1
|
Wu Z, Zang Y, Li C, He Z, Liu J, Du Z, Ma X, Jing L, Duan H, Feng J, Yan X. CD146, a therapeutic target involved in cell plasticity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1563-1578. [PMID: 38613742 DOI: 10.1007/s11427-023-2521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/28/2023] [Indexed: 04/15/2024]
Abstract
Since its identification as a marker for advanced melanoma in the 1980s, CD146 has been found to have multiple functions in both physiological and pathological processes, including embryonic development, tissue repair and regeneration, tumor progression, fibrosis disease, and inflammations. Subsequent research has revealed that CD146 is involved in various signaling pathways as a receptor or co-receptor in these processes. This correlation between CD146 and multiple diseases has sparked interest in its potential applications in diagnosis, prognosis, and targeted therapy. To better comprehend the versatile roles of CD146, we have summarized its research history and synthesized findings from numerous reports, proposing that cell plasticity serves as the underlying mechanism through which CD146 contributes to development, regeneration, and various diseases. Targeting CD146 would consequently halt cell state shifting during the onset and progression of these related diseases. Therefore, the development of therapy targeting CD146 holds significant practical value.
Collapse
Affiliation(s)
- Zhenzhen Wu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuzhe Zang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuyi Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiheng He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyu Liu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoqi Du
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinran Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Jing
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxia Duan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
| | - Jing Feng
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
- Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Peng Y, Zhang X, Tang Y, He S, Rao G, Chen Q, Xue Y, Jin H, Liu S, Zhou Z, Xiang Y. Role of autoreactive Tc17 cells in the pathogenesis of experimental autoimmune encephalomyelitis. NEUROPROTECTION 2024; 2:49-59. [DOI: 10.1002/nep3.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 07/04/2024]
Abstract
AbstractBackgroundThe pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE—an animal model of MS) is primarily mediated by T cells. However, recent studies have only focused on interleukin (IL)‐17‐secreting CD4+ T‐helper cells, also known as Th17 cells. This study aimed to compare Th17 cells and IL‐17‐secreting CD8+ T‐cytotoxic cells (Tc17) in the context of MS/EAE.MethodsFemale C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein peptides 35–55 (MOG35–55), pertussis toxin, and complete Freund's adjuvant to establish the EAE animal model. T cells were isolated from the spleen (12–14 days postimmunization). CD4+ and CD8+ T cells were purified using isolation kit and then differentiated into Th17 and Tc17, respectively, using MOG35–55 and IL‐23. The secretion levels of interferon‐γ (IFN‐γ) and IL‐17 were measured via enzyme‐linked immunosorbent assay using cultured CD4+ and CD8+ T cell supernatants. The pathogenicity of Tc17 and Th17 cells was assessed through adoptive transfer (tEAE), with the clinical course assessed using an EAE score (0–5). Hematoxylin and eosin as well as Luxol fast blue staining were used to examine the spinal cord. Purified CD8+ CD3+ and CD4+ CD3+ cells differentiated into Tc17 and Th17 cells, respectively, were stimulated with MOG35–55 peptide for proliferation assays.ResultsThe results showed that Tc17 cells (15,951 ± 1985 vs. 55,709 ± 4196 cpm; p < 0.050) exhibited a weaker response to highest dose (20 μg/mL) MOG35–55 than Th17 cells. However, this response was not dependent on Th17 cells. After the 48 h stimulation, at the highest dose (20 μg/mL) of MOG35–55. Tc17 cells secreted lower levels of IFN‐γ (280.00 ± 15.00 vs. 556.67 ± 15.28 pg/mL, p < 0.050) and IL‐17 (102.67 ± 5.86 pg/mL vs. 288.33 ± 12.58 pg/mL; p < 0.050) than Th17 cells. Similar patterns were observed for IFN‐γ secretion at 96 and 144 h. Furthermore, Tc17 cell‐induced tEAE mice exhibited similar EAE scores to Th17 cell‐induced tEAE mice and also showed similar inflammation and demyelination.ConclusionThe degree of pathogenicity of Tc17 cells in EAE is lower than that of Th17 cells. Future investigation on different immune cells and EAE models is warranted to determine the mechanisms underlying MS.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Xiuli Zhang
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| | - Yandan Tang
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Shunqing He
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Guilan Rao
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Quan Chen
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Yahui Xue
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Hong Jin
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Shu Liu
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Ziyang Zhou
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| | - Yun Xiang
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| |
Collapse
|
3
|
Núñez-Carpintero I, Rigau M, Bosio M, O'Connor E, Spendiff S, Azuma Y, Topf A, Thompson R, 't Hoen PAC, Chamova T, Tournev I, Guergueltcheva V, Laurie S, Beltran S, Capella-Gutiérrez S, Cirillo D, Lochmüller H, Valencia A. Rare disease research workflow using multilayer networks elucidates the molecular determinants of severity in Congenital Myasthenic Syndromes. Nat Commun 2024; 15:1227. [PMID: 38418480 PMCID: PMC10902324 DOI: 10.1038/s41467-024-45099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/15/2024] [Indexed: 03/01/2024] Open
Abstract
Exploring the molecular basis of disease severity in rare disease scenarios is a challenging task provided the limitations on data availability. Causative genes have been described for Congenital Myasthenic Syndromes (CMS), a group of diverse minority neuromuscular junction (NMJ) disorders; yet a molecular explanation for the phenotypic severity differences remains unclear. Here, we present a workflow to explore the functional relationships between CMS causal genes and altered genes from each patient, based on multilayer network community detection analysis of complementary biomedical information provided by relevant data sources, namely protein-protein interactions, pathways and metabolomics. Our results show that CMS severity can be ascribed to the personalized impairment of extracellular matrix components and postsynaptic modulators of acetylcholine receptor (AChR) clustering. This work showcases how coupling multilayer network analysis with personalized -omics information provides molecular explanations to the varying severity of rare diseases; paving the way for sorting out similar cases in other rare diseases.
Collapse
Affiliation(s)
- Iker Núñez-Carpintero
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
| | - Maria Rigau
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mattia Bosio
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Peter A C 't Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Teodora Chamova
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, Alexandrovska University Hospital, Medical University-Sofia, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, Alexandrovska University Hospital, Medical University-Sofia, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, 1618, Bulgaria
| | - Velina Guergueltcheva
- Clinic of Neurology, University Hospital Sofiamed, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
| | - Davide Cirillo
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
4
|
Maeda K, Tanioka T, Takahashi R, Watanabe H, Sueki H, Takimoto M, Hashimoto SI, Ikeo K, Miwa Y, Kasama T, Iwamoto S. MCAM+CD161- Th17 Subset Expressing CD83 Enhances Tc17 Response in Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1867-1881. [PMID: 37186262 DOI: 10.4049/jimmunol.2200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Recent studies have highlighted the pathogenic roles of IL-17-producing CD8+ T cells (T-cytotoxic 17 [Tc17]) in psoriasis. However, the underlying mechanisms of Tc17 induction remain unclear. In this study, we focused on the pathogenic subsets of Th17 and their mechanism of promotion of Tc17 responses. We determined that the pathogenic Th17-enriched fraction expressed melanoma cell adhesion molecule (MCAM) and CCR6, but not CD161, because this subset produced IL-17A abundantly and the presence of these cells in the peripheral blood of patients has been correlated with the severity of psoriasis. Intriguingly, the serial analysis of gene expression revealed that CCR6+MCAM+CD161-CD4+ T cells displayed the gene profile for adaptive immune responses, including CD83, which is an activator for CD8+ T cells. Coculture assay with or without intercellular contact between CD4+ and CD8+ T cells showed that CCR6+MCAM+CD161-CD4+ T cells induced the proliferation of CD8+ T cells in a CD83-dependent manner. However, the production of IL-17A by CD8+ T cells required exogenous IL-17A, suggesting that intercellular contact via CD83 and the production of IL-17A from activated CD4+ T cells elicit Tc17 responses. Intriguingly, the CD83 expression was enhanced in the presence of IL-15, and CD83+ cells stimulated with IL-1β, IL-23, IL-15, and IL-15Rα did not express FOXP3. Furthermore, CCR6+MCAM+CD161-CD4+ T cells expressing CD83 were increased in the peripheral blood of patients, and the CD83+ Th17-type cells accumulated in the lesional skin of psoriasis. In conclusion, pathogenic MCAM+CD161- Th17 cells may be involved in the Tc17 responses via IL-17A and CD83 in psoriasis.
Collapse
Affiliation(s)
- Kohei Maeda
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshihiro Tanioka
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Rei Takahashi
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Hideaki Watanabe
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Hirohiko Sueki
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Yusuke Miwa
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Kasama
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Sanju Iwamoto
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
5
|
Huang Y, Zhang W, Xu C, Li Q, Zhang W, Xu W, Zhang M. Presence of PD-1 similarity genes in monocytes may promote the development of type 1 diabetes mellitus and poor prognosis of pancreatic cancer. BMJ Open Diabetes Res Care 2023; 11:11/3/e003196. [PMID: 37130628 PMCID: PMC10163525 DOI: 10.1136/bmjdrc-2022-003196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
INTRODUCTION To identify proteins and corresponding genes that share sequential and structural similarity with programmed cell death protein-1 (PD-1) in patients with type 1 diabetes mellitus (T1DM) via bioinformatics analysis. RESEARCH DESIGN AND METHODS All proteins with immunoglobulin V-set domain were screened in the human protein sequence database, and the corresponding genes were obtained in the gene sequence database. GSE154609 was downloaded from the GEO database, which contained peripheral blood CD14+ monocyte samples from patients with T1DM and healthy controls. The difference result and the similar genes were intersected. Analysis of gene ontology and Kyoto encyclopedia of genes and genomes pathways was used to predict potential functions using the R package 'cluster profiler'. The expression differences of intersected genes were analyzed in The Cancer Genome Atlas pancreatic cancer dataset and GTEx database using t-test. The correlation between the overall survival and disease-free progression of patients with pancreatic cancer was analyzed using Kaplan-Meier survival analysis. RESULTS 2068 proteins with immunoglobulin V-set domain similar to PD-1 and 307 corresponding genes were found. 1705 upregulated differentially expressed genes (DEGs) and 1335 downregulated DEGs in patients with T1DM compared with healthy controls were identified. A total of 21 genes were overlapped with the 307 PD-1 similarity genes, including 7 upregulated and 14 downregulated. Of these, mRNA levels of 13 genes were significantly increased in patients with pancreatic cancer. High expression of MYOM3 and HHLA2 was significantly correlated with shorter overall survival of patients with pancreatic cancer, while high expression of FGFRL1, CD274, and SPEG was significantly correlated with shorter disease-free survival of patients with pancreatic cancer. CONCLUSIONS Genes encoding immunoglobulin V-set domain similar to PD-1 may contribute to the occurrence of T1DM. Of these genes, MYOM3 and SPEG may serve as potential biomarkers for the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Yuquan Huang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenchuan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Can Xu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qingxia Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wu Zhang
- Clinical School of Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wanfeng Xu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingming Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Hoff J, Xiong L, Kammann T, Neugebauer S, Micheel JM, Gaßler N, Bauer M, Press AT. RIPK3 promoter hypermethylation in hepatocytes protects from bile acid-induced inflammation and necroptosis. Cell Death Dis 2023; 14:275. [PMID: 37072399 PMCID: PMC10113265 DOI: 10.1038/s41419-023-05794-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Necroptosis facilitates cell death in a controlled manner and is employed by many cell types following injury. It plays a significant role in various liver diseases, albeit the cell-type-specific regulation of necroptosis in the liver and especially hepatocytes, has not yet been conceptualized. We demonstrate that DNA methylation suppresses RIPK3 expression in human hepatocytes and HepG2 cells. In diseases leading to cholestasis, the RIPK3 expression is induced in mice and humans in a cell-type-specific manner. Overexpression of RIPK3 in HepG2 cells leads to RIPK3 activation by phosphorylation and cell death, further modulated by different bile acids. Additionally, bile acids and RIPK3 activation further facilitate JNK phosphorylation, IL-8 expression, and its release. This suggests that hepatocytes suppress RIPK3 expression to protect themselves from necroptosis and cytokine release induced by bile acid and RIPK3. In chronic liver diseases associated with cholestasis, induction of RIPK3 expression may be an early event signaling danger and repair through releasing IL-8.
Collapse
Affiliation(s)
- Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Ling Xiong
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Tobias Kammann
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Sophie Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, 07747, Germany
| | - Julia M Micheel
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | | | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany.
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, 07747, Germany.
| |
Collapse
|
7
|
Single-cell sequencing reveals that endothelial cells, EndMT cells and mural cells contribute to the pathogenesis of cavernous malformations. Exp Mol Med 2023; 55:628-642. [PMID: 36914857 PMCID: PMC10073145 DOI: 10.1038/s12276-023-00962-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/13/2022] [Accepted: 01/01/2023] [Indexed: 03/14/2023] Open
Abstract
Cavernous malformations (CMs) invading the central nervous system occur in ~0.16-0.4% of the general population, often resulting in hemorrhages and focal neurological deficits. Further understanding of disease mechanisms and therapeutic strategies requires a deeper knowledge of CMs in humans. Herein, we performed single-cell RNA sequencing (scRNA-seq) analysis on unselected viable cells from twelve human CM samples and three control samples. A total of 112,670 high-quality cells were clustered into 11 major cell types, which shared a number of common features in CMs harboring different genetic mutations. A new EC subpopulation marked with PLVAP was uniquely identified in lesions. The cellular ligand‒receptor network revealed that the PLVAP-positive EC subcluster was the strongest contributor to the ANGPT and VEGF signaling pathways in all cell types. The PI3K/AKT/mTOR pathway was strongly activated in the PLVAP-positive subcluster even in non-PIK3CA mutation carriers. Moreover, endothelial-to-mesenchymal transition (EndMT) cells were identified for the first time in CMs at the single-cell level, which was accompanied by strong immune activation. The transcription factor SPI1 was predicted to be a novel key driver of EndMT, which was confirmed by in vitro and in vivo studies. A specific fibroblast-like phenotype was more prevalent in lesion smooth muscle cells, hinting at the role of vessel reconstructions and repairs in CMs, and we also confirmed that TWIST1 could induce SMC phenotypic switching in vitro and in vivo. Our results provide novel insights into the pathomechanism decryption and further precise therapy of CMs.
Collapse
|
8
|
He Y, Kim J, Tacconi C, Moody J, Dieterich LC, Anzengruber F, Maul JT, Gousopoulos E, Restivo G, Levesque MP, Lindenblatt N, Shin JW, Hon CC, Detmar M. Mediators of Capillary-to-Venule Conversion in the Chronic Inflammatory Skin Disease Psoriasis. J Invest Dermatol 2022; 142:3313-3326.e13. [PMID: 35777499 DOI: 10.1016/j.jid.2022.05.1089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 01/05/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperplasia and hyperkeratosis, immune cell infiltration and vascular remodeling. Despite the emerging recognition of vascular normalization as a potential strategy for managing psoriasis, an in-depth delineation of the remodeled dermal vasculature has been missing. In this study, we exploited 5' single-cell RNA sequencing to investigate the transcriptomic alterations in different subpopulations of blood vascular and lymphatic endothelial cells directly isolated from psoriatic and healthy human skin. Individual subtypes of endothelial cells underwent specific molecular repatterning associated with cell adhesion and extracellular matrix organization. Blood capillaries, in particular, showed upregulation of the melanoma cell adhesion molecule as well as its binding partners and adopted postcapillary venule‒like characteristics during chronic inflammation that are more permissive to leukocyte transmigration. We also identified psoriasis-specific interactions between cis-regulatory enhancers and promoters for each endothelial cell subtype, revealing the dysregulated gene regulatory networks in psoriasis. Together, our results provide more insights into the specific transcriptional responses and epigenetic signatures of endothelial cells lining different vessel compartments in chronic skin inflammation.
Collapse
Affiliation(s)
- Yuliang He
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Jihye Kim
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland; Department of Biosciences, University of Milan, Milan, Italy
| | - Jonathan Moody
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Lothar C Dieterich
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Florian Anzengruber
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland; Faculty of Medicine, University of Zürich, Zürich, Switzerland; Department of Internal Medicine - Dermatology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Julia-Tatjana Maul
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland; Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Gaetana Restivo
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | | | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital, Zürich, Switzerland
| | - Jay W Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Chung-Chau Hon
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences (IPW), Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Duan H, Jing L, Xiang J, Ju C, Wu Z, Liu J, Ma X, Chen X, Liu Z, Feng J, Yan X. CD146 Associates with Gp130 to Control a Macrophage Pro-inflammatory Program That Regulates the Metabolic Response to Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103719. [PMID: 35258174 PMCID: PMC9069186 DOI: 10.1002/advs.202103719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The mechanism of obesity-related metabolic dysfunction involves the development of systemic inflammation, largely mediated by macrophages. Switching of M1-like adipose tissue macrophages (ATMs) to M2-like ATMs, a population of macrophages associated with weight loss and insulin sensitivity, is considered a viable therapeutic strategy for obesity-related metabolic syndrome. However, mechanisms for reestablishing the polarization of ATMs remain elusive. This study demonstrates that CD146+ ATMs accumulate in adipose tissue during diet-induced obesity and are associated with increased body weight, systemic inflammation, and obesity-induced insulin resistance. Inactivating the macrophage CD146 gene or antibody targeting of CD146 alleviates obesity-related chronic inflammation and metabolic dysfunction. Macrophage CD146 interacts with Glycoprotein 130 (Gp130), the common subunit of the receptor signaling complex for the interleukin-6 family of cytokines. CD146/Gp130 interaction promotes pro-inflammatory polarization of ATMs by activating JNK signaling and inhibiting the activation of STAT3, a transcription factor for M2-like polarization. Disruption of their interaction by anti-CD146 antibody or interleukin-6 steers ATMs toward anti-inflammatory polarization, thus attenuating obesity-induced chronic inflammation and metabolic dysfunction in mice. The results suggest that macrophage CD146 is an important determinant of pro-inflammatory polarization and plays a pivotal role in obesity-induced metabolic dysfunction. CD146 could constitute a novel therapeutic target for obesity complications.
Collapse
Affiliation(s)
- Hongxia Duan
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Lin Jing
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
| | - Jianquan Xiang
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
| | - Chenhui Ju
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhenzhen Wu
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Jingyu Liu
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
| | - Xinran Ma
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
| | - Xuehui Chen
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zheng Liu
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Jing Feng
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Xiyun Yan
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
- Joint Laboratory of Nanozymes in Zhengzhou UniversitySchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
10
|
Rapanotti MC, Cugini E, Nuccetelli M, Terrinoni A, Di Raimondo C, Lombardo P, Costanza G, Cosio T, Rossi P, Orlandi A, Campione E, Bernardini S, Blot-Chabaud M, Bianchi L. MCAM/MUC18/CD146 as a Multifaceted Warning Marker of Melanoma Progression in Liquid Biopsy. Int J Mol Sci 2021; 22:12416. [PMID: 34830300 PMCID: PMC8623757 DOI: 10.3390/ijms222212416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing as two membrane isoforms, long and short, and an additional soluble form, sCD146. We previously documented that molecular MCAM/MUC18/CD146 expression is strongly associated with disease progression. Recently, we showed that MCAM/MUC18/CD146 and ABCB5 can serve as melanoma-specific-targets in the selection of highly primitive circulating melanoma cells, and constitute putative proteins associated with disease spreading progression. Here, we analyzed CD146 molecular expression at onset or at disease recurrence in an enlarged melanoma case series. For some patients, we also performed the time courses of molecular monitoring. Moreover, we explored the role of soluble CD146 in different cohorts of melanoma patients at onset or disease progression, rather than in clinical remission, undergoing immune therapy or free from any clinical treatment. We showed that MCAM/MUC18/CD146 can be considered as: (1) a membrane antigen suitable for identification and enrichment in melanoma liquid biopsy; (2) a highly effective molecular "warning" marker for minimal residual disease monitoring; and (3) a soluble protein index of inflammation and putative response to therapeutic treatments.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- CD146 Antigen/blood
- CD146 Antigen/chemistry
- CD146 Antigen/genetics
- Disease Progression
- Female
- Follow-Up Studies
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Liquid Biopsy
- Longitudinal Studies
- Male
- Melanoma/blood
- Melanoma/genetics
- Melanoma/pathology
- Middle Aged
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/genetics
- Neoplasm, Residual/blood
- Neoplasm, Residual/genetics
- Neoplastic Cells, Circulating/metabolism
- Skin Neoplasms/blood
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Solubility
- Young Adult
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marzia Nuccetelli
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Alessandro Terrinoni
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Paolo Lombardo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Gaetana Costanza
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Piero Rossi
- Department of Surgery Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Augusto Orlandi
- Anatomic Pathology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Sergio Bernardini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marcel Blot-Chabaud
- Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 13005 Marseille, France;
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| |
Collapse
|
11
|
Duan H, Jing L, Jiang X, Ma Y, Wang D, Xiang J, Chen X, Wu Z, Yan H, Jia J, Liu Z, Feng J, Zhu M, Yan X. CD146 bound to LCK promotes T cell receptor signaling and antitumor immune responses in mice. J Clin Invest 2021; 131:e148568. [PMID: 34491908 DOI: 10.1172/jci148568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/02/2021] [Indexed: 01/27/2023] Open
Abstract
Initiation of T cell receptor (TCR) signaling involves the activation of the tyrosine kinase LCK; however, it is currently unclear how LCK is recruited and activated. Here, we have identified the membrane protein CD146 as an essential member of the TCR network for LCK activation. CD146 deficiency in T cells substantially impaired thymocyte development and peripheral activation, both of which depend on TCR signaling. CD146 was found to directly interact with the SH3 domain of coreceptor-free LCK via its cytoplasmic domain. Interestingly, we found CD146 to be present in both monomeric and dimeric forms in T cells, with the dimerized form increasing after TCR ligation. Increased dimerized CD146 recruited LCK and promoted LCK autophosphorylation. In tumor models, CD146 deficiency dramatically impaired the antitumor response of T cells. Together, our data reveal an LCK activation mechanism for TCR initiation. We also underscore a rational intervention based on CD146 for tumor immunotherapy.
Collapse
Affiliation(s)
- Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lin Jing
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Jiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanbin Ma
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Daji Wang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianquan Xiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuehui Chen
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Wu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Zheng Liu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingzhao Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Duan H, Zhao S, Xiang J, Ju C, Chen X, Gramaglia I, Yan X. Targeting the CD146/Galectin-9 axis protects the integrity of the blood-brain barrier in experimental cerebral malaria. Cell Mol Immunol 2021; 18:2443-2454. [PMID: 33203936 PMCID: PMC8484550 DOI: 10.1038/s41423-020-00582-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral malaria (CM) is a life-threatening diffuse encephalopathy caused by Plasmodium falciparum, in which the destruction of the blood-brain barrier (BBB) is the main cause of death. However, increasing evidence has shown that antimalarial drugs, the current treatment for CM, do little to protect against CM-induced BBB damage. Therefore, a means to alleviate BBB dysfunction would be a promising adjuvant therapy for CM. The adhesion molecule CD146 has been reported to be expressed in both endothelial cells and proinflammatory immune cells and mediates neuroinflammation. Here, we demonstrate that CD146 expressed on BBB endothelial cells but not immune cells is a novel therapeutic target in a mouse model of experimental cerebral malaria (eCM). Endothelial CD146 is upregulated during eCM development and facilitates the sequestration of infected red blood cells (RBCs) and/or proinflammatory lymphocytes in CNS blood vessels, thereby promoting the disruption of BBB integrity. Mechanistic studies showed that the interaction of CD146 and Galectin-9 contributes to the aggregation of infected RBCs and lymphocytes. Deletion of endothelial CD146 or treatment with the anti-CD146 antibody AA98 prevents severe signs of eCM, such as limb paralysis, brain vascular leakage, and death. In addition, AA98 combined with the antiparasitic drug artemether improved the cognition and memory of mice with eCM. Taken together, our findings suggest that endothelial CD146 is a novel and promising target in combination with antiparasitic drugs for future CM therapies.
Collapse
Affiliation(s)
- Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shuai Zhao
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianquan Xiang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chenhui Ju
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuehui Chen
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
13
|
Wang YH, Li CX, Stephenson JM, Marrelli SP, Kou YM, Meng DZ, Wu T. NR4A3 and CCL20 clusters dominate the genetic networks in CD146 + blood cells during acute myocardial infarction in humans. Eur J Med Res 2021; 26:113. [PMID: 34565470 PMCID: PMC8474787 DOI: 10.1186/s40001-021-00586-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND CD146 is a tight junction-associated molecule involved in maintaining endothelial barrier, and balancing immune-inflammation response, in cardiovascular disease. Notably, peripheral CD146+ cells significantly upsurge under vessel dyshomeostasis such as acute myocardial injury (AMI), appearing to be a promising therapeutic target. In this study, with a new view of gene correlation, we aim at deciphering the complex underlying mechanism of CD146+ cells' impact in the development of AMI. METHODS Transcription dataset GSE 66,360 of CD146+ blood cells from clinical subjects was downloaded from NCBI. Pearson networks were constructed and the clustering coefficients were calculated to disclose the differential connectivity genes (DCGs). Analysis of gene connectivity and gene expression were performed to reveal the hub genes and hub gene clusters followed by gene enrichment analysis. RESULTS AND CONCLUSIONS Among the total 23,520 genes, 27 genes out of 126 differential expression genes were identified as DCGs. These DCGs were found in the periphery of the networks under normal condition, but transferred to the functional center after AMI. Moreover, it was revealed that DCGs spontaneously crowded together into two functional models, CCL20 cluster and NR4A3 cluster, influencing the CD146-mediated signaling pathways during the pathology of AMI for the first time.
Collapse
Affiliation(s)
- Yan-Hui Wang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, China.
| | - Chen-Xin Li
- College of Mathematics and Systems Science, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, China
| | - Jessica M Stephenson
- Department of Neurology, University of Texas Health Science Center at Houston, 6431 Fannin street, Houston, TX, 77031, USA
| | - Sean P Marrelli
- Department of Neurology, University of Texas Health Science Center at Houston, 6431 Fannin street, Houston, TX, 77031, USA
| | - Yan-Ming Kou
- College of Mathematics and Systems Science, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, China
| | - Da-Zhi Meng
- College of Applied Science, Beijing University of Technology, 100 Pingleyuan, Beijing, 10024, Chaoyang, China.
| | - Ting Wu
- Department of Neurology, University of Texas Health Science Center at Houston, 6431 Fannin street, Houston, TX, 77031, USA.
| |
Collapse
|
14
|
Lee W, Lee JY, Lee HS, Yoo Y, Shin H, Kim H, Min DS, Bae JS, Seo YK. Thermosensitive Hydrogel Harboring CD146/IGF-1 Nanoparticles for Skeletal-Muscle Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:7070-7080. [PMID: 35006939 DOI: 10.1021/acsabm.1c00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In skeletal-muscle regeneration, it is critical to promote efferocytosis of immune cells and differentiation of satellite cells/postnatal muscle stem cells at the damaged sites. With the optimized poloxamer 407 composition gelled at body temperature, the drugs can be delivered locally. The purpose of this study is to develop a topical injection therapeutic agent for muscle regeneration, sarcopenia, and cachexia. Herein, we construct an injectable, in situ hydrogel system consisting of CD146, IGF-1, collagen I/III, and poloxamer 407, termed CIC gel. The secreted CD146 then binds to VEGFR2 on the muscle surface and effectively induces efferocytosis of neutrophils and macrophages. IGF-1 promotes satellite cell differentiation, and biocompatible collagen evades immune responses of the CIC gel. Consequently, these combined molecules activate muscle regeneration via autophagy and suppress muscle inflammation and apoptosis. Conclusively, we provide an applicable concept of the myogenesis-activating protein formulation, broadening the thermoreversible hydrogel to protein therapeutics for damaged muscle recovery.
Collapse
Affiliation(s)
- Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Han Sol Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngbum Yoo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyosoo Shin
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyelim Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Kyo Seo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Raychaudhuri SK, Abria C, Raychaudhuri SP. Phenotype and pathological significance of MCAM + (CD146 +) T cell subset in psoriatic arthritis. Mol Biol Rep 2021; 48:6787-6796. [PMID: 34491483 PMCID: PMC8481216 DOI: 10.1007/s11033-021-06678-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
Background CD146 (MCAM-melanoma cell adhesion molecule) is a cell surface adhesion molecule for Laminin 411. T cells expressing MCAM are mainly responsible for IL-17 production. IL-17 secreting T helper cells (Th17 cells) are critical for the pathogenesis of psoriatic arthritis (PsA). Here we hypothesized enrichment of CD146+IL-17+ memory T cells in PsA synovium and studied the association of CD146 expression and CD4+IL-17+ activated memory (CD11a+CD45RO+) T cells in synovial fluid and blood of PSA, rheumatoid arthritis (RA, a positive control) and osteoarthritis (OA) patients. Methods Hi-D FACS studies were done to identify IL-17 in CD4+CD146+CD45RO+ and CD8+CD146+CD45RO+ T cells. Results We observed that effector CD146+(MCAM+) T cells are enriched at the synovial inflammation site in PsA. Conclusion As CD146+ T cells are a key resource for IL-17 it is likely that the enrichment of these MCAM+ pathologic cells are critical for the disease process of PsA.
Collapse
Affiliation(s)
- Smriti K Raychaudhuri
- University of California Davis School of Medicine, Sacramento, USA.,Sacramento VA Medical Center, 10535 Hospital Way, Mather, CA, 95655, USA
| | - Christine Abria
- Sacramento VA Medical Center, 10535 Hospital Way, Mather, CA, 95655, USA
| | - Siba P Raychaudhuri
- University of California Davis School of Medicine, Sacramento, USA. .,Sacramento VA Medical Center, 10535 Hospital Way, Mather, CA, 95655, USA.
| |
Collapse
|
16
|
Ikeguchi R, Shimizu Y, Kondo A, Kanda N, So H, Kojima H, Kitagawa K. Melanoma Cell Adhesion Molecule Expressing Helper T Cells in CNS Inflammatory Demyelinating Diseases. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1069. [PMID: 34429366 PMCID: PMC8387012 DOI: 10.1212/nxi.0000000000001069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE To elucidate the relationship between melanoma cell adhesion molecule (MCAM)-expressing lymphocytes and pathogenesis of CNS inflammatory demyelinating diseases (IDDs). METHODS Patients with multiple sclerosis (MS) (n = 72) and neuromyelitis optica spectrum disorder (NMOSD, n = 29) were included. We analyzed the frequency and absolute numbers of MCAM+ lymphocytes (memory helper T [mTh] cells, naive helper T cells, CD8+ T cells, and B cells) in the peripheral blood (PB) and the CSF of patients with MS and NMOSD, treated with/without disease-modifying drugs (DMDs) or steroids, using flow cytometry. RESULTS The frequency of MCAM+ cells was higher in the mTh cell subset than that in other lymphocyte subsets. A significant increase in the frequency and the absolute number of MCAM+ mTh cells was observed in the PB of patients with NMOSD, whereas no increase was observed in the PB of patients with MS. The frequency of CSF MCAM+ mTh cells was higher in relapsing patients with MS and NMOSD than that in the control group. Although there was no difference in the frequencies of MCAM+ lymphocytes among the DMD-treated groups, fingolimod decreased the absolute number of MCAM+ lymphocytes. DISCUSSION MCAM+ mTh cells were elevated in the CSF of relapsing patients with MS and in both the PB and CSF of patients with NMOSD. These results indicate that MCAM contributes to the pathogenesis of MS and NMOSD through different mechanisms. MCAM could be a therapeutic target of CNS IDDs, and further study is needed to elucidate the underlying mechanism of MCAM in CNS IDD pathogenesis.
Collapse
Affiliation(s)
- Ryotaro Ikeguchi
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| | - Yuko Shimizu
- From the Department of Neurology, Tokyo Women's Medical University, Japan.
| | - Akihiro Kondo
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| | - Natsuki Kanda
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| | - Hayato So
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| | - Haruka Kojima
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| | - Kazuo Kitagawa
- From the Department of Neurology, Tokyo Women's Medical University, Japan
| |
Collapse
|
17
|
Chen X, Yan H, Liu D, Xu Q, Duan H, Feng J, Yan X, Xie C. Structure basis for AA98 inhibition on the activation of endothelial cells mediated by CD146. iScience 2021; 24:102417. [PMID: 33997697 PMCID: PMC8093899 DOI: 10.1016/j.isci.2021.102417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
CD146 is an adhesion molecule that plays important roles in angiogenesis, cancer metastasis, and immune response. It exists as a monomer or dimer on the cell surface. AA98 is a monoclonal antibody that binds to CD146, which abrogates the activation of CD146-mediated signaling pathways and shows inhibitory effects on tumor growth. However, how AA98 inhibits the function of CD146 remains unclear. Here, we describe a crystal structure of the CD146/AA98 Fab complex at a resolution of 2.8 Å. Monomeric CD146 is stabilized by AA98 Fab binding to the junction region of CD146 domains 4 and 5. A higher-affinity AA98 variant (here named HA98) was thus rationally designed. Better binding to CD146 and prominent inhibition on cell migration were achieved with HA98. Further experiments on xenografted melanoma in mice with HA98 revealed superior inhibitory effects on tumor growth to those of AA98, which suggested future applications of this antibody in cancer therapy. Structural analysis elucidated how mAb AA98 inhibited CD146-mediated EC activation AA98-stabilized CD146 in monomer thus inhibited activation of EC Higher affinity monoclonal antibody HA98 was rationally designed for cancer treatment
Collapse
Affiliation(s)
- Xuehui Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Huiwen Yan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Xie
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China.,High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, PR China.,International Magnetobiology Frontier Research Center, Science Island, Hefei 230031, China
| |
Collapse
|
18
|
Wnt5a promotes renal tubular inflammation in diabetic nephropathy by binding to CD146 through noncanonical Wnt signaling. Cell Death Dis 2021; 12:92. [PMID: 33462195 PMCID: PMC7814016 DOI: 10.1038/s41419-020-03377-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
Immune and inflammatory factors have emerged as key pathophysiological mechanisms in the progression of diabetic renal injury. Noncanonical Wnt5a signaling plays an essential role in obesity- or diabetes-induced metabolic dysfunction and inflammation, but its explicit molecular mechanisms and biological function in diabetic nephropathy (DN) remain unknown. In this study, we found that the expression of Wnt5a and CD146 in the kidney and the level of soluble form of CD146 (sCD146) in serum and urine samples were upregulated in DN patients compared to controls, and this alteration was correlated with the inflammatory process and progression of renal impairment. Blocking the activation of Wnt5a signaling with the Wnt5a antagonist Box5 prevented JNK phosphorylation and high glucose-induced inflammatory responses in db/db mice and high glucose-treated HK-2 cells. Similar effects were observed by silencing Wnt5a with small-interfering RNA (siRNA) in cultured HK-2 cells. Knockdown of CD146 blocked Wnt5a-induced expression of proinflammatory cytokines and activation of JNK, which suggests that CD146 is essential for the activation of the Wnt5a pathway. Finally, we confirmed that Wnt5a directly interacted with CD146 to activate noncanonical Wnt signaling in HK-2 cells. Taken together, our findings suggest that by directly binding to CD146, Wnt5a-induced noncanonical signaling is a contributing mechanism for renal tubular inflammation in diabetic nephropathy. The concentration of sCD146 in serum and urine could be a potential biomarker to predict renal outcomes in DN patients.
Collapse
|
19
|
Zondler L, Herich S, Kotte P, Körner K, Schneider-Hohendorf T, Wiendl H, Schwab N, Zarbock A. MCAM/CD146 Signaling via PLCγ1 Leads to Activation of β 1-Integrins in Memory T-Cells Resulting in Increased Brain Infiltration. Front Immunol 2020; 11:599936. [PMID: 33381120 PMCID: PMC7767877 DOI: 10.3389/fimmu.2020.599936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis is a chronic auto-inflammatory disease of the central nervous system affecting patients worldwide. Neuroinflammation in multiple sclerosis is mainly driven by peripheral immune cells which invade the central nervous system and cause neurodegenerative inflammation. To enter the target tissue, immune cells have to overcome the endothelium and transmigrate into the tissue. Numerous molecules mediate this process and, as they determine the tissue invasiveness of immune cells, display great therapeutic potential. Melanoma cell adhesion molecule (MCAM) is a membrane-anchored glycoprotein expressed by a subset of T-cells and MCAM+ T-cells have been shown to contribute to neuroinflammation in multiple sclerosis. The role of the MCAM molecule for brain invasion, however, remained largely unknown. In order to investigate the role of the MCAM molecule on T-cells, we used different in vitro and in vivo assays, including ex vivo flow chambers, biochemistry and microscopy experiments of the mouse brain. We demonstrate that MCAM directly mediates adhesion and that the engagement of MCAM induces intracellular signaling leading to β1-integrin activation on human T-cells. Furthermore, we show that MCAM engagement triggers the phosphorylation of PLCγ1 which is required for integrin activation and thus amplification of the cellular adhesive potential. To confirm the physiological relevance of our findings in vivo, we demonstrate that MCAM plays an important role in T-cell recruitment into the mouse brain. In conclusion, our data demonstrate that MCAM expressed on T-cells acts as an adhesion molecule and a signaling receptor that may trigger β1-integrin activation via PLCγ1 upon engagement.
Collapse
Affiliation(s)
- Lisa Zondler
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Sebastian Herich
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Petra Kotte
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Katharina Körner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| |
Collapse
|
20
|
CD146/sCD146 in the Pathogenesis and Monitoring of Angiogenic and Inflammatory Diseases. Biomedicines 2020; 8:biomedicines8120592. [PMID: 33321883 PMCID: PMC7764286 DOI: 10.3390/biomedicines8120592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
CD146 is a cell adhesion molecule expressed on endothelial cells, as well as on other cells such as mesenchymal stem cells and Th17 lymphocytes. This protein also exists in a soluble form, whereby it can be detected in biological fluids, including the serum or the cerebrospinal fluid (CSF). Some studies have highlighted the significance of CD146 and its soluble form in angiogenesis and inflammation, having been shown to contribute to the pathogenesis of many inflammatory autoimmune diseases, such as systemic sclerosis, mellitus diabetes, rheumatoid arthritis, inflammatory bowel diseases, and multiple sclerosis. In this review, we will focus on how CD146 and sCD146 contribute to the pathogenesis of the aforementioned autoimmune diseases and discuss the relevance of considering it as a biomarker in these pathologies.
Collapse
|
21
|
Liao J, Fu Q, Chen W, Li J, Zhang W, Zhang H, Gao Y, Yang S, Xu B, Huang H, Wang J, Li X, Liu L, Wang C. Plasma Soluble CD146 as a Potential Diagnostic Marker of Acute Rejection in Kidney Transplantation. Front Med (Lausanne) 2020; 7:531999. [PMID: 33330520 PMCID: PMC7729194 DOI: 10.3389/fmed.2020.531999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Previous studies have implicated the role of CD146 and its soluble form (sCD146) in the pathogenesis of inflammatory diseases. However, the association between CD146 and acute rejection in kidney transplant patients remains unexplored. In this study, fifty-six patients with biopsy-proved rejection or non-rejection and 11 stable allograft function patients were retrospectively analyzed. Soluble CD146 in plasma was detected in peripheral blood by enzyme linked immunosorbent assay (ELISA), and local CD146 expression in graft biopsy was detected by immunohistochemistry. We found that plasma soluble CD146 in acute rejection recipients was significantly higher than in stable patients without rejection, and the biopsy CD146 staining in the rejection group was higher than that of the non-rejection group. Multivariate analysis demonstrated soluble CD146 as an independent risk factor of acute rejection. The area under the receiver operating characteristic curve (AUC) of sCD146 for AR diagnosis was 0.895, and the optimal cut-off value was 75.64 ng/ml, with a sensitivity of 87.8% and a specificity of 80.8%, which was better than eGFR alone (P = 0.02496). Immunohistochemistry showed CD146 expression in glomeruli was positively correlated with the Banff-g score, and its expression in tubules also had a positive relationship with the Banff-t score. Therefore, soluble CD146 may be a potential biomarker of acute rejection. Increased CD146 expression in the endothelial or tubular epithelial cells may imply that endothelial/epithelial dysfunction is involved in the pathogenesis of immune injury.
Collapse
Affiliation(s)
- Jun Liao
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenfang Chen
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhui Zhang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanxi Zhang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| | - Shicong Yang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bowen Xu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huiting Huang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xirui Li
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| |
Collapse
|
22
|
Olajuyin AM, Olajuyin AK, Wang Z, Zhao X, Zhang X. CD146 T cells in lung cancer: its function, detection, and clinical implications as a biomarker and therapeutic target. Cancer Cell Int 2019; 19:247. [PMID: 31572064 PMCID: PMC6761715 DOI: 10.1186/s12935-019-0969-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
CD146 alternatively called melanoma cell adhesion molecule (MCAM), is a biomarker and therapeutic target of clinical significance. It is found on different cells including the endothelial cells and lymphocytes which participate in heterotypic and homotypic ligand-receptor. This review concentrated on the CD146 expression T cells (or lymphocytes) centering on Treg in lung cancer. Here, we have also considered the vigorous investigation of CD146 mainly acknowledged new roles, essential mechanisms and clinical implications of CD146 in cancer. CD146 has progressively become a significant molecule, particularly recognized as a novel biomarker, prognosis and therapy for cancer. Hence, targeting CD146 expression by utilization of methanol extracts of Calotropis procera leaf may be useful for the treatment of carcinogenesis.
Collapse
Affiliation(s)
- Ayobami Matthew Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Adefunke Kafayat Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xingru Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
23
|
Luo Y, Teng X, Zhang L, Chen J, Liu Z, Chen X, Zhao S, Yang S, Feng J, Yan X. CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nat Commun 2019; 10:3551. [PMID: 31391533 PMCID: PMC6686016 DOI: 10.1038/s41467-019-11500-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease of cardiopulmonary units. No cure is currently available due to an incomplete understanding of vascular remodeling. Here we identify CD146-hypoxia-inducible transcription factor 1 alpha (HIF-1α) cross-regulation as a key determinant in vascular remodeling and PAH pathogenesis. CD146 is markedly upregulated in pulmonary artery smooth muscle cells (PASMCs/SMCs) and in proportion to disease severity. CD146 expression and HIF-1α transcriptional program reinforce each other to physiologically enable PASMCs to adopt a more synthetic phenotype. Disruption of CD146-HIF-1α cross-talk by genetic ablation of Cd146 in SMCs mitigates pulmonary vascular remodeling in chronic hypoxic mice. Strikingly, targeting of this axis with anti-CD146 antibodies alleviates established pulmonary hypertension (PH) and enhances cardiac function in two rodent models. This study provides mechanistic insights into hypoxic reprogramming that permits vascular remodeling, and thus provides proof of concept for anti-remodeling therapy for PAH through direct modulation of CD146-HIF-1α cross-regulation. Vascular remodelling contributes to the development of pulmonary hypertension (PH). Here Luo and colleagues find that increases in CD146 levels drive vascular remodelling in PH through a cross-talk with hypoxia inducible factor (HIF) signalling, and show that inhibition of CD146 can attenuate disease progression.
Collapse
Affiliation(s)
- Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China.
| | - Xiao Teng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, 100037, Beijing, China
| | - Lingling Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, 100730, Beijing, China
| | - Jianan Chen
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
| | - Zheng Liu
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
| | - Xuehui Chen
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
| | - Shuai Zhao
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
| | - Sai Yang
- Laboratory Animal Research Center, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China.
| |
Collapse
|
24
|
Zhang L, Luo Y, Teng X, Wu Z, Li M, Xu D, Wang Q, Wang F, Feng J, Zeng X, Yan X. CD146: a potential therapeutic target for systemic sclerosis. Protein Cell 2018; 9:1050-1054. [PMID: 29671201 PMCID: PMC6251808 DOI: 10.1007/s13238-018-0531-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Lingling Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Xiao Teng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Zhenzhen Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Fei Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Breuer J, Korpos E, Hannocks MJ, Schneider-Hohendorf T, Song J, Zondler L, Herich S, Flanagan K, Korn T, Zarbock A, Kuhlmann T, Sorokin L, Wiendl H, Schwab N. Blockade of MCAM/CD146 impedes CNS infiltration of T cells over the choroid plexus. J Neuroinflammation 2018; 15:236. [PMID: 30134924 PMCID: PMC6106934 DOI: 10.1186/s12974-018-1276-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background Very late antigen 4 (VLA-4; integrin α4β1) is critical for transmigration of T helper (TH) 1 cells into the central nervous system (CNS) under inflammatory conditions such as multiple sclerosis (MS). We have previously shown that VLA-4 and melanoma cell adhesion molecule (MCAM) are important for trans-endothelial migration of human TH17 cells in vitro and here investigate their contribution to pathogenic CNS inflammation. Methods Antibody blockade of VLA-4 and MCAM is assessed in murine models of CNS inflammation in conjunction with conditional ablation of α4-integrin expression in T cells. Effects of VLA-4 and MCAM blockade on lymphocyte migration are further investigated in the human system via in vitro T cell transmigration assays. Results Compared to the broad effects of VLA-4 blockade on encephalitogenic T cell migration over endothelial barriers, MCAM blockade impeded encephalitogenic T cell migration in murine models of MS that especially depend on CNS migration across the choroid plexus (CP). In transgenic mice lacking T cell α4-integrin expression (CD4::Itga4−/−), MCAM blockade delayed disease onset. Migration of MCAM-expressing T cells through the CP into the CNS was restricted, where laminin 411 (composed of α4, β1, γ1 chains), the proposed major ligand of MCAM, is detected in the endothelial basement membranes of murine CP tissue. This finding was translated to the human system; blockade of MCAM with a therapeutic antibody reduced in vitro transmigration of MCAM-expressing T cells across a human fibroblast-derived extracellular matrix layer and a brain-derived endothelial monolayer, both expressing laminin α4. Laminin α4 was further detected in situ in CP endothelial-basement membranes in MS patients’ brain tissue. Conclusions Our findings suggest that MCAM-laminin 411 interactions facilitate trans-endothelial migration of MCAM-expressing T cells into the CNS, which seems to be highly relevant to migration via the CP and to potential future clinical applications in neuroinflammatory disorders. Electronic supplementary material The online version of this article (10.1186/s12974-018-1276-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johanna Breuer
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Eva Korpos
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Lisa Zondler
- Department of Anesthesiology, University of Münster, Münster, Germany
| | - Sebastian Herich
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany
| | - Ken Flanagan
- Prothena Biosciences Inc., South San Francisco, CA, USA
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexander Zarbock
- Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany.,Department of Anesthesiology, University of Münster, Münster, Germany
| | - Tanja Kuhlmann
- Department of Neuropathology, University of Münster, Münster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and of Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Clinic of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus-1, Building A01, 48149, Münster, Germany.
| |
Collapse
|
26
|
Forcade E, Paz K, Flynn R, Griesenauer B, Amet T, Li W, Liu L, Bakoyannis G, Jiang D, Chu HW, Lobera M, Yang J, Wilkes DS, Du J, Gartlan K, Hill GR, MacDonald KP, Espada EL, Blanco P, Serody JS, Koreth J, Cutler CS, Antin JH, Soiffer RJ, Ritz J, Paczesny S, Blazar BR. An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition. JCI Insight 2017; 2:92111. [PMID: 28614794 DOI: 10.1172/jci.insight.92111] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 01/13/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a major complication of allogeneic stem cell transplantation requiring novel therapies. CD146 and CCR5 are expressed by activated T cells and associated with increased T cell migration capacity and Th17 polarization. We performed a multiparametric flow cytometry analysis in a cohort of 40 HSCT patients together with a cGvHD murine model to understand the role of CD146-expressing subsets. We observed an increased frequency of CD146+ CD4 T cells in the 20 patients with active cGvHD with enhanced RORγt expression. This Th17-prone subset was enriched for cells coexpressing CD146 and CCR5 that harbor mixed Th1/Th17 features and were more frequent in cGvHD patients. Utilizing a murine cGvHD model with bronchiolitis obliterans (BO), we observed that donor T cells from CD146-deficient mice versus those from WT mice caused significantly reduced pulmonary cGvHD. Reduced cGvHD was not the result of failed germinal center B cell or T follicular helper cell generation. Instead, CD146-deficient T cells had significantly lower pulmonary macrophage infiltration and T cell CCR5, IL-17, and IFN-γ coexpression, suggesting defective pulmonary end-organ effector mechanisms. We, thus, evaluated the effect of TMP778, a small-molecule RORγt activity inhibitor. TMP778 markedly alleviated cGvHD in murine models similarly to agents targeting the Th17 pathway, such as STAT3 inhibitor or IL-17-blocking antibody. Our data suggest CD146-expressing T cells as a cGvHD biomarker and suggest that targeting the Th17 pathway may represent a promising therapy for cGvHD.
Collapse
Affiliation(s)
- Edouard Forcade
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France.,Department of Hematology and Cell Therapy, University Hospital, Bordeaux, France
| | - Katelyn Paz
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan Flynn
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brad Griesenauer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tohti Amet
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wei Li
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Liangyi Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Giorgos Bakoyannis
- Department of Biostatistics, Indiana University Fairbanks School of Public Health and School of Medicine, Indiana, USA
| | - Di Jiang
- National Jewish Health, Denver, Colorado, USA
| | | | | | | | - David S Wilkes
- Dean, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Jing Du
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kate Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kelli Pa MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eduardo L Espada
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Blanco
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John Koreth
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Corey S Cutler
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph H Antin
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J Soiffer
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Jerome Ritz
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
27
|
Ito T, Tamura N, Okuda S, Tada K, Matsushita M, Yamaji K, Kato K, Takasaki Y. Elevated serum levels of soluble CD146 in patients with systemic sclerosis. Clin Rheumatol 2016; 36:119-124. [PMID: 27726047 DOI: 10.1007/s10067-016-3434-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/24/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023]
Abstract
CD146, a transmembrane glycoprotein member of the immunoglobulin superfamily, acts as an adhesion molecule that helps maintain the cell monolayer. Human endothelial cells expressing CD146 are involved in angiogenesis and inflammation. Recently, we developed a sandwich ELISA for detecting soluble CD146 (sCD146) in human serum specimens. The aim of this study is to determine serum levels of sCD146 in patients with systemic sclerosis (SSc) and to examine the relationship between sCD146 levels and clinical manifestations. We quantified serum sCD146 levels in 47 serum samples from patients fulfilling criteria for SSc, 23 serum samples from patients fulfilling criteria for rheumatoid arthritis (RA), and 25 healthy controls. We also investigated the relationship between sCD146 levels and various clinical characteristics with SSc patients. Levels of sCD146 were significantly higher in the 47 patients with SSc than in the 25 healthy controls and 23 patients with RA (12.50 vs. 6.91 vs. 9.95 ng/ml; p < 0.001). Serum sCD146 levels in SSc patients with pulmonary arterial hypertension (PAH) were lower than in SSc patients without PAH (10.12 vs.13.17 ng/ml; p < 0.01). The serum levels of sCD146 were elevated in patients with SSc. However, decreased sCD146 levels were observed in SSc patients with PAH. Further studies are necessary to elucidate the sources and the mechanisms.
Collapse
Affiliation(s)
- Tomoko Ito
- Department of Internal Medicine and Rheumatology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| | - Sayuri Okuda
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama, Japan
| | - Kurisu Tada
- Department of Internal Medicine and Rheumatology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Masakazu Matsushita
- Department of Internal Medicine and Rheumatology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Kazunori Kato
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama, Japan
| | - Yoshinari Takasaki
- Department of Internal Medicine and Rheumatology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
28
|
|
29
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|