1
|
Arslan D, Olivier A, İsfendiyaroğlu SC, Benedetti Y, Akdağ B, Çiçek K, Morelli F. Conservation of more evolutionary unique amphibian communities in Türkiye: The role of protected areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122001. [PMID: 39116812 DOI: 10.1016/j.jenvman.2024.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
The alarming decline of amphibians, sometimes marked by sudden extinctions, underlines the urgent need for increased conservation efforts. Conservationists recognize that more action, particularly the setting of national targets, is needed to ensure the future persistence and recovery of species and habitats. Protecting habitats that harbor evolutionarily diverse species preserves divergent genetic information within ecosystems. Türkiye holds 36 amphibian species at the intersection of two continents, creating three biodiversity hotspots and phylogenetic transitional areas. In this study, we aimed to determine the hotspot regions and to evaluate the effectiveness of the protected areas in Türkiye in preserving amphibian populations. First, we estimated four community indexes (species richness and three evolutionary distinctiveness measures) for amphibian communities in Türkiye divided into 371 grid cells with a ca 50 × 50 km size. Then, the spatial extent of protected areas is evaluated from two perspectives: current (has a protection status) and candidate protected areas (Key Biodiversity Areas, not protected) coverage in those grid cells. Finally, these two approaches' effectiveness in protecting areas was assessed by modeling four diversity metrics using GLS models. Current protected areas protect about 6% of the total amphibian distribution in Türkiye, while Key Biodiversity Areas would cover 30% if declared protected areas. We estimated that the coastal areas of Türkiye are identified as hotspots based on the four measured amphibian community indexes. Our study also highlights that Key Biodiversity Areas (KBAs) can contribute to conserving high levels of amphibian richness and evolutionary distinctiveness of species across Türkiye. However, existing protected areas (PAs) networks were insufficient to protect amphibians.
Collapse
Affiliation(s)
- Dilara Arslan
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, CZ-165 00, Prague 6, Czech Republic.
| | - Anthony Olivier
- Tour du Valat, Institut de Recherche pour la Conservation des Zones Humides Méditerranéennes, Le Sambuc, 13200, Arles, France
| | - Süreyya Cevat İsfendiyaroğlu
- İstanbul-Cerrahpasa University, Faculty of Forestry, Department of Forest Entomology and Protection, Bahçeşehir, İstanbul, Türkiye
| | - Yanina Benedetti
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, CZ-165 00, Prague 6, Czech Republic
| | - Burak Akdağ
- Section of Zoology, Department of Biology, Faculty of Science, Ege University, İzmir, Türkiye
| | - Kerim Çiçek
- Section of Zoology, Department of Biology, Faculty of Science, Ege University, İzmir, Türkiye; Natural History Application and Research Centre, Ege University, İzmir, Türkiye
| | - Federico Morelli
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, CZ-165 00, Prague 6, Czech Republic; Institute of Biological Sciences, University of Zielona Góra, Prof. Szafrana St. 1, PL 65-16, Zielona Góra, Poland
| |
Collapse
|
2
|
Babik W, Marszałek M, Dudek K, Antunes B, Palomar G, Zając B, Taugbøl A, Pabijan M. Limited evidence for genetic differentiation or adaptation in two amphibian species across replicated rural-urban gradients. Evol Appl 2024; 17:e13700. [PMID: 38832082 PMCID: PMC11146147 DOI: 10.1111/eva.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Urbanization leads to complex environmental changes and poses multiple challenges to organisms. Amphibians are highly susceptible to the effects of urbanization, with land use conversion, habitat destruction, and degradation ranked as the most significant threats. Consequently, amphibians are declining in urban areas, in both population numbers and abundance, however, the effect of urbanization on population genetic parameters remains unclear. Here, we studied the genomic response to urbanization in two widespread European species, the common toad Bufo bufo (26 localities, 480 individuals), and the smooth newt Lissotriton vulgaris (30 localities, 516 individuals) in three geographic regions: southern and northern Poland and southern Norway. We assessed genome-wide SNP variation using RADseq (ca. 42 and 552 thousand SNPs in toads and newts, respectively) and adaptively relevant major histocompatibility complex (MHC) class I and II genes. The results linked most of the genetic differentiation in both marker types to regional (latitudinal) effects, which also correspond to historical biogeography. Further, we did not find any association between genetic differentiation and level of urbanization at local scales for either species. However, urban smooth newts, but not toads, have lower levels of within-population genome-wide diversity, suggesting higher susceptibility to the negative effects of urbanization. A decreasing level of genetic diversity linked to increasing urbanization was also found for MHC II in smooth newts, while the relationship between MHC class I diversity and urbanization differed between geographic regions. We did not find any effects of urbanization on MHC diversity in the toad populations. Although two genetic environment association analyses of genome-wide data, LFMM and BayPass, revealed numerous (219 in B. bufo and 7040 in L. vulgaris) SNPs statistically associated with urbanization, we found a marked lack of repeatability between geographic regions, suggesting a complex and multifaceted response to natural selection elicited by life in the city.
Collapse
Affiliation(s)
- W. Babik
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - M. Marszałek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - K. Dudek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - B. Antunes
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - G. Palomar
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
| | - B. Zając
- Faculty of Biology, Institute of Zoology and Biomedical ResearchJagiellonian UniversityKrakówPoland
| | - A. Taugbøl
- Norwegian Institute for Nature ResearchLillehammerNorway
| | - M. Pabijan
- Faculty of Biology, Institute of Zoology and Biomedical ResearchJagiellonian UniversityKrakówPoland
| |
Collapse
|
3
|
Morelli F, Benedetti Y, Szkudlarek M, Abou Zeid F, Delgado JD, Kaczmarski M. Potential hotspots of amphibian roadkill risk in Spain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118346. [PMID: 37315465 DOI: 10.1016/j.jenvman.2023.118346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
We test a forecasting strategy to identify potential hotspots of amphibian roadkill, combining the spatial distribution of amphibians, their relative risk of collision with vehicles and data on road density in Spain. We extracted a large dataset from studies reporting road casualties of 39 European amphibian species and then estimated the 'relative roadkill risk' of species as the frequency of occurrence of casualties for each amphibian and standardized by the range of distribution of the species in Europe. Using a map with the spatial distribution of Spanish amphibians at a spatial resolution of 10 × 10 Km squares, we estimated the 'cumulative relative risk of roadkill' for each amphibian assemblage as the sum of risk estimates previously calculated for each species. We also calculated the total length of roads in each square (road density). Finally, combining all layers of information, we elaborated a forecasting map highlighting the potential amphibian roadkill risk across Spain. Our findings are relevant to suggest areas that should be focused on at more detailed spatial scales. Additionally, we found that the frequency of roadkill was unrelated to the evolutionary distinctiveness score and conservation status of amphibian species, while was positively correlated with their distribution range.
Collapse
Affiliation(s)
- Federico Morelli
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Community Ecology & Conservation Research Group, Kamýcká 129, CZ-165 00, Prague 6, Czech Republic; Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516, Zielona Góra, Poland.
| | - Yanina Benedetti
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Community Ecology & Conservation Research Group, Kamýcká 129, CZ-165 00, Prague 6, Czech Republic
| | - Michał Szkudlarek
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516, Zielona Góra, Poland
| | - Farah Abou Zeid
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Community Ecology & Conservation Research Group, Kamýcká 129, CZ-165 00, Prague 6, Czech Republic
| | - Juan D Delgado
- Área de Ecología, Dept. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, E-41013, Ctra. de Utrera Km.1, Sevilla, Spain
| | - Mikołaj Kaczmarski
- Poznań University of Life Sciences, Institute of Zoology, Wojska Polskiego 71C, 60-625, Poznań, Poland
| |
Collapse
|
4
|
Callaghan CT, Liu G, Mitchell BA, Poore AG, Rowley JJ. Urbanization negatively impacts frog diversity at continental, regional, and local scales. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Liu G, Rowley JJL, Kingsford RT, Callaghan CT. Species' traits drive amphibian tolerance to anthropogenic habitat modification. GLOBAL CHANGE BIOLOGY 2021; 27:3120-3132. [PMID: 33939215 DOI: 10.1111/gcb.15623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic habitat modification is accelerating, threatening the world's biodiversity. Understanding species' responses to anthropogenic modification is vital for halting species' declines. However, this information is lacking for globally threatened amphibians, informed primarily by small community-level studies. We integrated >126,000 verified citizen science observations of frogs, with a global continuous measure of anthropogenic habitat modification for a continental scale analysis of the effects of habitat modification on frogs. We derived a modification tolerance index-accounting for anthropogenic stressors such as human habitation, agriculture, transport and energy production-for 87 species (36% of all Australian frog species). We used this index to quantify and rank each species' tolerance of anthropogenic habitat modification, then compiled traits of all the frog species and assessed how well these equipped species to tolerate modified habitats. Most of Australia's frog species examined were adversely affected by habitat modification. Habitat specialists and species with large geographic range sizes were the least tolerant of habitat modification. Call dominant frequency, body size, clutch type and calling position (i.e. from vegetation) were also related to tolerance of habitat modification. There is an urgent need for improved consideration of anthropogenic impacts and improved conservation measures to ensure the long-term persistence of frog populations, particularly focused on specialists and species identified as intolerant of modified habitats.
Collapse
Affiliation(s)
- Gracie Liu
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Jodi J L Rowley
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Richard T Kingsford
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Corey T Callaghan
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|