1
|
Liu X, He D, Zhu M, Li Y, Lin L, Cai Q. Hemispheric dominance in reading system alters contribution to face processing lateralization across development. Dev Cogn Neurosci 2024; 69:101418. [PMID: 39059053 PMCID: PMC11331717 DOI: 10.1016/j.dcn.2024.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Face processing dominates the right hemisphere. This lateralization can be affected by co-lateralization within the same system and influence between different systems, such as neural competition from reading acquisition. Yet, how the relationship pattern changes through development remains unknown. This study examined the lateralization of core face processing and word processing in different age groups. By comparing fMRI data from 36 school-aged children and 40 young adults, we investigated whether there are age and regional effects on lateralization, and how relationships between lateralization within and between systems change across development. Our results showed significant right hemispheric lateralization in the core face system and left hemispheric lateralization in reading-related areas for both age groups when viewing faces and texts passively. While all participants showed stronger lateralization in brain regions of higher functional hierarchy when viewing faces, only adults exhibited this lateralization when viewing texts. In both age cohorts, there was intra-system co-lateralization for face processing, whereas an inter-system relationship was only found in adults. Specifically, functional lateralization of Broca's area during reading negatively predicted functional asymmetry in the FFA during face perception. This study initially provides neuroimaging evidence for the reading-induced neural competition theory from a maturational perspective in Chinese cohorts.
Collapse
Affiliation(s)
- Xinyang Liu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| | - Danni He
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Miaomiao Zhu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yinghui Li
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Center for Brain Science and Brain-Inspired Technology, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University, Shanghai, China; School of Life Science Department, East China Normal University, Shanghai 200062, China.
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; Shanghai Center for Brain Science and Brain-Inspired Technology, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University, Shanghai, China.
| |
Collapse
|
2
|
Gerlach C. Interdependency in lateralization of written word and face processing in right-handed individuals. Cortex 2023; 169:146-160. [PMID: 37913672 DOI: 10.1016/j.cortex.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023]
Abstract
It has been suggested that the right hemisphere lateralization typically observed for face processing may depend on lateralization of written word processing to the left hemisphere; a pattern referred to as the causal complementary principle of lateralization. According to a strong version of this principle, a correlation should be found between the degree of left and right hemisphere lateralization for word and face processing respectively. This has been observed in two studies, but only for left-handed individuals. The present study tested whether a similar lateralization pattern could be found in a relatively large sample of right-handed individuals (N = 210) using behavioral measures (divided visual field paradigms). It was also tested whether the degree of right hemisphere lateralization for face and global shape processing would correlate positively, as predicted by a strong version of the input asymmetry principle of lateralization. This was tested in a subsample (n = 189). Bayesian analyses found no evidence for lateralization interdependency as the observed data were 4-17 times more likely under the null hypothesis. Unfortunately, the reliabilities of the lateralization measures were found to be poor. While this dampens the firmness of the conclusions that can be drawn, it is argued that at present there is no positive evidence for strong interdependency between written word and face processing in right-handed individuals.
Collapse
|
3
|
Towards a unified understanding of lateralized vision: A large-scale study investigating principles governing patterns of lateralization using a heterogeneous sample. Cortex 2020; 133:201-214. [DOI: 10.1016/j.cortex.2020.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022]
|
4
|
O'Regan L, Serrien DJ. Individual Differences and Hemispheric Asymmetries for Language and Spatial Attention. Front Hum Neurosci 2018; 12:380. [PMID: 30337864 PMCID: PMC6180149 DOI: 10.3389/fnhum.2018.00380] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Language and spatial processing are cognitive functions that are asymmetrically distributed across both cerebral hemispheres. In the present study, we compare left- and right-handers on word comprehension using a divided visual field paradigm and spatial attention using a landmark task. We investigate hemispheric asymmetries by assessing the participants' behavioral metrics; response accuracy, reaction time and their laterality index. The data showed that right-handers benefitted more from left-hemispheric lateralization for language comprehension and right-hemispheric lateralization for spatial attention than left-handers. Furthermore, left-handers demonstrated a more variable distribution across both hemispheres, supporting a less focal profile of functional brain organization. Taken together, the results underline that handedness distinctively modulates hemispheric processing and behavioral performance during verbal and nonverbal tasks. In particular, typical lateralization is most prevalent for right-handers whereas atypical lateralization is more evident for left-handers. These insights contribute to the understanding of individual variation of brain asymmetries and the mechanisms related to changes in cerebral dominance.
Collapse
Affiliation(s)
- Louise O'Regan
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Deborah J Serrien
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Badzakova-Trajkov G, Corballis M, Häberling I. Complementarity or independence of hemispheric specializations? A brief review. Neuropsychologia 2016; 93:386-393. [DOI: 10.1016/j.neuropsychologia.2015.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
|
6
|
Freund N, Valencia-Alfonso CE, Kirsch J, Brodmann K, Manns M, Güntürkün O. Asymmetric top-down modulation of ascending visual pathways in pigeons. Neuropsychologia 2016; 83:37-47. [DOI: 10.1016/j.neuropsychologia.2015.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
7
|
Harms VL, Elias LJ. Examination of Complementarity in Speech and Emotional Vocalization Perception. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/psych.2014.58098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Suegami T, Laeng B. A left cerebral hemisphere’s superiority in processing spatial-categorical information in a non-verbal semantic format. Brain Cogn 2013; 81:294-302. [DOI: 10.1016/j.bandc.2012.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 10/11/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
|
9
|
Pinel P, Dehaene S. Beyond hemispheric dominance: brain regions underlying the joint lateralization of language and arithmetic to the left hemisphere. J Cogn Neurosci 2010; 22:48-66. [PMID: 19199416 DOI: 10.1162/jocn.2009.21184] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific cerebral subregions? Or is it merely coincidental? To shed light on this issue, we performed a "colateralization analysis" over 209 healthy subjects: We investigated whether normal variations in the degree of left hemispheric asymmetry in areas involved in sentence listening and reading are mirrored in the asymmetry of areas involved in mental arithmetic. Within the language network, a region-of-interest analysis disclosed partially dissociated patterns of lateralization, inconsistent with an overall "dominance" model. Only two of these areas presented a lateralization during sentence listening and reading which correlated strongly with the lateralization of two regions active during calculation. Specifically, the profile of asymmetry in the posterior superior temporal sulcus during sentence processing covaried with the asymmetry of calculation-induced activation in the intraparietal sulcus, and a similar colateralization linked the middle frontal gyrus with the superior posterior parietal lobule. Given recent neuroimaging results suggesting a late emergence of hemispheric asymmetries for symbolic arithmetic during childhood, we speculate that these colateralizations might constitute developmental traces of how the acquisition of linguistic symbols affects the cerebral organization of the arithmetic network.
Collapse
Affiliation(s)
- Philippe Pinel
- INSERM, U562, Cognitive Neuroimaging Unit, CEA/Saclay/Neurospin, Gif-sur-Yvette, France.
| | | |
Collapse
|
10
|
Holz EM, Glennon M, Prendergast K, Sauseng P. Theta–gamma phase synchronization during memory matching in visual working memory. Neuroimage 2010; 52:326-35. [DOI: 10.1016/j.neuroimage.2010.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 03/23/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022] Open
|
11
|
Izvekov EI, Nepomnyashchikh VA. Comparison of two kinds of functional asymmetry in the roach Rutilus rutilus (Teleostei: Cyprinidae). J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093010010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Cai Q, Lavidor M, Brysbaert M, Paulignan Y, Nazir TA. Cerebral Lateralization of Frontal Lobe Language Processes and Lateralization of the Posterior Visual Word Processing System. J Cogn Neurosci 2008; 20:672-81. [PMID: 18052778 DOI: 10.1162/jocn.2008.20043] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The brain areas involved in visual word processing rapidly become lateralized to the left cerebral hemisphere. It is often assumed this is because, in the vast majority of people, cortical structures underlying language production are lateralized to the left hemisphere. An alternative hypothesis, however, might be that the early stages of visual word processing are lateralized to the left hemisphere because of intrinsic hemispheric differences in processing low-level visual information as required for distinguishing fine-grained visual forms such as letters. If the alternative hypothesis was correct, we would expect posterior occipito-temporal processing stages still to be lateralized to the left hemisphere for participants with right hemisphere dominance for the frontal lobe processes involved in language production. By analyzing event-related potentials of native readers of French with either left hemisphere or right hemisphere dominance for language production (determined using a verb generation task), we were able to show that the posterior occipito-temporal areas involved in visual word processing are lateralized to the same hemisphere as language production. This finding could suggest top-down influences in the development of posterior visual word processing areas.
Collapse
Affiliation(s)
- Qing Cai
- 1Institut des Sciences Cognitives, Bron Cedex, France
| | | | | | | | | |
Collapse
|