1
|
Abstract
PURPOSE Hydrogen sulfide (H2S) has many beneficial biological properties, including the ability to promote vasodilation. It has been shown to be released from stem cells and increased by hypoxia. Therefore, H2S may be an important paracrine factor in stem cell-mediated intestinal protection. We hypothesized that H2S created through conventional pathways would be a critical component of stem cell-mediated intestinal protection after ischemic injury. METHODS Human bone marrow-derived mesenchymal stem cells (BMSCs) were transfected with negative control siRNA (Scramble), or with siRNA to CBS, MPST, or CTH. Knockdown was confirmed with PCR and H2S gas assessed with AzMC fluorophore. Eight-week-old male mice then underwent intestinal ischemia for 60 min, after which time, perfusion was restored. BMSCs from each of the above groups were then placed into the mouse abdominal cavity before final closure. After 24 h, mice were reanesthetized and mesenteric perfusion was assessed by Laser Doppler Imaging (LDI). Animals were then sacrificed and intestines excised, placed in formalin, paraffin embedded, and stained with H & E. Intestines were then scored with a common mucosal injury grading scale. RESULTS PCR confirmed knockdown of conventional H2S-producing enzymes (CBS, MPST, CTH). H2S gas was decreased in MPST and CTH-transfected cells in normoxic conditions, but was not decreased compared with Scramble in any of the transfected groups in hypoxic conditions. BMSCs promoted increased mesenteric perfusion at 24 h postischemia compared with vehicle. Transfected stem cells provided equivalent protection. Histologic injury was improved with BMSCs compared with vehicle. CBS, MPST, and CTH knockdown cell lines did not have any worse histological injury compared with Scramble. CONCLUSIONS Knocking down conventional H2S-producing enzymes only impacted gas production in normoxic conditions. When cells were transfected in hypoxic conditions, as would be expected in the ischemic intestines, H2S gas was not depressed. These data, along with unchanged perfusion and histological injury parameters with conventional enzyme knockdown, would indicate that alternative H2S production pathways may be initiated during hypoxic and/or ischemic events.
Collapse
|
2
|
Kip P, Tao M, Trocha KM, MacArthur MR, Peters HAB, Mitchell SJ, Mann CG, Sluiter TJ, Jung J, Patterson S, Quax PHA, de Vries MR, Mitchell JR, Keith Ozaki C. Periprocedural Hydrogen Sulfide Therapy Improves Vascular Remodeling and Attenuates Vein Graft Disease. J Am Heart Assoc 2020; 9:e016391. [PMID: 33146045 PMCID: PMC7763704 DOI: 10.1161/jaha.120.016391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/31/2020] [Indexed: 11/25/2022]
Abstract
Background Failure rates after revascularization surgery remain high, both in vein grafts (VG) and arterial interventions. One promising approach to improve outcomes is endogenous upregulation of the gaseous transmitter-molecule hydrogen sulfide, via short-term dietary restriction. However, strict patient compliance stands as a potential translational barrier in the vascular surgery patient population. Here we present a new therapeutic approach, via a locally applicable gel containing the hydrogen sulfide releasing prodrug (GYY), to both mitigate graft failure and improve arterial remodeling. Methods and Results All experiments were performed on C57BL/6 (male, 12 weeks old) mice. VG surgery was performed by grafting a donor-mouse cava vein into the right common carotid artery of a recipient via an end-to-end anastomosis. In separate experiments arterial intimal hyperplasia was assayed via a right common carotid artery focal stenosis model. All mice were harvested at postoperative day 28 and artery/graft was processed for histology. Efficacy of hydrogen sulfide was first tested via GYY supplementation of drinking water either 1 week before VG surgery (pre-GYY) or starting immediately postoperatively (post-GYY). Pre-GYY mice had a 36.5% decrease in intimal/media+adventitia area ratio compared with controls. GYY in a 40% Pluronic gel (or vehicle) locally applied to the graft/artery had decreased intimal/media area ratios (right common carotid artery) and improved vessel diameters. GYY-geltreated VG had larger diameters at both postoperative days 14 and 28, and a 56.7% reduction in intimal/media+adventitia area ratios. Intimal vascular smooth muscle cell migration was decreased 30.6% after GYY gel treatment, which was reproduced in vitro. Conclusions Local gel-based treatment with the hydrogen sulfide-donor GYY stands as a translatable therapy to improve VG durability and arterial remodeling after injury.
Collapse
Affiliation(s)
- Peter Kip
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
- Einthoven Laboratory for Experimental Vascular Medicine and Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Ming Tao
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
| | - Kaspar M. Trocha
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
| | - Michael R. MacArthur
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
| | - Hendrika A. B. Peters
- Einthoven Laboratory for Experimental Vascular Medicine and Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Sarah J. Mitchell
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
| | - Charlotte G. Mann
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
| | - Thijs J. Sluiter
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
- Einthoven Laboratory for Experimental Vascular Medicine and Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Jonathan Jung
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
- School of MedicineUniversity of GlasgowGlasgowUK
| | - Suzannah Patterson
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
| | - Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular Medicine and Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Margreet R. de Vries
- Einthoven Laboratory for Experimental Vascular Medicine and Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - James R. Mitchell
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMA
| | - C. Keith Ozaki
- Department of Surgery and the Heart and Vascular CenterBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
| |
Collapse
|
3
|
Te Winkel J, John QE, Hosfield BD, Drucker NA, Das A, Olson KR, Markel TA. Mesenchymal stem cells promote mesenteric vasodilation through hydrogen sulfide and endothelial nitric oxide. Am J Physiol Gastrointest Liver Physiol 2019; 317:G441-G446. [PMID: 31343254 PMCID: PMC6842994 DOI: 10.1152/ajpgi.00132.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesenteric ischemia is a devastating process that can result in intestinal necrosis. Mesenchymal stem cells (MSCs) are becoming a promising treatment modality. We hypothesized that 1) MSCs would promote vasodilation of mesenteric arterioles, 2) hydrogen sulfide (H2S) would be a critical paracrine factor of stem cell-mediated vasodilation, 3) mesenteric vasodilation would be impaired in the absence of endothelial nitric oxide synthase (eNOS) within the host tissue, and 4) MSCs would improve the resistin-to-adiponectin ratio in mesenteric vessels. H2S was measured with a specific fluorophore (7-azido-3-methylcoumarin) in intact MSCs and in cells with the H2S-producing enzyme cystathionine β synthase (CBS) knocked down with siRNA. Mechanical responses of isolated second- and third-order mesenteric arteries (MAs) from wild-type and eNOS knockout (eNOSKO) mice were monitored with pressure myography, after which the vessels were snap frozen and later analyzed for resistin and adiponectin via multiplex beaded assay. Addition of MSCs to the myograph bath significantly increased vasodilation of norepinephrine-precontracted MAs. Knockdown of CBS in MSCs decreased H2S production by MSCs and also decreased MSC-initiated MA dilation. MSC-initiated vasodilation was further reduced in eNOSKO vessels. The MA resistin-to-adiponectin ratio was higher in eNOSKO vessels compared with wild-type. These results show that MSC treatment promotes dilation of MAs by an H2S-dependent mechanism. Furthermore, functional eNOS within the host mesenteric bed appears to be essential for maximum stem cell therapeutic benefit, which may be attributable, in part, to modifications in the resistin-to-adiponectin ratio.NEW & NOTEWORTHY Stem cells have been shown to improve survival, mesenteric perfusion, and histological injury scores following intestinal ischemia. These benefits may be due to the paracrine release of hydrogen sulfide. In an ex vivo pressure myography model, we observed that mesenteric arterial dilation improved with stem cell treatment. Hydrogen sulfide release from stem cells and endothelial nitric oxide synthase within the vessels were critical components of optimizing stem cell-mediated mesenteric artery dilation.
Collapse
Affiliation(s)
- Jan Te Winkel
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Quincy E. John
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian D. Hosfield
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Natalie A. Drucker
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Amitava Das
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana,3Indiana Center for Regenerative Medicine and Engineering, Indianapolis, Indiana
| | - Ken R. Olson
- 4Indiana University School of Medicine, South Bend, Indiana
| | - Troy A. Markel
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana,5Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana
| |
Collapse
|
4
|
Wetzel MD, Wenke JC. Mechanisms by which hydrogen sulfide attenuates muscle function following ischemia-reperfusion injury: effects on Akt signaling, mitochondrial function, and apoptosis. J Transl Med 2019; 17:33. [PMID: 30665344 PMCID: PMC6340183 DOI: 10.1186/s12967-018-1753-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/21/2018] [Indexed: 01/24/2023] Open
Abstract
Ischemia–reperfusion injury is caused by a period of ischemia followed by massive blood flow into a tissue that had experienced restricted blood flow. The severity of the injury is dependent on the time the tissue was restricted from blood flow, becoming more severe after longer ischemia times. This can lead to many complications such as tissue necrosis, cellular apoptosis, inflammation, metabolic and mitochondrial dysfunction, and even organ failure. One of the emerging therapies to combat ischemic reperfusion injury complications is hydrogen sulfide, which is a gasotransmitter that diffuses across cell membranes to exert effects on various signaling pathways regulating cell survival such as Akt, mitochondrial activity, and apoptosis. Although commonly thought of as a toxic gas, low concentrations of hydrogen sulfide have been shown to be beneficial in promoting tissue survival post-ischemia, and modulate a wide variety of cellular responses. This review will detail the mechanisms of hydrogen sulfide in affecting the Akt signaling pathway, mitochondrial function, and apoptosis, particularly in regards to ischemic reperfusion injury in muscle tissue. It will conclude with potential clinical applications of hydrogen sulfide, combinations with other therapies, and perspectives for future studies.
Collapse
Affiliation(s)
- Michael D Wetzel
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, 3698 Chambers Pass BLDG 3611, Ft. Sam Houston, San Antonio, TX, 78234, USA
| | - Joseph C Wenke
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, 3698 Chambers Pass BLDG 3611, Ft. Sam Houston, San Antonio, TX, 78234, USA.
| |
Collapse
|
5
|
Sekijima M, Sahara H, Miki K, Villani V, Ariyoshi Y, Iwanaga T, Tomita Y, Yamada K. Hydrogen sulfide prevents renal ischemia-reperfusion injury in CLAWN miniature swine. J Surg Res 2017; 219:165-172. [PMID: 29078877 DOI: 10.1016/j.jss.2017.05.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2S) has recently been reported to demonstrate both antiinflammatory and cytoprotective effects; however, its efficacy has not been well documented in large animal models. In this study, we examined whether the administration of H2S offers cytoprotective effects on renal ischemia-reperfusion injury (IRI) in a preclinical miniature swine model. METHODS Major histocompatibility complex-inbred, CLAWN miniature swine (n = 9) underwent a right nephrectomy, followed by induction of a 120-min period of warm ischemia via placement of clamps on the left renal artery and vein. Group 1 (n = 3) underwent renal ischemia without H2S administration. Groups 2 (n = 3) and 3 (n = 3) received Na2S (prodrug of H2S) 10 min before reperfusion of the ischemic kidneys followed by a 30-min of Na2S postreperfusion intravenously (group 2) or selective administration of Na2S via the left renal artery (group 3). IRI was assessed by kidney biopsies, levels of inflammatory cytokines in sera and kidney tissue. RESULTS Animals in group 1 had significantly higher serum creatinine levels compared with animals in groups 2 and 3 (P < 0.01). Histology showed severe tubular damage with TUNEL-positive cells in group 1 on postoperative day 2 compared with mild damage in group 2 and minimal damage in group 3. Furthermore, levels of inflammatory cytokines in both serum (interleukin-6 [IL-6], tumor necrosis factor-α, and high-mobility group box 1) and renal tissue (IL-1 and IL-6) in group 3 were markedly lower than in group 2, suggesting beneficial effects of selective Na2S administration. CONCLUSIONS Na2S administration, especially via an organ selective approach, appears to potentially offer cytoprotective and antiinflammatory effects following renal IRI.
Collapse
Affiliation(s)
- Mitsuhiro Sekijima
- Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Kagoshima, Japan
| | - Hisashi Sahara
- Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Kagoshima, Japan
| | - Katsuyuki Miki
- Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Kagoshima, Japan; The 3rd Department of the Surgery, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Vincenzo Villani
- Transplantation Biology Research Center Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts
| | - Yuichi Ariyoshi
- Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Kagoshima, Japan
| | - Takehiro Iwanaga
- Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Kagoshima, Japan
| | - Yusuke Tomita
- Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Kagoshima, Japan
| | - Kazuhiko Yamada
- Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
6
|
Leskova A, Pardue S, Glawe JD, Kevil CG, Shen X. Role of thiosulfate in hydrogen sulfide-dependent redox signaling in endothelial cells. Am J Physiol Heart Circ Physiol 2017; 313:H256-H264. [PMID: 28550177 DOI: 10.1152/ajpheart.00723.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 12/21/2022]
Abstract
Recent reports have revealed that hydrogen sulfide (H2S) exerts critical actions to promote cardiovascular homeostasis and health. Thiosulfate is one of the products formed during oxidative H2S metabolism, and thiosulfate has been used extensively and safely to treat calcific uremic arteriopathy in dialysis patients. Yet despite its significance, fundamental questions regarding how thiosulfate and H2S interact during redox signaling remain unanswered. In the present study, we examined the effect of exogenous thiosulfate on hypoxia-induced H2S metabolite bioavailability in human umbilical vein endothelial cells (HUVECs). Under hypoxic conditions, we observed a decrease of GSH and GSSG levels in HUVECs at 0.5 and 4 h as well as decreased free H2S and acid-labile sulfide and increased bound sulfide at all time points. Treatment with exogenous thiosulfate significantly decreased the ratio of GSH/GSSG to total sulfide of HUVECs under 0.5 h of hypoxia but significantly increased this ratio in HUVECs under 4 h of hypoxia. These responses reveal that thiosulfate has different effects at low and high doses and under different O2 tensions. In addition, treatment with thiosulfate also diminished VEGF-induced cystathionine-γ-lyase expression and reduced VEGF-induced HUVEC proliferation under both normoxic and hypoxic conditions. These results indicate that thiosulfate can modulate H2S metabolites and signaling under various culture conditions that impact angiogenic activity. Thus, thiosulfate may serve as a unique sulfide donor to modulate endothelial responses under pathophysiological conditions involving angiogenesis.NEW & NOTEWORTHY This report provides new evidence that different levels of exogenous thiosulfate dynamically change discrete sulfide biochemical metabolite bioavailability in endothelial cells under normoxia or hypoxia, acting in a slow manner to modulate sulfide metabolites. Moreover, our findings also reveal that thiosulfate surprisingly inhibits VEGF-dependent endothelial cell proliferation associated with a reduction in cystathionine-γ-lyase protein levels.
Collapse
Affiliation(s)
- Anna Leskova
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Sibile Pardue
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - John D Glawe
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Xinggui Shen
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| |
Collapse
|
7
|
Kim NR, Nam SY, Ryu KJ, Kim HM, Jeong HJ. Effects of bamboo salt and its component, hydrogen sulfide, on enhancing immunity. Mol Med Rep 2016; 14:1673-80. [DOI: 10.3892/mmr.2016.5407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 06/03/2016] [Indexed: 11/06/2022] Open
|