25464006 PMCID: PMC4252099 DOI: 10.1371/journal.pone.0114060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 11/03/2014] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION We aimed to examine the longitudinal association between Myasthenia Gravis (MG) clinical severity and concentration of acetylcholine receptor (AChR)-antibodies to evaluate if AChR-antibody variations correlate to disease severity. A positive AChR-antibody test is specific for MG. MATERIAL AND METHODS All patients from western Norway who had two or more AChR- antibody tests in the period 1983-2013 were identified. The Myasthenia Gravis Foundation of America (MGFA) Clinical Classification was used to grade disease development. Multiple ordinal logistic regression analysis was used to estimate a possible predictive effect for AChR-antibody concentration on MGFA classification result. RESULTS In 67 patients two or more AChR-antibody tests with a corresponding MGFA-score were performed, with a total of 309 tests. 56 patients were treated with immunosuppressive drugs and 11 by pyridostigmine only. There was a positive association between concentration of AChR-antibodies and longitudinal MGFA-score for the subgroup with immunosuppressive treatment, but not for those treated with pyridostigmine only. This association between AChR-antibody concentration and MGFA score declined with increasing time since onset (p = 0.005 for the interaction of group×time×concentration). CONCLUSIONS For MG patients with immunosuppressive treatment, repeated AChR-antibody measurements give information about clinical development, and can therefore be of support in therapeutic decisions.
Collapse
Affiliation(s)
| | - Geir Egil Eide
- Centre of Clinical Research, Haukeland University Hospital, Bergen, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Fredrik Romi
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jone Furlund Owe
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
19
|
Patel V, Oh A, Voit A, Sultatos LG, Babu GJ, Wilson BA, Ho M, McArdle JJ. Altered active zones, vesicle pools, nerve terminal conductivity, and morphology during experimental MuSK myasthenia gravis. PLoS One 2014; 9:e110571. [PMID: 25438154 PMCID: PMC4249869 DOI: 10.1371/journal.pone.0110571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG.
Collapse
MESH Headings
- Animals
- Female
- Immunization, Passive
- Mice
- Motor Endplate/pathology
- Motor Endplate/physiopathology
- Motor Neurons/pathology
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Neural Conduction
- Neurotransmitter Agents/metabolism
- Protein Structure, Tertiary
- Rats
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/immunology
- Receptors, Cholinergic/metabolism
- Synaptic Vesicles/metabolism
- Vaccination
Collapse
Affiliation(s)
- Vishwendra Patel
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Anne Oh
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Antanina Voit
- Department Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Lester G. Sultatos
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Gopal J. Babu
- Department Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Brenda A. Wilson
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Mengfei Ho
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Joseph J. McArdle
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
20
|
Berrih-Aknin S. Myasthenia Gravis: paradox versus paradigm in autoimmunity. J Autoimmun 2014; 52:1-28. [PMID: 24934596 DOI: 10.1016/j.jaut.2014.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
Myasthenia Gravis (MG) is a paradigm of organ-specific autoimmune disease (AID). It is mediated by antibodies that target the neuromuscular junction. The purpose of this review is to place MG in the general context of autoimmunity, to summarize the common mechanisms between MG and other AIDs, and to describe the specific mechanisms of MG. We have chosen the most common organ-specific AIDs to compare with MG: type 1 diabetes mellitus (T1DM), autoimmune thyroid diseases (AITD), multiple sclerosis (MS), some systemic AIDs (systemic lupus erythematous (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS)), as well as inflammatory diseases of the gut and liver (celiac disease (CeD), Crohn's disease (CD), and primary biliary cirrhosis (PBC)). Several features are similar between all AIDs, suggesting that common pathogenic mechanisms lead to their development. In this review, we address the predisposing factors (genetic, epigenetic, hormones, vitamin D, microbiota), the triggering components (infections, drugs) and their interactions with the immune system [1,2]. The dysregulation of the immune system is detailed and includes the role of B cells, Treg cells, Th17 and cytokines. We particularly focused on the role of TNF-α and interferon type I whose role in MG is very analogous to that in several other AIDS. The implication of AIRE, a key factor in central tolerance is also discussed. Finally, if MG is a prototype of AIDS, it has a clear specificity compared to the other AIDS, by the fact that the target organ, the muscle, is not the site of immune infiltration and B cell expansion, but exclusively that of antibody-mediated pathogenic mechanisms. By contrast, the thymus in the early onset subtype frequently undergoes tissue remodeling, resulting in the development of ectopic germinal centers surrounded by high endothelial venules (HEV), as observed in the target organs of many other AIDs.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- Sorbonne Universités, UPMC Univ Paris 06, Myology Research Center UM76, F-75013 Paris, France; INSERM U974, F-75013 Paris, France; CNRS FRE 3617, F-75013 Paris, France; Institute of Myology, F-75013 Paris, France.
| |
Collapse
|
21
|
Dan D, Bart PA, Novy J, Kuntzer T, Clair C. Double seronegative myasthenia gravis with antiphospholipid syndrome: a case report. J Med Case Rep 2014; 8:2. [PMID: 24380508 PMCID: PMC3917420 DOI: 10.1186/1752-1947-8-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/07/2013] [Indexed: 11/27/2022] Open
Abstract
Introduction Myasthenia gravis is an autoimmune disease characterized by fluctuating muscle weakness. It is often associated with other autoimmune disorders, such as thyroid disease, rheumatoid arthritis, systemic lupus erythematosus, and antiphospholipid syndrome. Many aspects of autoimmune diseases are not completely understood, particularly when they occur in association, which suggests a common pathogenetic mechanism. Case presentation We report a case of a 42-year-old Caucasian woman with antiphospholipid syndrome, in whom myasthenia gravis developed years later. She tested negative for both antibodies against the acetylcholine receptor and against muscle-specific receptor tyrosine-kinase, but had typical decremental responses at the repetitive nerve stimulation testing, so that a generalized myasthenia gravis was diagnosed. Her thromboplastin time and activated partial thromboplastin time were high, anticardiolipin and anti-β2 glycoprotein-I antibodies were slightly elevated, as a manifestation of the antiphospholipid syndrome. She had a good clinical response when treated with a combination of pyridostigmine, prednisone and azathioprine. Conclusions Many patients with myasthenia gravis test positive for a large variety of auto-antibodies, testifying of an immune dysregulation, and some display mild T-cell lymphopenia associated with hypergammaglobulinemia and B-cell hyper-reactivity. Both of these mechanisms could explain the occurrence of another autoimmune condition, such as antiphospholipid syndrome, but further studies are necessary to shed light on this matter. Clinicians should be aware that patients with an autoimmune diagnosis such as antiphospholipid syndrome who develop signs and neurological symptoms suggestive of myasthenia gravis are at risk and should prompt an emergent evaluation by a specialist.
Collapse
Affiliation(s)
- Diana Dan
- Department of Rheumatology and Clinical Immunology, University Hospital Insel, 3010 Bern, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Ströbel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 2013; 12:875-84. [DOI: 10.1016/j.autrev.2013.03.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/13/2023]
|
23
|
Verschuuren JJ, Huijbers MG, Plomp JJ, Niks EH, Molenaar PC, Martinez-Martinez P, Gomez AM, De Baets MH, Losen M. Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmun Rev 2013; 12:918-23. [DOI: 10.1016/j.autrev.2013.03.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/13/2023]
|
24
|
Berrih-Aknin S, Ragheb S, Le Panse R, Lisak RP. Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev 2013; 12:885-93. [DOI: 10.1016/j.autrev.2013.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/19/2022]
|
25
|
Cavalcante P, Cufi P, Mantegazza R, Berrih-Aknin S, Bernasconi P, Le Panse R. Etiology of myasthenia gravis: Innate immunity signature in pathological thymus. Autoimmun Rev 2013; 12:863-74. [DOI: 10.1016/j.autrev.2013.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/09/2023]
|
26
|
Berrih-Aknin S, Souroujon MC. Cutting edge in Myasthenia Gravis. Autoimmun Rev 2013; 12:861-2. [DOI: 10.1016/j.autrev.2013.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/29/2022]
|
27
|
Evoli A, Padua L. Diagnosis and therapy of myasthenia gravis with antibodies to muscle-specific kinase. Autoimmun Rev 2013; 12:931-5. [PMID: 23535158 DOI: 10.1016/j.autrev.2013.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/01/2023]
Abstract
Myasthenia gravis (MG) with antibodies to the muscle-specific receptor tyrosine kinase (MuSK-MG) is a rare disease which covers 5-8% of all MG patients. Symptoms are nearly always generalized, though more focal than in MG with anti-acetylcholine receptor antibodies, with predominant involvement of cranial, bulbar and axial muscles; early respiratory crises are frequent. Focal atrophy, mostly of facial, masseter and tongue muscles, occurs in a proportion of patients. Diagnosis is often challenging on account of atypical presentation with little or no symptom fluctuations, lack of response to acetylcholinesterase inhibitors in a high proportion of patients and negative results of electrodiagnostic studies when performed on limb muscles. Immunosuppression is the mainstay of treatment, since the response to acetylcholinesterase inhibitors is generally unsatisfactory and thymectomy does not appear to improve the course of the disease. Although corticosteroids result in marked improvement, disease flares are frequent during prednisone dosage tapering and most patients remain dependent on treatment. Since treatment with rituximab, in uncontrolled studies, induced sustained benefit in patients with refractory disease, B cell depletion is an attractive option for MuSK-MG patients unresponsive to conventional immunosuppressants.
Collapse
Affiliation(s)
- Amelia Evoli
- Institute of Neurology, Catholic University, Largo F. Vito 1, 00168 Roma, Italy.
| | | |
Collapse
|
28
|
Impairment of regulatory T cells in myasthenia gravis: studies in an experimental model. Autoimmun Rev 2013; 12:894-903. [PMID: 23535156 DOI: 10.1016/j.autrev.2013.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/27/2022]
Abstract
Myasthenia gravis (MG) is an antibody mediated, T cell dependent autoimmune disease characterized by muscle fatigability in which autoantibodies directed to the acetylcholine receptor (AChR) impair neuromuscular transmission. The identification of CD4⁺CD25⁺Foxp3⁺Treg cells as important regulators of tolerance opened a major area of investigation raising the possibility that a dysfunction in the Treg compartment is involved in the etiology and pathogenesis of autoimmune diseases, including MG. In this paper we summarize shortly Treg abnormalities that were reported in MG patients and report on our studies of Treg in experimental autoimmune MG (EAMG). Hopefully these studies would pave the way towards the development of novel Treg-based treatment modalities that will restore self-tolerance in MG and other autoimmune diseases. In our previous studies in EAMG we have shown that Treg cells transferred from healthy rat donors to myasthenic rats suppress EAMG. However, Treg cells from sick animals do not have the same in vivo suppressive activity as those from healthy donors. The objective of the present study was to further characterize quantitative and qualitative alterations in Treg cells of rats with EAMG. We found that the frequency of CD4⁺CD25⁺Foxp3⁺Treg cells within the spleen and PBL was decreased in EAMG rats as compared to naïve and CFA-immunized healthy controls. Treg cells from myasthenic rats were less effective than Treg cells from controls in suppressing the proliferation of CD4⁺T effector cells in response to ConA and of B cells in response to LPS. Moreover, CD4⁺CD25⁺ cells from EAMG rats exhibited an elevated extent of apoptosis and expressed upregulated levels of FAS and of Th17-associated cytokines. Since EAMG is an induced disease, these quantitative and qualitative alterations in Treg cells do not reflect predisposing impairments and seem to be associated with the specific autoimmune response resulting from AChR immunization.
Collapse
|