1
|
Dowd-Green C, Brown D, Wilson A, Streiff M. Supratherapeutic INR During Treatment With Nirmatrelvir/Ritonavir and Warfarin and Acute Illness With COVID-19: A Case Report. J Pharm Pract 2024; 37:1414-1418. [PMID: 38803049 DOI: 10.1177/08971900241257296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background: Several studies have examined INR fluctuations using pharmacokinetic (PK) models or post-hoc INR values after completing nirmatrelvir/ritonavir, but further study of the effects of the drug interaction with warfarin during treatment is necessary. Case Summary: Nirmatrelvir/ritonavir is largely utilized in the outpatient setting so data regarding INR trends in hospitalized patients on warfarin is limited. However, many who receive nirmatrelvir/ritonavir outpatient experience difficulty with presenting to clinic for INR checks due to feeling acutely ill along with isolation precautions. We present the case of a patient receiving warfarin and utilizing home INR testing for monitoring. After diagnosis of coronavirus disease of 2019 (COVID-19), she was started on nirmatrelvir/ritonavir on day five after testing positive. Most recent INR prior to the start of therapy was 2.7 and had been stable on the same dose for months prior to infection. On day two of nirmatrelvir/ritonavir, her INR rose to 4.0 on home point of care INR testing. Despite reducing her dose of warfarin by 15%, her INR remained supratherapeutic the day after completing nirmatrelvir/ritonavir (4.0) and for several checks after. One month after completion of therapy, her INR returned to therapeutic levels. Practice Implications: While PK models and case series have hypothesized both potential increases or decreases in INR with the nirmatrelvir/ritonavir and warfarin interaction, COVID-19 infection itself can cause several pharmacodynamic changes which can increase INR, including decreased appetite and, in severe cases, organ dysfunction. This case provides real-world insight into the drug interaction between nirmatrelvir/ritonavir and the drug-disease state interaction between warfarin and COVID-19.
Collapse
Affiliation(s)
| | - Dannielle Brown
- Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Michael Streiff
- Division of Hematology, Department of Medicine, Johns Hopkins University and Johns Hopkins Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Matula Z, Király V, Bekő G, Gönczi M, Zóka A, Steinhauser R, Uher F, Vályi-Nagy I. High prevalence of long COVID in anti-TPO positive euthyroid individuals with strongly elevated SARS-CoV-2-specific T cell responses and moderately raised anti-spike IgG levels 23 months post-infection. Front Immunol 2024; 15:1448659. [PMID: 39450181 PMCID: PMC11499158 DOI: 10.3389/fimmu.2024.1448659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, the causative agent of coronavirus disease 2019 (COVID-19), causes post-acute infection syndrome in a surprisingly large number of cases worldwide. This condition, also known as long COVID or post-acute sequelae of COVID-19, is characterized by extremely complex symptoms and pathology. There is a growing consensus that this condition is a consequence of virus-induced immune activation and the inflammatory cascade, with its prolonged duration caused by a persistent virus reservoir. Methods In this cross-sectional study, we analyzed the SARS-CoV-2-specific T cell response against the spike, nucleocapsid, and membrane proteins, as well as the levels of spike-specific IgG antibodies in 51 healthcare workers, categorized into long COVID or convalescent control groups based on the presence or absence of post-acute symptoms. Additionally, we compared the levels of autoantibodies previously identified during acute or critical COVID-19, including anti-dsDNA, anti-cardiolipin, anti-β2-glycoprotein I, anti-neutrophil cytoplasmic antibodies, and anti-thyroid peroxidase (anti-TPO). Furthermore, we analyzed the antibody levels targeting six nuclear antigens within the ENA-6 S panel, as positivity for certain anti-nuclear antibodies has recently been shown to associate not only with acute COVID-19 but also with long COVID. Finally, we examined the frequency of diabetes in both groups. Our investigations were conducted at an average of 18.2 months (convalescent control group) and 23.1 months (long COVID group) after confirmed acute COVID-19 infection, and an average of 21 months after booster vaccination. Results Our results showed significant differences between the two groups regarding the occurrence of acute infection relative to administering the individual vaccine doses, the frequency of acute symptoms, and the T cell response against all structural SARS-CoV-2 proteins. A statistical association was observed between the incidence of long COVID symptoms and highly elevated anti-TPO antibodies based on Pearson's chi-squared test. Although patients with long COVID showed moderately elevated anti-SARS-CoV-2 spike IgG serum antibody levels compared to control participants, and further differences were found regarding the positivity for anti-nuclear antibodies, anti-dsDNA, and HbA1c levels between the two groups, these differences were not statistically significant. Disscussion This study highlights the need for close monitoring of long COVID development in patients with elevated anti-TPO titers, which can be indicated by strongly elevated SARS-CoV-2-specific T cell response and moderately raised anti-spike IgG levels even long after the acute infection. However, our results do not exclude the possibility of new-onset thyroid autoimmunity after COVID-19, and further investigations are required to clarify the etiological link between highly elevated anti-TPO titers and long COVID.
Collapse
Affiliation(s)
- Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Viktória Király
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - András Zóka
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Róbert Steinhauser
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
3
|
Clarke M, Falcione S, Boghozian R, Todoran R, Zhang Y, C Real MG, StPierre A, Joy T, Jickling GC. Viral Infection and Ischemic Stroke: Emerging Trends and Mechanistic Insights. J Am Heart Assoc 2024; 13:e035892. [PMID: 39258541 DOI: 10.1161/jaha.124.035892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
Population studies have suggested that viral infections may be contributing to risk of ischemic stroke, although the mechanisms for this are unclear. In this review, we examine the epidemiological evidence supporting the involvement of viral diseases, including influenza, COVID-19, chronic herpesvirus infections, and hepatitis C in current trends of stroke incidence. To support these associations, we highlight the virus-host interactions that are critical in the context of stroke, including direct effects of acute and persistent viral infections on vascular function, inflammation, and thrombosis. Additionally, we evaluate the systemic changes that occur during viral infection that can predispose individuals to ischemic stroke, including alterations in blood pressure regulation, coagulation, and lipid metabolism. Our review emphasizes the need to further elucidate precise mechanisms involved in viral infections and stroke risk. Future research will inform the development of targeted interventions for stroke prevention in the context of viral diseases.
Collapse
Affiliation(s)
- Michael Clarke
- Faculty of Medicine and Dentistry Department of Medical Microbiology and Immunology University of Alberta Edmonton AB Canada
| | - Sarina Falcione
- Faculty of Medicine and Dentistry Department of Medicine Division of Neurology University of Alberta Edmonton AB Canada
| | - Roobina Boghozian
- Faculty of Medicine and Dentistry Department of Medicine Division of Neurology University of Alberta Edmonton AB Canada
| | - Raluca Todoran
- Faculty of Medicine and Dentistry Department of Medicine Division of Neurology University of Alberta Edmonton AB Canada
| | - Yiran Zhang
- Faculty of Medicine and Dentistry Department of Medicine Division of Neurology University of Alberta Edmonton AB Canada
| | - Maria Guadalupe C Real
- Faculty of Medicine and Dentistry Department of Medicine Division of Neurology University of Alberta Edmonton AB Canada
| | - Alexis StPierre
- Faculty of Medicine and Dentistry Department of Medicine Division of Neurology University of Alberta Edmonton AB Canada
| | - Twinkle Joy
- Faculty of Medicine and Dentistry Department of Medicine Division of Neurology University of Alberta Edmonton AB Canada
| | - Glen C Jickling
- Faculty of Medicine and Dentistry Department of Medical Microbiology and Immunology University of Alberta Edmonton AB Canada
- Faculty of Medicine and Dentistry Department of Medicine Division of Neurology University of Alberta Edmonton AB Canada
| |
Collapse
|
4
|
Mahroum N, Habra M, Alrifaai MA, Shoenfeld Y. Antiphospholipid syndrome in the era of COVID-19 - Two sides of a coin. Autoimmun Rev 2024; 23:103543. [PMID: 38604461 DOI: 10.1016/j.autrev.2024.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
In addition to the respiratory symptoms associated with COVID-19, the disease has consistently been linked to many autoimmune diseases such as systemic lupus erythematous and antiphospholipid syndrome (APS). APS in particular was of paramount significance due to its devastating clinical sequela. In fact, the hypercoagulable state seen in patients with acute COVID-19 and the critical role of anticoagulant treatment in affected individuals shed light on the possible relatedness between APS and COVID-19. Moreover, the role of autoimmunity in the assumed association is not less important especially with the accumulated data available regarding the autoimmunity-triggering effect of SARS-CoV-2 infection. This is furtherly strengthened at the time patients with COVID-19 manifested antiphospholipid antibodies of different types following infection. Additionally, the severe form of the APS spectrum, catastrophic APS (CAPS), was shown to have overlapping characteristics with severe COVID-19 such as cytokine storm and multi-organ failure. Interestingly, COVID vaccine-induced autoimmune phenomena described in the medical literature have pointed to an association with APS. Whether the antiphospholipid antibodies were present or de novo, COVID vaccine-induced vascular thrombosis in certain individuals necessitates further investigations regarding the possible mechanisms involved. In our current paper, we aimed to focus on the associations mentioned, their implications, importance, and consequences.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Mona Habra
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel; Reichman University, Herzliya, Israel
| |
Collapse
|
5
|
Vorobev A, Bitsadze V, Yagubova F, Khizroeva J, Solopova A, Tretyakova M, Gashimova N, Grigoreva K, Einullaeva S, Drozhzhina M, Hajiyeva A, Khalilulina E, Cherepanov A, Kapanadze D, Egorova E, Kuneshko N, Gris JC, Elalamy I, Ay C, Makatsariya A. The Phenomenon of Thrombotic Microangiopathy in Cancer Patients. Int J Mol Sci 2024; 25:9055. [PMID: 39201740 PMCID: PMC11354439 DOI: 10.3390/ijms25169055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Thrombotic microangiopathy (TMA) encompasses a range of disorders characterized by blood clotting in small blood vessels, leading to organ damage. It can manifest as various syndromes, including thrombotic thrombocytopenic purpura (TTP), hemolytic-uremic syndrome (HUS), and others, each with distinct causes and pathophysiology. Thrombo-inflammation plays a significant role in TMA pathogenesis: inflammatory mediators induce endothelial injury and activation of platelet and coagulation cascade, contributing to microvascular thrombosis. Primary TMA, such as TTP, is primarily caused by deficient ADAMTS13 metalloproteinase activity, either due to antibody-mediated inhibition or intrinsic enzyme synthesis defects. In cancer patients, a significant reduction in ADAMTS13 levels and a corresponding increase in VWF levels is observed. Chemotherapy further decreased ADAMTS13 levels and increased VWF levels, leading to an elevated VWF/ADAMTS13 ratio and increased thrombotic risk. Drug-induced TMA (DITMA) can result from immune-mediated or non-immune-mediated mechanisms. Severe cases of COVID-19 may lead to a convergence of syndromes, including disseminated intravascular coagulation (DIC), systemic inflammatory response syndrome (SIRS), and TMA. Treatment of TMA involves identifying the underlying cause, implementing therapies to inhibit complement activation, and providing supportive care to manage complications. Plasmapheresis may be beneficial in conditions like TTP. Prompt diagnosis and treatment are crucial to prevent serious complications and improve outcomes.
Collapse
Affiliation(s)
- Alexander Vorobev
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Victoria Bitsadze
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Fidan Yagubova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Jamilya Khizroeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Antonina Solopova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Maria Tretyakova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Nilufar Gashimova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Kristina Grigoreva
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Sabina Einullaeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Maria Drozhzhina
- Faculty of General Medicine, Russian University of Medicine, 4th Dolgorukovskaya Str., 127006 Moscow, Russia;
| | - Aygun Hajiyeva
- Faculty of General Medicine, I.M. Sechenov First State Moscow Medical University Baku Branch, Huseyn Javid, Yasamal, Baku AZ1141, Azerbaijan;
| | - Emilia Khalilulina
- Faculty of General Medicine, Pirogov Russian National Research Medical University, Ulitsa Ostrovityanova 1, 117997 Moscow, Russia;
| | - Alexander Cherepanov
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Daredzhan Kapanadze
- Center of Pathology of Pregnancy and Hemostasis «Medlabi», 340112 Tbilisi, Georgia;
| | - Elena Egorova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Nart Kuneshko
- Moscow’s Region Odintsovo Maternity Hospital, 143003 Odintsovo, Russia;
| | - Jean-Christophe Gris
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
- Faculty of Pharmaceutical and Biological Sciences, Montpellier University, 34093 Montpellier, France
| | - Ismail Elalamy
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
- Department Hematology and Thrombosis Center, Medicine Sorbonne University, 75012 Paris, France
- Hospital Tenon, 4 Rue de la Chine, 75020 Paris, France
| | - Cihan Ay
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
- Department of Medicine I, Clinical Division of Hematology and Hemostaseology, Medical University of Vienna, 1080 Vienna, Austria
| | - Alexander Makatsariya
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| |
Collapse
|
6
|
Wang C, Jiang H, Chen S, Zhao Y, Li J, Huang C, Zhou Y, Wang Q, Tian X, Li M, Zeng X, Zhao Y, Wu C, Zhao J. Exploring the impact of acute viral exposure on clinical characteristics and antibody profiles in antiphospholipid syndrome: a study in CAPSTONE. Clin Exp Med 2024; 24:130. [PMID: 38888664 PMCID: PMC11189343 DOI: 10.1007/s10238-024-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The relationship between antiphospholipid syndrome (APS) and acute viral infection, such as SARS-CoV-2, is unclear. This study aims to assess symptoms, antiphospholipid antibody (aPL) fluctuations, and complication risks in APS patients infected with SARS-CoV-2. APS patients from Peking Union Medical College Hospital during the COVID-19 outbreak (October-December 2022) were included. Age- and gender-matched APS patients without infection served as controls. Data on demographics, symptoms, treatments, and serum aPL levels were analyzed. Of 234 APS patients, 107 (45.7%) were infected with SARS-CoV-2. Typical symptoms included high fever (81.3%), cough/expectoration (70.1%), and pharyngalgia (52.3%). Age- and gender-based matching selected 97 patients in either infected or uninfected group. After infection, anti-β-2-glycoprotein I-IgG (aβ2GP1-IgG) increased from 4.14 to 4.18 AU/ml, aβ2GP1-IgM decreased from 9.85 to 7.38 AU/ml, and anticardiolipin-IgA (aCL-IgA) significantly increased with a median remaining at 2.50 APLU/ml. Lupus anticoagulants and other aPLs remained stable. Arterial thrombosis incidence increased from 18 (18.6%) to 21 (21.6%), while venous thrombosis incidence did not change. Additionally, 7 (6.5%) patients presented either new-onset or worsening thrombocytopenia, characterized by a significant decline in platelet count (no less than 10 × 109/L) within two weeks of SARS-CoV-2 infection, all of which recovered within 2 weeks. Acute SARS-CoV-2 infection may induce or worsen thrombocytopenia but does not substantially increase thrombotic events in APS. The process of SARS-CoV-2 infection was related to mild titer fluctuation of aβ2GP1-IgG, aβ2GP1-IgM and aCL-IgA in APS patients, necessitating careful monitoring and management.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Hui Jiang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Siyun Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yuan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jun Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Can Huang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yangzhong Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Chuancong Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China.
- Department of Rheumatology and Immunology, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China.
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China.
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
7
|
Li Q, Li J, Zhou M, Ge Y, Liu Z, Li T, Zhang L. Antiphospholipid antibody-related hepatic vasculitis in a juvenile after non-severe COVID-19: a case report and literature review. Front Immunol 2024; 15:1354349. [PMID: 38707895 PMCID: PMC11066154 DOI: 10.3389/fimmu.2024.1354349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Antiphospholipid antibodies (aPL) are both laboratory evidence and causative factors for a broad spectrum of clinical manifestations of antiphospholipid syndrome (APS), with thrombotic and obstetric events being the most prevalent. Despite the aPL-triggered vasculopathy nature of APS, vasculitic-like manifestations rarely exist in APS and mainly appear associated with other concurrent connective tissue diseases like systemic lupus erythematous. Several studies have characterized pulmonary capillaritis related to pathogenic aPL, suggesting vasculitis as a potential associated non-thrombotic manifestation. Here, we describe a 15-year-old girl who develops hepatic infarction in the presence of highly positive aPL, temporally related to prior non-severe COVID-19 infection. aPL-related hepatic vasculitis, which has not been reported before, contributes to liver ischemic necrosis. Immunosuppression therapy brings about favorable outcomes. Our case together with retrieved literature provides supportive evidence for aPL-related vasculitis, extending the spectrum of vascular changes raised by pathogenic aPL. Differentiation between thrombotic and vasculitic forms of vascular lesions is essential for appropriate therapeutic decision to include additional immunosuppression therapy. We also perform a systematic review to characterize the prevalence and clinical features of new-onset APS and APS relapses after COVID-19 for the first time, indicating the pathogenicity of aPL in a subset of COVID-19 patients.
Collapse
Affiliation(s)
- Qingyu Li
- Tsinghua Medicine, School of Medicine, Tsinghua University, Beijing, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingya Li
- Tsinghua Medicine, School of Medicine, Tsinghua University, Beijing, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Menglan Zhou
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Ying Ge
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhengyin Liu
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Taisheng Li
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Zlatković-Švenda M, Ovuka M, Ogrič M, Čučnik S, Žigon P, Radivčev A, Zdravković M, Radunović G. Antiphospholipid Antibodies and Vascular Thrombosis in Patients with Severe Forms of COVID-19. Biomedicines 2023; 11:3117. [PMID: 38137338 PMCID: PMC10741207 DOI: 10.3390/biomedicines11123117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 12/24/2023] Open
Abstract
Antiphospholipid antibodies (aPLA) are a laboratory criterion for the classification of antiphospholipid syndrome (APS) and are known to cause clinical symptoms such as vascular thrombosis or obstetric complications. It is suggested that aPLA may be associated with thromboembolism in severe COVID-19 cases. Therefore, we aimed to combine clinical data with laboratory findings of aPLA at four time points (admission, worsening, discharge, and 3-month follow-up) in patients hospitalized with COVID-19 pneumonia. In 111 patients with COVID-19 pneumonia, current and past history of thrombosis and pregnancy complications were recorded. Nine types of aPLA were determined at four time points: anticardiolipin (aCL), anti-β2-glycoprotein I (anti- β2GPI), and antiphosphatidylserine/prothrombin (aPS/PT) of the IgM, IgG, or IgA isotypes. During hospitalization, seven patients died, three of them due to pulmonary artery thromboembolism (none were aPLA positive). Only one of the five who developed pulmonary artery thrombosis was aPLA positive. Out of 9/101 patients with a history of thrombosis, five had arterial thrombosis and none were aPLA positive at admission and follow-up; four had venous thrombosis, and one was aPLA positive at all time points (newly diagnosed APS). Of these 9/101 patients, 55.6% were transiently aPLA positive at discharge only, compared to 26.1% without a history of thrombosis (p = 0.041). Patients with severe forms of COVID-19 and positive aPLA should receive the same dose and anticoagulant medication regimen as those with negative aPLA because those antibodies are mostly transiently positive and not linked to thrombosis and fatal outcomes.
Collapse
Affiliation(s)
- Mirjana Zlatković-Švenda
- Institute of Rheumatology Belgrade, 11000 Belgrade, Serbia; (G.R.); (A.R.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Milica Ovuka
- Clinical Hospital Center Pančevo, 26101 Pancevo, Serbia;
- Institute for Cardiovascular Diseases Dedinje, 11000 Belgrade, Serbia
| | - Manca Ogrič
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.O.); (S.Č.); (P.Ž.)
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.O.); (S.Č.); (P.Ž.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Polona Žigon
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.O.); (S.Č.); (P.Ž.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | | | - Marija Zdravković
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinical Hospital Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Goran Radunović
- Institute of Rheumatology Belgrade, 11000 Belgrade, Serbia; (G.R.); (A.R.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
9
|
Nasonov EL, Reshetnyak TM, Solovyev SK, Popkova TV. [Systemic lupus erythematosus and antiphospholipid syndrome: past, present, future]. TERAPEVT ARKH 2023; 95:365-374. [PMID: 38158987 DOI: 10.26442/00403660.2023.05.202246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 01/03/2024]
Abstract
Immune-inflammatory (autoimmune and autoinflammatory) rheumatic diseases are widespread severe chronic inflammatory diseases and also "models" for studying the fundamental mechanisms of pathogenesis and approach to pharmacotherapy of other diseases associated with autoimmunity and/or autoinflammation. Uncontrolled inflammation leading to hypercoagulation forms the basis of "thromboinflammation", which is considered a universal pathogenetic mechanism of organ involvement in immune-inflammatory rheumatic diseases, as well as in COVID-19 and atherosclerotic vascular lesions (atherothrombosis). Thrombo-inflammatory mechanisms play a crucial role in systemic lupus erythematosus and antiphospholipid syndrome. Russian rheumatology, under the leadership of academician Valentina Alexandrovna Nasonova, greatly contributed to the research of these disorders. This article addresses the current view about the overlapping pathogenetic mechanisms of thrombosis in systemic lupus erythematosus and antiphospholipid syndrome, the relevance of these studies during the COVID-19 pandemic, and the prospects for antithrombotic and anti-inflammatory therapy.
Collapse
Affiliation(s)
- E L Nasonov
- Nasonova Research Institute of Rheumatology
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
10
|
Sweet DR, Freeman ML, Zidar DA. Immunohematologic Biomarkers in COVID-19: Insights into Pathogenesis, Prognosis, and Prevention. Pathog Immun 2023; 8:17-50. [PMID: 37427016 PMCID: PMC10324469 DOI: 10.20411/pai.v8i1.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has had profound effects on the health of individuals and on healthcare systems worldwide. While healthcare workers on the frontlines have fought to quell multiple waves of infection, the efforts of the larger research community have changed the arch of this pandemic as well. This review will focus on biomarker discovery and other efforts to identify features that predict outcomes, and in so doing, identify possible effector and passenger mechanisms of adverse outcomes. Identifying measurable soluble factors, cell-types, and clinical parameters that predict a patient's disease course will have a legacy for the study of immunologic responses, especially stimuli, which induce an overactive, yet ineffectual immune system. As prognostic biomarkers were identified, some have served to represent pathways of therapeutic interest in clinical trials. The pandemic conditions have created urgency for accelerated target identification and validation. Collectively, these COVID-19 studies of biomarkers, disease outcomes, and therapeutic efficacy have revealed that immunologic systems and responses to stimuli are more heterogeneous than previously assumed. Understanding the genetic and acquired features that mediate divergent immunologic outcomes in response to this global exposure is ongoing and will ultimately improve our preparedness for future pandemics, as well as impact preventive approaches to other immunologic diseases.
Collapse
Affiliation(s)
- David R. Sweet
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
- Cardiology Section, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
11
|
Sheriff F, Lavezo J, Floresca R, Chaudhury MR, Colina G, Regenhardt R, Gupta V, Rodriguez G, Maud A. Clinicopathologic Analysis of COVID‐19 Associated Thrombi in the Setting of Large Vessel Occlusion: A Prospective Case–Control Study. STROKE: VASCULAR AND INTERVENTIONAL NEUROLOGY 2023. [DOI: 10.1161/svin.123.000840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 07/19/2023]
Abstract
BACKGROUND
Acute ischemic stroke secondary to large vessel occlusion is among the most serious complications associated with COVID‐19 infection resulting in worse morbidity and mortality. We sought to study the association between COVID‐19 infection and large vessel occlusion thrombus pathology to better define the etiopathogenesis of this atypical cause of stroke.
METHODS
Thrombi were collected during mechanical thrombectomy and stained using hematoxylin and eosin. Blinded analysis of pathology was prospectively performed by a board‐certified neuropathologist. Red blood cell, fibrin, and white blood cell predominance was ascertained. Concomitant peripheral blood counts and clinical and imaging data were collected and analyzed. All samples underwent performance of reverse transcription polymerase chain reaction for SARS‐CoV2.
RESULTS
Between January 2020 and February 2022, a total of 952 acute ischemic stroke admissions were seen at the University Medical Center of El Paso, TX. Of these, 195 patients (20.5%) had large vessel occlusions and underwent mechanical thrombectomy and 53 patients had thrombus collected and analyzed. Seven patients (3.6%) tested positive for SARS‐CoV2. COVID‐19 positive patients were more likely to be younger (mean 57.4 years;
P
=0.07), male (85.7%;
P
=0.03), and have red blood cell predominant thrombi (85.7%;
P
=0.03). There was a statistically significant association between peripheral neutrophil count and white blood cell lysis in the overall cohort (
P
=0.015), who did not differ according to COVID‐19 status.
CONCLUSION
Thrombi retrieved from patients who were COVID‐19 positive and had stroke demonstrated red blood cell predominance. This finding requires further investigation using appropriate immunohistochemical techniques in a larger cohort of patients.
Collapse
Affiliation(s)
- Faheem Sheriff
- Department of Neurology Texas Tech University Health Sciences Center El Paso Paul L. Foster School of Medicine El Paso TX
| | - Jonathan Lavezo
- Department of Pathology Texas Tech University Health Sciences Center El Paso Paul L. Foster School of Medicine El Paso TX
| | - Ryan Floresca
- Texas Tech University Health Sciences Center El Paso Paul L. Foster School of Medicine El Paso TX
| | - Mohammad Rauf Chaudhury
- Department of Neurology University of Texas at Houston Health Sciences Center McGovern Medical School Houston TX
| | - Gabriela Colina
- Texas Tech University Health Sciences Center El Paso Paul L. Foster School of Medicine El Paso TX
| | - Robert Regenhardt
- Department of Neurosurgery Massachusetts General Hospital Harvard Medical School Boston MA
| | - Vikas Gupta
- Department of Neurology Texas Tech University Health Sciences Center El Paso Paul L. Foster School of Medicine El Paso TX
| | - Gustavo Rodriguez
- Department of Neurology Texas Tech University Health Sciences Center El Paso Paul L. Foster School of Medicine El Paso TX
| | - Alberto Maud
- Department of Neurology Texas Tech University Health Sciences Center El Paso Paul L. Foster School of Medicine El Paso TX
| |
Collapse
|
12
|
Singh TK, Zidar DA, McCrae K, Highland KB, Englund K, Cameron SJ, Chung MK. A Post-Pandemic Enigma: The Cardiovascular Impact of Post-Acute Sequelae of SARS-CoV-2. Circ Res 2023; 132:1358-1373. [PMID: 37167358 PMCID: PMC10171306 DOI: 10.1161/circresaha.122.322228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
COVID-19 has become the first modern-day pandemic of historic proportion, affecting >600 million individuals worldwide and causing >6.5 million deaths. While acute infection has had devastating consequences, postacute sequelae of SARS-CoV-2 infection appears to be a pandemic of its own, impacting up to one-third of survivors and often causing symptoms suggestive of cardiovascular phenomena. This review will highlight the suspected pathophysiology of postacute sequelae of SARS-CoV-2, its influence on the cardiovascular system, and potential treatment strategies.
Collapse
Affiliation(s)
- Tamanna K Singh
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH (TKS, MC, SJC)
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| | - David A Zidar
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Louise Stokes Cleveland Veterans Affairs Medical Center, Department of Cardiovascular Medicine, Cleveland, OH (D.A.Z.)
| | - Keith McCrae
- Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH (KM)
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| | - Kristin B Highland
- Pulmonary Medicine, Cleveland Clinic, Cleveland, OH (KBH)
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| | - Kristin Englund
- Infectious Disease, Cleveland Clinic, Cleveland, OH (KE)
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| | - Scott J Cameron
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH (TKS, MC, SJC)
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| | - Mina K Chung
- Cleveland Clinic Lerner College of Medicine, OH (T.K.S., K.M., K.B.H., K.E., S.J.C., M.K.C.)
- Case Western Reserve University School of Medicine, Cleveland, OH (T.K.S., D.A.Z., K.M., K.B.H., K.E., S.J.C., M.K.C.)
| |
Collapse
|
13
|
Sher EK, Ćosović A, Džidić-Krivić A, Farhat EK, Pinjić E, Sher F. Covid-19 a triggering factor of autoimmune and multi-inflammatory diseases. Life Sci 2023; 319:121531. [PMID: 36858313 PMCID: PMC9969758 DOI: 10.1016/j.lfs.2023.121531] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
SARS-CoV-2 virus has attracted a lot of attention globally due to the autoimmune and inflammatory processes that were observed during the development of Covid-19 disease. Excessive activation of immune response and triggering of autoantibodies synthesis as well as an excessive synthesis of inflammatory cytokines and the onset of cytokine storm has a vital role in the disease outcome and the occurring autoimmune complications. This scenario is reminiscent of infiltration of lymphocytes and monocytes in specific organs and the increased production of autoantibodies and chemoattractants noted in other inflammatory and autoimmune diseases. The main goal of this study is to investigate the complex inflammatory processes that occur in Covid-19 disease and to find similarities with other inflammatory diseases such as multiple sclerosis (MS), acute respiratory distress syndrome (ARDS), rheumatoid arthritis (RA) and Kawasaki syndrome to advance existing diagnostic and therapeutic protocols. The therapy with Interferon-gamma (IFN-γ) and the use of S1P receptor modulators showed promising results. However, there are many unknowns about these mechanisms and possible novel therapies. Therefore, the inflammation and autoimmunity triggered by Covid-19 should be further investigated to improve existing diagnostic procedures and therapeutic protocols for Covid-19.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Adnan Ćosović
- Faculty of Pharmacy, University of Modern Sciences - CKM, Mostar 88000, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Neurology, Cantonal Hospital Zenica, Zenica 72000, Bosnia and Herzegovina
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition Research, Juraj Strossmayer University of Osijek, Faculty of Food Technology, Croatia
| | - Emma Pinjić
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, United States
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
14
|
Longitudinal Analysis of Antiphospholipid Antibody Dynamics after Infection with SARS-CoV-2 or Vaccination with BNT162b2. Int J Mol Sci 2022; 24:ijms24010211. [PMID: 36613655 PMCID: PMC9820546 DOI: 10.3390/ijms24010211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
Antiphospholipid antibodies (aPL) comprise a group of autoantibodies that reflect prothrombotic risk in antiphospholipid syndrome (APS) but may also be present in a small proportion of healthy individuals. They are often transiently elevated in infections, including SARS-CoV-2, and may also be associated with vaccine-induced autoimmunity. Therefore, we aimed to investigate the dynamics of aPL in COVID-19 patients and in individuals (healthcare professionals-HCPs) after receiving BNT162b2 vaccine and to compare aPL levels and positivity with those found in APS patients. We measured solid-phase identifiable aPL, including anticardiolipin (aCL), anti-β2 glycoprotein I (anti-β2GPI), and anti-prothrombin/phosphatidylserine (aPS/PT) antibodies in 58 HCPs before and after vaccination (at 3 weeks, 3, 6, and 9 months after the second dose, and 3 weeks after the third booster dose), in 45 COVID-19 patients hospitalized in the ICU, in 89 COVID-19 patients hospitalized in the non-ICU (at admission, at hospital discharge, and at follow-up), and in 52 patients with APS. The most frequently induced aPL in COVID-19 patients (hospitalized in non-ICU) were aCL (50.6% of patients had positive levels at at least one time point), followed by anti-β2GPI (21.3% of patients had positive levels at at least one time point). In 9/89 COVID-19 patients, positive aPL levels persisted for three months. One HCP developed aCL IgG after vaccination but the persistence could not be confirmed, and two HCPs developed persistent anti-β2GPI IgG after vaccination with no increase during a 1-year follow-up period. Solid-phase aPL were detected in 84.6% of APS patients, in 49.4% of COVID-19 patients hospitalized in the non-ICU, in 33.3% of COVID-19 patients hospitalized in the ICU, and in only 17.2% of vaccinated HCPs. aPL levels and multiple positivity were significantly lower in both infected groups and in vaccinated individuals compared with APS patients. In conclusion, BNT162b2 mRNA vaccine may have induced aPL in a few individuals, whereas SARS-CoV-2 infection itself results in a higher percentage of aPL induction, but the levels, persistence, and multiple positivity of aPL do not follow the pattern observed in APS.
Collapse
|
15
|
Favaloro EJ, Pasalic L, Lippi G. Autoimmune Diseases Affecting Hemostasis: A Narrative Review. Int J Mol Sci 2022; 23:ijms232314715. [PMID: 36499042 PMCID: PMC9738541 DOI: 10.3390/ijms232314715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022] Open
Abstract
Hemostasis reflects a homeostatic mechanism that aims to balance out pro-coagulant and anti-coagulant forces to maintain blood flow within the circulation. Simplistically, a relative excess of procoagulant forces can lead to thrombosis, and a relative excess of anticoagulant forces can lead to bleeding. There are a wide variety of congenital disorders associated with bleeding or thrombosis. In addition, there exist a vast array of autoimmune diseases that can also lead to either bleeding or thrombosis. For example, autoantibodies generated against clotting factors can lead to bleeding, of which acquired hemophilia A is the most common. As another example, autoimmune-mediated antibodies against phospholipids can generate a prothrombotic milieu in a condition known as antiphospholipid (antibody) syndrome (APS). Moreover, there exist various autoimmunity promoting environments that can lead to a variety of antibodies that affect hemostasis. Coronavirus disease 2019 (COVID-19) represents perhaps the contemporary example of such a state, with potential development of a kaleidoscope of such antibodies that primarily drive thrombosis, but may also lead to bleeding on rarer occasions. We provide here a narrative review to discuss the interaction between various autoimmune diseases and hemostasis.
Collapse
Affiliation(s)
- Emmanuel J. Favaloro
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
- Correspondence: ; Tel.: +61-2-8890-6618
| | - Leonardo Pasalic
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
- Westmead Clinical School, University of Sydney, Westmead, Sydney, NSW 2006, Australia
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, 37129 Verona, Italy
| |
Collapse
|
16
|
Kocivnik N, Velnar T. A Review Pertaining to SARS-CoV-2 and Autoimmune Diseases: What Is the Connection? LIFE (BASEL, SWITZERLAND) 2022; 12:life12111918. [PMID: 36431053 PMCID: PMC9698792 DOI: 10.3390/life12111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). It is known that infection with SARS-CoV-2 can lead to various autoimmune and autoinflammatory diseases. There are few reports in the literature on the association between SARS-CoV-2 and autoimmune diseases, and the number of reports has been increasing since 2020. Autoimmune diseases and SARS-CoV-2 infections are intertwined in several ways. Both conditions lead to immune-mediated tissue damage, the immune response is accompanied by the increased secretion of inflammatory cytokines and both conditions can be treated using immunomodulatory drugs. Patients with certain autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, cardiac sarcoidosis, idiopathic pulmonary fibrosis, autoimmune hepatitis, multiple sclerosis and others, are more susceptible to SARS-CoV-2 infection, either because of the active autoimmune disease or because of the medications used to treat it. Conversely, SARS-CoV-2 infection can also cause certain autoimmune diseases. In this paper, we describe the development of autoimmune diseases after COVID-19 and the recovery from COVID-19 in people with autoimmune diseases.
Collapse
Affiliation(s)
- Nina Kocivnik
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|