1
|
Atkinson MS, Savage AE. Widespread amphibian Perkinsea infections associated with Ranidae hosts, cooler months and Ranavirus co-infection. J Anim Ecol 2023; 92:1856-1868. [PMID: 37409362 DOI: 10.1111/1365-2656.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Amphibians suffer from large-scale population declines globally, and emerging infectious diseases contribute heavily to these declines. Amphibian Perkinsea (Pr) is a worldwide anuran pathogen associated with mass mortality events, yet little is known about its epidemiological patterns, especially in comparison to the body of literature on amphibian chytridiomycosis and ranavirosis. Here, we establish Pr infection patterns in natural anuran populations and identify important covariates including climate, host attributes and co-infection with Ranavirus (Rv). We used quantitative (q)PCR to determine the presence and intensity of Pr and Rv across 1234 individuals sampled throughout central Florida in 2017-2019. We then implemented random forest ensemble learning models to predict infection with both pathogens based on physiological and environmental characteristics. Perkinsea infected 32% of all sampled anurans, and Pr prevalence was significantly elevated in Ranidae frogs, cooler months, metamorphosed individuals and frogs co-infected with Rv, while Pr intensity was significantly higher in ranid frogs and individuals collected dead. Ranavirus prevalence was 17% overall and was significantly higher in Ranidae frogs, metamorphosed individuals, locations with higher average temperatures, and individuals co-infected with Pr. Perkinsea prevalence was significantly higher than Rv prevalence across months, regions, life stages and species. Among locations, Pr prevalence was negatively associated with crayfish prevalence and positively associated with relative abundance of microhylids, but Rv prevalence did not associate with any tested co-variates. Co-infections were significantly more common than single infections for both pathogens, and we propose that Pr infections may propel Rv infections because seasonal Rv infection peaks followed Pr infection peaks and random forest models found Pr intensity was a leading factor explaining Rv infections. Our study elucidates epidemiological patterns of Pr in Florida and suggests that Pr may be under-recognized as a cause of anuran declines, especially in the context of pathogen co-infection.
Collapse
Affiliation(s)
- Matthew S Atkinson
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Neely WJ, Greenspan SE, Stahl LM, Heraghty SD, Marshall VM, Atkinson CL, Becker CG. Habitat Disturbance Linked with Host Microbiome Dispersion and Bd Dynamics in Temperate Amphibians. MICROBIAL ECOLOGY 2022; 84:901-910. [PMID: 34671826 DOI: 10.1007/s00248-021-01897-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic habitat disturbances can dramatically alter ecological community interactions, including host-pathogen dynamics. Recent work has highlighted the potential for habitat disturbances to alter host-associated microbial communities, but the associations between anthropogenic disturbance, host microbiomes, and pathogens are unresolved. Amphibian skin microbial communities are particularly responsive to factors like temperature, physiochemistry, pathogen infection, and environmental microbial reservoirs. Through a field survey on wild populations of Acris crepitans (Hylidae) and Lithobates catesbeianus (Ranidae), we assessed the effects of habitat disturbance and connectivity on environmental bacterial reservoirs, Batrachochytrium dendrobatidis (Bd) infection, and skin microbiome composition. We found higher measures of microbiome dispersion (a measure of community variability) in A. crepitans from more disturbed ponds, supporting the hypothesis that disturbance increases stochasticity in biological communities. We also found that habitat disturbance limited microbiome similarity between locations for both species, suggesting greater isolation of bacterial assemblages in more disturbed areas. Higher disturbance was associated with lower Bd prevalence for A. crepitans, which could signify suboptimal microclimates for Bd in disturbed habitats. Combined, our findings show that reduced microbiome stability stemming from habitat disturbance could compromise population health, even in the absence of pathogenic infection.
Collapse
Affiliation(s)
- Wesley J Neely
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA.
| | - Sasha E Greenspan
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Leigha M Stahl
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Sam D Heraghty
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Vanessa M Marshall
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Carla L Atkinson
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - C Guilherme Becker
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
3
|
Martins RA, Greenspan SE, Medina D, Buttimer S, Marshall VM, Neely WJ, Siomko S, Lyra ML, Haddad CFB, São-Pedro V, Becker CG. Signatures of functional bacteriome structure in a tropical direct-developing amphibian species. Anim Microbiome 2022; 4:40. [PMID: 35672870 PMCID: PMC9172097 DOI: 10.1186/s42523-022-00188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Host microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbe Batrachochytrium dendrobatidis (Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil’s Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species.
Results
Intensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence in Ischnocnema henselii but no Bd detections in Haddadus binotatus. Haddadus binotatus carried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization.
Conclusions
Our findings suggest that community structure of the bacteriome might drive Bd resistance in H. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses.
Collapse
|
4
|
Haddad CF, Lopes CM, Becker CG, da Silva FR, Lyra ML. From genes to ecosystems: a synthesis of amphibian biodiversity research in Brazil. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Here, we summarize examples of significant advances in amphibian research supported by the São Paulo Research Foundation (FAPESP), focusing on recent discoveries in the fields of community ecology, habitat change, infection diseases, and multipurpose DNA sequencing. We demonstrated that FAPESP has been fundamental not only by directly funding research projects and scholarships, but also through its science training policy, fostering international collaborations with world-class research institutions, improving and consolidating new lines of research that often depended on a synergetic combination of different knowledge and complex tools. We emphasized that future studies will continue to focus on basic questions, such as description of new species, as well as taxonomic and systematic corrections. Furthermore, we also expect that there will be a strong integration among different disciplines using novel bioinformatics tools and modeling approaches, such as machine learning. These new approaches will be critical to further develop our understanding of foundational questions of amphibian life-history trait variation, disease transmission, community assembly, biogeography, and population forecasts under different global change scenarios such as agricultural expansion, agrochemical use, habitat loss, and climate change.
Collapse
|
5
|
Torralvo K, Fraga R, Lima AP, Dayrell J, Magnusson WE. Environmental filtering and deforestation shape frog assemblages in Amazonia: An empirical approach assessing species abundances and functional traits. Biotropica 2021. [DOI: 10.1111/btp.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kelly Torralvo
- Programa de Pós‐Graduação em Ecologia Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - Rafael Fraga
- Laboratório de Ecologia e Comportamento Animal Universidade Federal do Oeste do Pará Santarém Brazil
| | - Albertina P. Lima
- Coordenação de Biodiversidade Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - Jussara Dayrell
- Programa de Pós‐Graduação em Ecologia Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| | - William E. Magnusson
- Coordenação de Biodiversidade Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
| |
Collapse
|
6
|
Rivera-Burgos AC, Collazo JA, Terando AJ, Pacifici K. Linking demographic rates to local environmental conditions: Empirical data to support climate adaptation strategies for Eleutherodactylus frogs. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
7
|
Delazeri F, Ernetti JR, De Bastiani VIM, Lingnau R, Toledo LF, Lucas EM. Forest cover influences chytrid infections in populations of Boana curupi, a threatened treefrog of south Brazil. DISEASES OF AQUATIC ORGANISMS 2021; 144:133-142. [PMID: 33955851 DOI: 10.3354/dao03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Complex interactions among hosts, pathogens, and the environment affect the vulnerability of amphibians to the emergence of infectious diseases such as chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd). Boana curupi is a forest-dwelling amphibian endemic to the southern Atlantic Forest of South America, a severely fragmented region. Here, we evaluated whether abiotic factors (including air and water temperature, relative air humidity, and landscape) are correlated with chytrid infection intensity and prevalence in B. curupi. We found individuals infected with Bd in all populations sampled. Prevalence ranged from 25-86%, and the infection burden ranged from 1 to over 130000 zoospore genomic equivalents (g.e.) (mean ± SD: 4913 ± 18081 g.e.). The infection load differed among populations and was influenced by forest cover at scales of 100, 500, and 1000 m, with the highest infection rates recorded in areas with a higher proportion of forest cover. Our results suggest that the fungus is widely distributed in the populations of B. curupi in southern Brazil. Population and disease monitoring are necessary to better understand the relationships between host, pathogen, and environment, especially when, as in the case of B. curupi, threatened species are involved.
Collapse
Affiliation(s)
- Francieli Delazeri
- Programa de Pós-graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Santa Catarina 89809-900, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Teixido AL, Sehn H, Quintanilla LG, Gonçalves SRA, Férnandez‐Arellano GJ, Dáttilo W, Izzo TJ, Layme VMG, Moreira LFB. A meta‐analysis of the effects of fragmentation on the megadiverse herpetofauna of Brazil. Biotropica 2021. [DOI: 10.1111/btp.12955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alberto L. Teixido
- Departamento de Botânica e Ecologia Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Heivanice Sehn
- Departamento de Zoologia Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Luis G. Quintanilla
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología Universidad Rey Juan Carlos Madrid Spain
| | - Stela R. A. Gonçalves
- Departamento de Botânica e Ecologia Universidade Federal de Mato Grosso Cuiabá Brazil
| | | | - Wesley Dáttilo
- Red de Ecoetología Instituto de Ecología A.C Xalapa, Veracruz Mexico
| | - Thiago J. Izzo
- Departamento de Botânica e Ecologia Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Viviane M. G. Layme
- Departamento de Botânica e Ecologia Universidade Federal de Mato Grosso Cuiabá Brazil
| | | |
Collapse
|
9
|
Zornosa-Torres C, Lambertini C, Toledo LF. Amphibian chytrid infections along the highest elevational gradient of the Brazilian Atlantic Forest. DISEASES OF AQUATIC ORGANISMS 2021; 144:99-106. [PMID: 33830073 DOI: 10.3354/dao03581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Environmental variation along elevational gradients shapes conditions for pathogen development, which influences disease outcomes. Chytridiomycosis is a non-vectored disease caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd) and is responsible for massive declines of amphibian populations all over the world. Several biotic and abiotic factors are known to influence Bd infection dynamics in amphibians, including temperature and host species richness. Here, we quantified Bd prevalence and load along an elevational gradient in the Caparaó National Park (CNP), Brazil, and tested for associations of Bd infections with elevation, temperature, and species richness. We hypothesized that Bd infections would increase as local species richness decreased with elevation. We detected Bd along the entire elevational gradient and found a negative association between infection load and elevation. We did not detect significant associations between infection prevalence and elevation. Our findings are consistent with other wide elevational gradient studies, but are contrary to 2 other studies performed in the Atlantic Forest. We did not find the minimum elevational range that should be sampled to detect the influence of elevation on Bd variation. Our study represents the widest elevational gradient that has been sampled in Brazil and contributes to a better understanding of Bd distribution and dynamics in natural systems.
Collapse
Affiliation(s)
- Camila Zornosa-Torres
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil
| | | | | |
Collapse
|
10
|
Ghosh PN, Brookes LM, Edwards HM, Fisher MC, Jervis P, Kappel D, Sewell TR, Shelton JM, Skelly E, Rhodes JL. Cross-Disciplinary Genomics Approaches to Studying Emerging Fungal Infections. Life (Basel) 2020; 10:E315. [PMID: 33260763 PMCID: PMC7761180 DOI: 10.3390/life10120315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Emerging fungal pathogens pose a serious, global and growing threat to food supply systems, wild ecosystems, and human health. However, historic chronic underinvestment in their research has resulted in a limited understanding of their epidemiology relative to bacterial and viral pathogens. Therefore, the untargeted nature of genomics and, more widely, -omics approaches is particularly attractive in addressing the threats posed by and illuminating the biology of these pathogens. Typically, research into plant, human and wildlife mycoses have been largely separated, with limited dialogue between disciplines. However, many serious mycoses facing the world today have common traits irrespective of host species, such as plastic genomes; wide host ranges; large population sizes and an ability to persist outside the host. These commonalities mean that -omics approaches that have been productively applied in one sphere and may also provide important insights in others, where these approaches may have historically been underutilised. In this review, we consider the advances made with genomics approaches in the fields of plant pathology, human medicine and wildlife health and the progress made in linking genomes to other -omics datatypes and sets; we identify the current barriers to linking -omics approaches and how these are being underutilised in each field; and we consider how and which -omics methodologies it is most crucial to build capacity for in the near future.
Collapse
Affiliation(s)
- Pria N. Ghosh
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Lola M. Brookes
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK
| | - Hannah M. Edwards
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Phillip Jervis
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Dana Kappel
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Thomas R. Sewell
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Jennifer M.G. Shelton
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK
| | - Emily Skelly
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Johanna L. Rhodes
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| |
Collapse
|
11
|
Najibzadeh M, Ehl S, Feldmeier S, Pesarakloo A, Veith M. Unequal sisters - Past and potential future range development of Anatolian and Hyrcanian brown frogs. ZOOLOGY 2020; 144:125873. [PMID: 33296820 DOI: 10.1016/j.zool.2020.125873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022]
Abstract
Phylogeography can reconstruct historical evolutionary processes by comparing historical patterns of gene flow, divergence among species and by using species distribution models (SDM) upon geographic distribution. We investigate the phylogeographic patterns of Anatolian brown frogs including R. macrocnemis and R. tavasensis as well as the Hyrcanian brown frog, R. pseudodalmatina, using a fragment of the mitochondrial 16S rRNA gene for 145 specimens across the entire range of these frogs. We calculate parameters of molecular diversity, such as the number of variable sites (S), the number of haplotypes (h), haplotype diversity (Hd) and nucleotide diversity (π). We generated a haplotype network and used three methods (Neutrality tests, mismatch distributions and Bayesian skyline plots) to reconstruct the demographic histories of R. macrocnemis and R. pseudodalmatina. Finally, we used SDMs to predict the habitat suitability for three periods: The Present Day, the Last Glacial Maximum (LGM) and the future until 2070 for R. macrocnemis and R. pseudodalmatina. Our phylogenetic analyses support a late Miocene origin of Anatolian and Hyrcanian lineages. Hyrcanian brown frogs were enclosed in lowlands of the southern coast of the Caspian Sea after the uplift of the Elburz range and the Armenian plateau. The formation of a salinity belt from the north Aegean corridor (the south western Turkey) to northward during the Late Tortonian led to the subdivision of ancestor of the Anatolian lineage into today isolated western and eastern populations. The salinity belt had a considerable impact on the divergence of R. tavasensis from R. macrocnemis. Combined historical demographic analyses and SDMs revealed a rapid expansion occurring during the Pleistocene in R. macrocnemis and R. pseudodalmatina. Currently, suitable habitat for R. macrocnemis has declined compared to the LGM, and the species is predicted to do even worse under future climatic conditions. In contrast, R. pseudodalmatina found suitable habitat from the LGM to present within its restricted distribution area; it is predicted to do fine even under future climate.
Collapse
Affiliation(s)
- M Najibzadeh
- Iranian Plateau Herpetology Research Group (IPHRG), Razi University, Bagh e Abrisham 6714967346 Kermanshah, Iran.
| | - S Ehl
- Department of Biogeography, Trier University, Universitätsring 15, 54296 Trier, Germany
| | - S Feldmeier
- Department of Biogeography, Trier University, Universitätsring 15, 54296 Trier, Germany
| | - A Pesarakloo
- Department of Biology, Faculty of Science, Arak University, Sardasht, 3813853945 Arak, Iran
| | - M Veith
- Department of Biogeography, Trier University, Universitätsring 15, 54296 Trier, Germany
| |
Collapse
|
12
|
Bienentreu JF, Lesbarrères D. Amphibian Disease Ecology: Are We Just Scratching the Surface? HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
13
|
Ribeiro JW, Siqueira T, DiRenzo GV, Lambertini C, Lyra ML, Toledo LF, Haddad CFB, Becker CG. Assessing amphibian disease risk across tropical streams while accounting for imperfect pathogen detection. Oecologia 2020; 193:237-248. [DOI: 10.1007/s00442-020-04646-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/07/2020] [Indexed: 12/23/2022]
|
14
|
May D, Shidemantle G, Melnick-Kelley Q, Crane K, Hua J. The effect of intensified illuminance and artificial light at night on fitness and susceptibility to abiotic and biotic stressors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:600-608. [PMID: 31108293 DOI: 10.1016/j.envpol.2019.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Changing light conditions due to human activities represents an important emerging environmental concern. Although changes to natural light conditions can be independently detrimental, in nature, organisms commonly face multiple stressors. To understand the consequences of altered light conditions, we exposed a model amphibian (wood frog; Lithobates sylvaticus) to a control and two anthropogenic light conditions: intensified daytime illuminance and artificial light at night - ALAN (intensified daytime illuminance + extended photoperiod). We measured (1) metrics of fitness (hatching success as well as survival to, size at, and time to metamorphosis) (2) susceptibility (time to death) to a commonly co-occurring anthropogenic stressor, road salt (NaCl) and (3) susceptibility (infection load) to a common parasite (trematode). We also explored behavioral (swimming activity) and physiological (baseline corticosterone (CORT) release rates) changes induced by these light conditions, which may mediate changes in the other measured parameters. We found that both intensified daytime illuminance and ALAN reduced hatching success. In contrast, for amphibians that successfully hatched, neither treatment affected amphibian survival or time to metamorphosis but individuals exposed to ALAN were larger at metamorphosis. The light treatments also had marginal effects; individuals in ALAN treatments were more susceptible to NaCl and trematodes. Finally, tadpoles exposed to ALAN moved significantly less than tadpoles in the control and intensified daytime illuminance treatments, while light had no effect on CORT release rate. Overall, changes in light conditions, in particular ALAN, significantly impacted an amphibian model in laboratory conditions. This work underscores the importance of considering not only the direct effects of light on fitness metrics but also the indirect effects of light with other abiotic and biotic stressors. Anthropogenic-induced changes to light conditions are expected to continue increasing over time so understanding the diverse consequences of shifting light conditions will be paramount to protecting wildlife populations.
Collapse
Affiliation(s)
- Dyllan May
- Biological Sciences Department, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Grascen Shidemantle
- Biological Sciences Department, Binghamton University (SUNY), Binghamton, NY 13902, USA.
| | | | - Kelly Crane
- Biological Sciences Department, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University (SUNY), Binghamton, NY 13902, USA
| |
Collapse
|
15
|
Ruggeri J, Carvalho-E-Silva SP, James TY, Toledo LF. Amphibian chytrid infection is influenced by rainfall seasonality and water availability. DISEASES OF AQUATIC ORGANISMS 2018; 127:107-115. [PMID: 29384480 DOI: 10.3354/dao03191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amphibians suffer from a number of factors that make them the most threatened group of vertebrates. One threat is the fungal disease chytridiomycosis caused by the emerging pathogen Batrachochytrium dendrobatidis (Bd), which has rapidly spread and caused the loss of massive amphibian biodiversity worldwide. Recently, Bd was associated with a few amphibian population declines and extinctions in some areas of the Brazilian Atlantic Forest. However, the mechanisms underlying such declines are not fully understood. Therefore, it is essential to improve our knowledge of abiotic factors that can possibly influence Bd prevalence and chytridiomycosis disease severity. Herein we tested the hypothesis that water availability (such as in perennial streams, where Bd is frequently present in larvae) and rainfall would increase the prevalence of Bd. To test this, we sampled frogs from 6 transects with different numbers of perennial waterbodies, and we report that the more water available in the area, the higher the probability of Bd infection on anurans. Seasonality also influenced both the Bd prevalence in the area and the intensity of infection in infected frogs. However, Bd prevalence was higher during the rainy months whereas the infection burden was lower. We suggest that Bd is likely spread during the summer, when most anuran species gather near the water for spawning and when rainfall overfills ephemeral wetlands. On the other hand, during the drier months, a higher infection burden may be explained by increased disease susceptibility.
Collapse
Affiliation(s)
- Joice Ruggeri
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
16
|
Heredia-Bobadilla RL, Monroy-Vilchis O, Zarco-González MM, Martínez-Gómez D, Mendoza-Martínez GD, Sunny A. Genetic variability and structure of an isolated population of Ambystoma altamirani, a mole salamander that lives in the mountains of one of the largest urban areas in the world. J Genet 2018; 96:873-883. [PMID: 29321345 DOI: 10.1007/s12041-017-0823-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphibians are globally threatened by habitat loss and fragmentation; species within the order Ambystoma are not the exception, as there are 18 species of mole salamanders in México, of which 16 are endemic and all species are under some national or international status of protection. The mole salamander, Ambystoma altamirani is a microendemic species, which is distributed in central México, within the trans-Mexican volcanic belt, and is one of the most threatened species due to habitat destruction and the introduction of exotic species. Nine microsatellite markers were used to determine the genetic structure, genetic variability, effective population size, presence of bottlenecks and inbreeding coefficient of one population of A. altamirani to generate information which might help to protect and conserve this threatened species. We found two genetic subpopulations with significant level of genetic structure (FST = 0.005) and high levels of genetic variability (Ho = 0.883; He = 0.621); we also found a small population size (Ne = 8.8), the presence of historical (M = 0.486) and recent bottlenecks under IAM and TPM models, with a low, but significant coefficient of inbreeding (FIS = -0.451). This information will help us to raise conservation strategies of this microendemic mole salamander species.
Collapse
Affiliation(s)
- Rosa-Laura Heredia-Bobadilla
- Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, Instituto literario # 100, Colonia Centro, CP 50000 Toluca, Estado de México, México.
| | | | | | | | | | | |
Collapse
|
17
|
Mesquita AFC, Lambertini C, Lyra M, Malagoli LR, James TY, Toledo LF, Haddad CFB, Becker CG. Low resistance to chytridiomycosis in direct-developing amphibians. Sci Rep 2017; 7:16605. [PMID: 29192210 PMCID: PMC5709405 DOI: 10.1038/s41598-017-16425-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Host-generalist pathogens sporadically infect naive hosts, potentially triggering epizootics. The waterborne fungus Batrachochytrium dendrobatidis (Bd) is linked to declines of hundreds of amphibian species with aquatic larvae. Although several population declines and extinctions attributed to Bd have been reported among cryptic species undergoing direct development away from water, epidemiological studies focused on these terrestrial frogs are lacking. Our field data support that terrestrial direct-developing hosts are less exposed to Bd during their ontogeny than species with aquatic larvae, and thus they might lack adaptive responses against waterborne chytrids. Using controlled laboratory experiments, we exposed wild-caught amphibian species with terrestrial and aquatic life histories to Bd and found that direct developers showed more rapid increases in infection loads and experienced higher mortality rates than species with aquatic larvae. Our findings provide novel information about host responses to generalist pathogens and specifically show that our focal direct developing species have low resistance to Bd infections. Finally, our results underscore that we should not ignore Bd as a potential threat to direct developing species simply because they are less exposed to Bd in nature; instead future amphibian conservation plans should include efforts to safeguard hundreds of direct-developing amphibian species globally.
Collapse
Affiliation(s)
- Andréa F C Mesquita
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Zoologia, and Centro de Aquicultura (CAUNESP), 13506-900, Rio Claro, SP, Brazil
| | - Carolina Lambertini
- Departamento de Biologia Animal, I.B., Universidade Estadual de Campinas, 13083-862, Campinas, SP, Brazil
| | - Mariana Lyra
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Zoologia, and Centro de Aquicultura (CAUNESP), 13506-900, Rio Claro, SP, Brazil
| | - Leo R Malagoli
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Zoologia, and Centro de Aquicultura (CAUNESP), 13506-900, Rio Claro, SP, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, 48109, Ann Arbor, MI, USA
| | - Luís Felipe Toledo
- Departamento de Biologia Animal, I.B., Universidade Estadual de Campinas, 13083-862, Campinas, SP, Brazil
| | - Célio F B Haddad
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Zoologia, and Centro de Aquicultura (CAUNESP), 13506-900, Rio Claro, SP, Brazil
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, 35487, Tuscaloosa, AL, USA.
| |
Collapse
|
18
|
Becker C, Greenspan S, Tracy K, Dash J, Lambertini C, Jenkinson T, Leite D, Toledo L, Longcore J, James T, Zamudio K. Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2016.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Stoler AB, Berven KA, Raffel TR. Leaf Litter Inhibits Growth of an Amphibian Fungal Pathogen. ECOHEALTH 2016; 13:392-404. [PMID: 26935822 DOI: 10.1007/s10393-016-1106-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Past studies have found a heterogeneous distribution of the amphibian chytrid fungal pathogen, Batrachochytrium dendrobatidis (Bd). Recent studies have accounted for some of this heterogeneity through a positive association between canopy cover and Bd abundance, which is attributed to the cooling effect of canopy cover. We questioned whether leaf litter inputs that are also associated with canopy cover might also alter Bd growth. Leaf litter inputs exhibit tremendous interspecific chemical variation, and we hypothesized that Bd growth varies with leachate chemistry. We also hypothesized that Bd uses leaf litter as a growth substrate. To test these hypotheses, we conducted laboratory trials in which we exposed cultures of Bd to leachate of 12 temperate leaf litter species at varying dilutions. Using a subset of those 12 litter species, we also exposed Bd to pre-leached litter substrate. We found that exposure to litter leachate and substrate reduced Bd spore and sporangia densities, although there was substantial variation among treatments. In particular, Bd densities were inversely correlated with concentrations of phenolic acids. We conducted a field survey of phenolic concentrations in natural wetlands which verified that the leachate concentrations in our lab study are ecologically relevant. Our study reinforces prior indications that positive associations between canopy cover and Bd abundance are likely mediated by water temperature effects, but this phenomenon might be counteracted by changes in aquatic chemistry from leaf litter inputs.
Collapse
Affiliation(s)
- Aaron B Stoler
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.
- 1115 Center for Biotechnology and Integrative Sciences, Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA.
| | - Keith A Berven
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Thomas R Raffel
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
20
|
Preuss JF, Lambertini C, Leite DDS, Toledo LF, Lucas EM. Crossing the threshold: an amphibian assemblage highly infected withBatrachochytrium dendrobatidisin the southern Brazilian Atlantic forest. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2016. [DOI: 10.1080/01650521.2016.1163857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Bovo RP, Andrade DV, Toledo LF, Longo AV, Rodriguez D, Haddad CFB, Zamudio KR, Becker CG. Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2016; 117:245-52. [PMID: 26758658 DOI: 10.3354/dao02940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathophysiological effects of clinical chytridiomycosis in amphibians include disorders of cutaneous osmoregulation and disruption of the ability to rehydrate, which can lead to decreased host fitness or mortality. Less attention has been given to physiological responses of hosts where enzootic infections of Batrachochytrium dendrobatidis (Bd) do not cause apparent population declines in the wild. Here, we experimentally tested whether an enzootic strain of Bd causes significant mortality and alters host water balance (evaporative water loss, EWL; skin resistance, R(s); and water uptake, WU) in individuals of 3 Brazilian amphibian species (Dendropsophus minutus, n = 19; Ischnocnema parva, n = 17; Brachycephalus pitanga, n = 15). Infections with enzootic Bd caused no significant mortality, but we found an increase in R(s) in 1 host species concomitant with a reduction in EWL. These results suggest that enzootic Bd infections can indeed cause sub-lethal effects that could lead to reduction of host fitness in Brazilian frogs and that these effects vary among species. Thus, our findings underscore the need for further assessment of physiological responses to Bd infections in different host species, even in cases of sub-clinical chytridiomycosis and long-term enzootic infections in natural populations.
Collapse
Affiliation(s)
- Rafael P Bovo
- Departamento de Zoologia, c. p. 199, Universidade Estadual Paulista, 13506-900, Rio Claro, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|