1
|
Wilson M, Hecker L, Joos E, Aertsen A, Tebartz van Elst L, Kornmeier J. Spontaneous Necker-cube reversals may not be that spontaneous. Front Hum Neurosci 2023; 17:1179081. [PMID: 37323933 PMCID: PMC10268006 DOI: 10.3389/fnhum.2023.1179081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction During observation of the ambiguous Necker cube, our perception suddenly reverses between two about equally possible 3D interpretations. During passive observation, perceptual reversals seem to be sudden and spontaneous. A number of theoretical approaches postulate destabilization of neural representations as a pre-condition for reversals of ambiguous figures. In the current study, we focused on possible Electroencephalogram (EEG) correlates of perceptual destabilization, that may allow prediction of an upcoming perceptual reversal. Methods We presented ambiguous Necker cube stimuli in an onset-paradigm and investigated the neural processes underlying endogenous reversals as compared to perceptual stability across two consecutive stimulus presentations. In a separate experimental condition, disambiguated cube variants were alternated randomly, to exogenously induce perceptual reversals. We compared the EEG immediately before and during endogenous Necker cube reversals with corresponding time windows during exogenously induced perceptual reversals of disambiguated cube variants. Results For the ambiguous Necker cube stimuli, we found the earliest differences in the EEG between reversal trials and stability trials already 1 s before a reversal occurred, at bilateral parietal electrodes. The traces remained similar until approximately 1100 ms before a perceived reversal, became maximally different at around 890 ms (p = 7.59 × 10-6, Cohen's d = 1.35) and remained different until shortly before offset of the stimulus preceding the reversal. No such patterns were found in the case of disambiguated cube variants. Discussion The identified EEG effects may reflect destabilized states of neural representations, related to destabilized perceptual states preceding a perceptual reversal. They further indicate that spontaneous Necker cube reversals are most probably not as spontaneous as generally thought. Rather, the destabilization may occur over a longer time scale, at least 1 s before a reversal event, despite the reversal event as such being perceived as spontaneous by the viewer.
Collapse
Affiliation(s)
- Mareike Wilson
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lukas Hecker
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ellen Joos
- INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, Strasbourg, France
| | - Ad Aertsen
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kornmeier
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Devia C, Concha-Miranda M, Rodríguez E. Bi-Stable Perception: Self-Coordinating Brain Regions to Make-Up the Mind. Front Neurosci 2022; 15:805690. [PMID: 35153663 PMCID: PMC8829010 DOI: 10.3389/fnins.2021.805690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Bi-stable perception is a strong instance of cognitive self-organization, providing a research model for how ‘the brain makes up its mind.’ The complexity of perceptual bistability prevents a simple attribution of functions to areas, because many cognitive processes, recruiting multiple brain regions, are simultaneously involved. The functional magnetic resonance imaging (fMRI) evidence suggests the activation of a large network of distant brain areas. Concurrently, electroencephalographic and magnetoencephalographic (MEEG) literature shows sub second oscillatory activity and phase synchrony on several frequency bands. Strongly represented are beta and gamma bands, often associated with neural/cognitive integration processes. The spatial extension and short duration of brain activities suggests the need for a fast, large-scale neural coordination mechanism. To address the range of temporo-spatial scales involved, we systematize the current knowledge from mathematical models, cognitive sciences and neuroscience at large, from single-cell- to system-level research, including evidence from human and non-human primates. Surprisingly, despite evidence spanning through different organization levels, models, and experimental approaches, the scarcity of integrative studies is evident. In a final section of the review we dwell on the reasons behind such scarcity and on the need of integration in order to achieve a real understanding of the complexities underlying bi-stable perception processes.
Collapse
Affiliation(s)
- Christ Devia
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Miguel Concha-Miranda
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Laboratorio de Neurodinámica Básica y Aplicada, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eugenio Rodríguez
- Laboratorio de Neurodinámica Básica y Aplicada, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Eugenio Rodríguez,
| |
Collapse
|
3
|
Abdallah D, Brooks JL. Response dependence of reversal-related ERP components in perception of ambiguous figures. Psychophysiology 2020; 57:e13685. [PMID: 32940372 DOI: 10.1111/psyp.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
Perceptual multi-stability is characterized by alternating interpretations of an unchanging stimulus input. The reversal negativity (RN) and reversal positivity (RP) ERP components show differences in electrophysiological responses between trials on which participants experience a perceptual reversal of a multi-stable stimulus versus trials without a reversal (i.e., stable). However, it is unclear to what extent these two ERP components reflect reversal-related perceptual processing rather than task and response processes. To address this, we varied task and response requirements while measuring the RN and RP. In the standard reversal task, participants indicated whether they saw a perceptual reversal on each trial. In contrast, in the identity task participants reported perceived identity of the stimulus (e.g., face or vase) without any reference to reversals. In some blocks, reversal trials required a response whereas in other blocks stable trials required a response. We found that the RN appeared independently of task and response style. However, the early latency RP component was only present when participants responded manually. For non-response trials, a component was found during the same latency as the RP but with inverted polarity. Our results suggest that the early RP component is dependent on response-related processes rather than being a pure neural signature of perceptual processes related to endogenous perceptual reversals.
Collapse
Affiliation(s)
- Diane Abdallah
- School of Psychology, University of Kent, Canterbury, UK
| | | |
Collapse
|
4
|
Farmaki C, Sakkalis V, Loesche F, Nisiforou EA. Assessing Field Dependence-Independence Cognitive Abilities Through EEG-Based Bistable Perception Processing. Front Hum Neurosci 2019; 13:345. [PMID: 31680904 PMCID: PMC6798068 DOI: 10.3389/fnhum.2019.00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/19/2019] [Indexed: 11/30/2022] Open
Abstract
Field Dependence–Independence (FDI) is a widely studied dimension of cognitive styles designed to measure an individual’s ability to identify embedded parts of an organized visual field as entities separate from that given field. The research aims to determine whether the brain activity features that are considered to be perceptual switching indicators could serve as robust features, differentiating Field-Dependent (FD) from Field-Independent (FI) participants. Previous research suggests that various features derived from event related potentials (ERP) and frequency features are associated with the perceptual reversal occurring during the observation of a bistable image. In this study, we combined these features in the context of a different experimental scheme using ambiguous and unambiguous stimuli during participants’ perceptual observations. We assessed the participants’ FD-I classification with the use of the Hidden Figures Test (HFT). Results show that the peak amplitude of the frontoparietal positivity, the late positive deflection in frontal and parietal areas, is higher for the FD group at specific locations of the left lobe, whereas it occurs later for the FD group at the central and occipital electrodes. Additionally, the FD group exhibits higher levels of gamma power before stimulus onset at channel TP10 and higher gamma power during reversal at the right centroparietal electrodes (T8, CP6, and TP10). The peak amplitude of the reversal positivity, the positive deflection during the reversal, is higher for the FD group at the rear right lobe (P4).
Collapse
Affiliation(s)
- Cristina Farmaki
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vangelis Sakkalis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Frank Loesche
- Cognition Institute, University of Plymouth, Plymouth, United Kingdom.,CogNovo, University of Plymouth, Plymouth, United Kingdom
| | - Efi A Nisiforou
- Department of Education, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
5
|
Kornmeier J, Friedel E, Hecker L, Schmidt S, Wittmann M. What happens in the brain of meditators when perception changes but not the stimulus? PLoS One 2019; 14:e0223843. [PMID: 31647833 PMCID: PMC6812751 DOI: 10.1371/journal.pone.0223843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022] Open
Abstract
During the observation of an ambiguous figure our perception alternates between mutually exclusive interpretations, although the stimulus itself remains unchanged. The rate of these endogenous reversals has been discussed as reflecting basic aspects of endogenous brain dynamics. Recent evidence indicates that extensive meditation practice evokes long-term functional and anatomic changes in the brain, also affecting the endogenous brain dynamics. As one of several consequences the rate of perceptual reversals during ambiguous figure perception decreases. In the present study we compared EEG-correlates of endogenous reversals of ambiguous figures between meditators and non-meditating controls in order to better understand timing and brain locations of this altered endogenous brain dynamics. A well-established EEG paradigm was used to measure the neural processes underlying endogenous perceptual reversals of ambiguous figures with high temporal precision. We compared reversal-related ERPs between experienced meditators and non-meditating controls. For both groups we found highly similar chains of reversal-related ERPs, starting early in visual areas, therewith replicating previous findings from the literature. Meditators, however, showed an additional frontal ERP signature already 160 ms after stimulus onset (Frontal Negativity). We interpret the additional, meditation-specific ERP results as evidence that extensive meditation practice provides control of frontal brain areas over early sensory processing steps. This may allow meditators to overcome phylogenetically evolved perceptual and attentional processing automatisms.
Collapse
Affiliation(s)
- Jürgen Kornmeier
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evelyn. Friedel
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Hecker
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Eye Center, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stefan Schmidt
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| |
Collapse
|
6
|
Rodríguez-Martínez GA, Castillo-Parra H. Bistable perception: neural bases and usefulness in psychological research. Int J Psychol Res (Medellin) 2018; 11:63-76. [PMID: 32612780 PMCID: PMC7110285 DOI: 10.21500/20112084.3375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bistable images have the possibility of being perceived in two different ways. Due to their physical characteristics, these visual stimuli allow two different perceptions, associated with top-down and bottom-up modulating processes. Based on an extensive literature review, the present article aims to gather the conceptual models and the foundations of perceptual bistability. This theoretical article compiles not only notions that are intertwined with the understanding of this perceptual phenomenon, but also the diverse classification and uses of bistable images in psychological research, along with a detailed explanation of the neural correlates that are involved in perceptual reversibility. We conclude that the use of bistable images as a paradigmatic resource in psychological research might be extensive. In addition, due to their characteristics, visual bistable stimuli have the potential to be implemented as a resource in experimental tasks that seek to understand diverse concerns linked essentially to attention, sensory, perceptual and memory processes.
Collapse
Affiliation(s)
- Guillermo Andrés Rodríguez-Martínez
- Escuela de Publicidad - Universidad de Bogotá Jorge Tadeo Lozano, Bogotá, Colombia. Universidad de Bogotá Jorge Tadeo Lozano Universidad de Bogotá Jorge Tadeo Lozano Bogotá Colombia.,Facultad de Psicología - Universidad de San Buenaventura de Medellín, Colombia. Universidad de San Buenaventura Universidad de San Buenaventura de Medellín Colombia
| | - Henry Castillo-Parra
- Facultad de Psicología - Universidad de San Buenaventura de Medellín, Colombia. Universidad de San Buenaventura Universidad de San Buenaventura de Medellín Colombia
| |
Collapse
|
7
|
ERP signatures of conscious and unconscious word and letter perception in an inattentional blindness paradigm. Conscious Cogn 2017; 54:56-71. [DOI: 10.1016/j.concog.2017.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 01/01/2023]
|
8
|
Zhao S, Wang Y, Jia L, Feng C, Liao Y, Feng W. Pre-coincidence brain activity predicts the perceptual outcome of streaming/bouncing motion display. Sci Rep 2017; 7:8832. [PMID: 28821774 PMCID: PMC5562831 DOI: 10.1038/s41598-017-08801-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/13/2017] [Indexed: 11/22/2022] Open
Abstract
When two identical visual discs move toward each other on a two-dimensional visual display, they can be perceived as either "streaming through" or "bouncing off" each other after their coincidence. Previous studies have observed a strong bias toward the streaming percept. Additionally, the incidence of the bouncing percept in this ambiguous display could be increased by various factors, such as a brief sound at the moment of coincidence and a momentary pause of the two discs. The streaming/bouncing bistable motion phenomenon has been studied intensively since its discovery. However, little is known regarding the neural basis underling the perceptual ambiguity in the classic version of the streaming/bouncing motion display. The present study investigated the neural basis of the perception disambiguating underling the processing of the streaming/bouncing bistable motion display using event-related potential (ERP) recordings. Surprisingly, the amplitude of frontal central P2 (220-260 ms) that was elicited by the moving discs ~200 ms before the coincidence of the two discs was observed to be predictive of subsequent streaming or bouncing percept. A larger P2 amplitude was observed for streaming percept than the bouncing percept. These findings suggest that the streaming/bouncing bistable perception may have been disambiguated unconsciously ~200 ms before the coincidence of the two discs.
Collapse
Affiliation(s)
- Song Zhao
- Department of Psychology, School of Education, SooChow University, Suzhou, Jiangsu, 215123, China
| | - Yajie Wang
- Department of Psychology, School of Education, SooChow University, Suzhou, Jiangsu, 215123, China
| | - Lina Jia
- Department of Education, School of Humanities, Jiang Nan University, Wuxi, 214122, China
| | - Chengzhi Feng
- Department of Psychology, School of Education, SooChow University, Suzhou, Jiangsu, 215123, China
| | - Yu Liao
- Department of Psychology, School of Education, SooChow University, Suzhou, Jiangsu, 215123, China.
| | - Wenfeng Feng
- Department of Psychology, School of Education, SooChow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
9
|
Chung-Fat-Yim A, Sorge GB, Bialystok E. The relationship between bilingualism and selective attention in young adults: Evidence from an ambiguous figures task. Q J Exp Psychol (Hove) 2016; 70:366-372. [PMID: 27574851 DOI: 10.1080/17470218.2016.1221435] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previous research has shown that bilinguals outperform monolinguals on a variety of tasks that have been described as involving executive functioning, but the precise mechanism for those effects or a clear definition for "executive function" is unknown. This uncertainty has led to a number of studies for which no performance difference between monolingual and bilingual adults has been detected. One approach to clarifying these issues comes from research with children showing that bilinguals were more able than their monolingual peers to perceive both interpretations of an ambiguous figure, an ability that is more tied to a conception of selective attention than to specific components of executive function. The present study extends this notion to adults by assessing their ability to see the alternative image in an ambiguous figure. Bilinguals performed this task more efficiently than monolinguals by requiring fewer cues to identify the second image. This finding has implications for the role of selective attention in performance differences between monolinguals and bilinguals.
Collapse
Affiliation(s)
| | - Geoff B Sorge
- b York Catholic District School Board , Aurora , ON , Canada
| | - Ellen Bialystok
- a Department of Psychology , York University , Toronto , ON , Canada
| |
Collapse
|
10
|
Russo E, De Pascalis V. Individual variability in perceptual switching behaviour is associated with reversal-related EEG modulations. Clin Neurophysiol 2015; 127:479-489. [PMID: 26105685 DOI: 10.1016/j.clinph.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/15/2022]
Abstract
OBJECTIVE High individual variability is frequently observed in multistable perception, but few ERP studies have considered this factor. The present investigation evaluates the relation between individual perceptual switching and the modulation of reversal-related ERP components. METHODS We used a bistable perception paradigm (Kornmeier and Bach, 2004), consisting of briefly flashed grid of nine Necker cubes, interspersed by a blank screen. The subject's task was to compare the previous stimulus with the latter one. The number of reversal perceptions was used as a measure of individual perceptual switching behaviour. RESULTS As in previously reported findings, Reversal Negativity (RN, 180-300 ms) and Late Positive Component (LPC, 350-600 ms) were identified in response to reversal perception. In terms of individual differences, higher reversals were associated with reduced negativity of the RN and enhanced positivity of the LPC. CONCLUSION The timing of the present results supports the hypothesis that individual variability in perceptual reversal is associated with different neural activations at later stage of processing, when the neural representation of ambiguous figure must be internalized to produce an appropriate response/behaviour. SIGNIFICANCE Multistable perception can reveal crucial mechanisms underlying individual perceptual re-organization when inconsistent or incoherent stimuli come from the environment.
Collapse
Affiliation(s)
- Emanuela Russo
- Department of Psychology, "La Sapienza" University of Rome, Italy.
| | | |
Collapse
|
11
|
Kornmeier J, Bach M. EEG correlates of perceptual reversals in Boring's ambiguous old/young woman stimulus. Perception 2014; 43:950-62. [PMID: 25420334 DOI: 10.1068/p7741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ambiguous figures attract observers because perception alternates between different interpretations while the sensory information stays unchanged. Understanding the underlying processes is difficult because the precise time instant of this endogenous reversal event needs to be known but is difficult to measure. Presenting ambiguous figures discontinuously and using stimulus onset as estimation of the reversal event increased temporal resolution and provided a series of well-confirmed EEG signatures. In the current EEG study we used this 'onset paradigm' for the first time with Boring's old/young woman stimulus. We found an early occipital event-related potential (ERP) correlate of reversals between the perception of the old woman and the perception of the young woman that fits well with previous ERP findings. This component was not followed by the often-reported occipito-parietal Reversal Negativity at 260 ms, but instead by an occipito-temporal N170, that is typically reported with face stimuli. We interpret our results as follows: ambiguity conflicts take place during processing of stimulus elements in early visual areas roughly 130 ms after stimulus onset. The disambiguation of these elements and their assembly to object 'gestalts' result from an interplay between early visual and object-specific brain areas in a temporal window between 130 and 260 ms after stimulus onset. In the particular case of Boring's old/young woman the processes of element disambiguation and gestalt construction are already finished at 170 ms and, thus, 90 ms earlier than in the case of ambiguous geometric figures (eg Necker cube or Schroeder staircase) or of binocular rivalrous gratings.
Collapse
|
12
|
Synchronous and opposite roles of the parietal and prefrontal cortices in bistable perception: a double-coil TMS-EEG study. Cortex 2014; 64:78-88. [PMID: 25461709 DOI: 10.1016/j.cortex.2014.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 11/21/2022]
Abstract
Bistable perception occurs when a stimulus is ambiguous and has two distinct interpretations that spontaneously alternate in observers' consciousness. Studies using functional magnetic resonance imaging, electroencephalography (EEG), and transcranial magnetic stimulation (TMS) in healthy subjects and patient studies point towards a right fronto-parietal network regulating the balance between percept stabilization and the arising of alternative interpretations. However, the causal role of the interaction between parietal and prefrontal areas is not clearly understood. Using intermittent presentations of bistable images, we confirmed that maintaining or switching percepts had neural correlates identifiable on EEG. Single-pulse TMS applied over the right anterior intraparietal sulcus (IPS) 70 msec before image presentation interfered with evoked potentials and destabilized the percept. However, with paired-pulse TMS applied over right IPS and dorsolateral prefrontal cortex (DLPFC) 70 and 60 msec before image presentation, both perceptual and neurophysiological effects were canceled. Thus, TMS over IPS and DLPFC interacted with each other and influenced upcoming percepts. We suggest that when the visual world is ambiguous, IPS plays a stabilizing role, whereas DLPFC is important for triggering perceptual switches or for modulating parietal activity. The balance between maintaining and switching visual conscious percepts relies on the dynamic interaction between IPS and DLPFC.
Collapse
|
13
|
Davidson GD, Pitts MA. Auditory event-related potentials associated with perceptual reversals of bistable pitch motion. Front Hum Neurosci 2014; 8:572. [PMID: 25152722 PMCID: PMC4126364 DOI: 10.3389/fnhum.2014.00572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/14/2014] [Indexed: 11/21/2022] Open
Abstract
Previous event-related potential (ERP) experiments have consistently identified two components associated with perceptual transitions of bistable visual stimuli, the "reversal negativity" (RN) and the "late positive complex" (LPC). The RN (~200 ms post-stimulus, bilateral occipital-parietal distribution) is thought to reflect transitions between neural representations that form the moment-to-moment contents of conscious perception, while the LPC (~400 ms, central-parietal) is considered an index of post-perceptual processing related to accessing and reporting one's percept. To explore the generality of these components across sensory modalities, the present experiment utilized a novel bistable auditory stimulus. Pairs of complex tones with ambiguous pitch relationships were presented sequentially while subjects reported whether they perceived the tone pairs as ascending or descending in pitch. ERPs elicited by the tones were compared according to whether perceived pitch motion changed direction or remained the same across successive trials. An auditory reversal negativity (aRN) component was evident at ~170 ms post-stimulus over bilateral fronto-central scalp locations. An auditory LPC component (aLPC) was evident at subsequent latencies (~350 ms, fronto-central distribution). These two components may be auditory analogs of the visual RN and LPC, suggesting functionally equivalent but anatomically distinct processes in auditory vs. visual bistable perception.
Collapse
|
14
|
Yokota Y, Minami T, Naruse Y, Nakauchi S. Neural processes in pseudo perceptual rivalry: an ERP and time-frequency approach. Neuroscience 2014; 271:35-44. [PMID: 24759770 DOI: 10.1016/j.neuroscience.2014.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/27/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022]
Abstract
Necker cube is one of the ambiguous figures that is physically a static image but can be alternately perceived in two different perspectives. A great deal of debate exists regarding ambiguous figures that induce spontaneous switching between rival percepts. To investigate the time course of neural processes underlying such perceptual rivalry, we recorded electroencephalograms associated with participants' perceptions of a Necker cube under ambiguous and unambiguous conditions, using a modified discontinuous-presentation method. Each condition consisted of two stimuli presented consecutively, starting with an unambiguous stimulus in both conditions. The second stimulus was either ambiguous (ambiguous condition) or unambiguous (control condition). We compared endogenous reversal activity of ambiguous stimuli with exogenous reversals. As a result, we found that the right-occipital beta-band activity (16-26 Hz) increased 100-150 ms and 350-450 ms after the onset of the ambiguous stimulus only when the perception of the ambiguous stimulus differed from that of the first stimulus. These results indicate that activity in the right-occipital total beta band reflects endogenous switching between rivaling percepts.
Collapse
Affiliation(s)
- Y Yokota
- Center for Information and Neural Networks(CiNet), National Institute of Information and Communications Technology, and Osaka University, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2429, Japan
| | - T Minami
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku, Toyohashi, Aichi 441-8580, Japan.
| | - Y Naruse
- Center for Information and Neural Networks(CiNet), National Institute of Information and Communications Technology, and Osaka University, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2429, Japan
| | - S Nakauchi
- Department of Electronic and Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
15
|
Intaitė M, Koivisto M, Castelo-Branco M. Event-related potential responses to perceptual reversals are modulated by working memory load. Neuropsychologia 2014; 56:428-38. [PMID: 24565733 DOI: 10.1016/j.neuropsychologia.2014.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/14/2014] [Accepted: 02/15/2014] [Indexed: 11/30/2022]
Abstract
While viewing ambiguous figures, such as the Necker cube, the available perceptual interpretations alternate with one another. The role of higher level mechanisms in such reversals remains unclear. We tested whether perceptual reversals of discontinuously presented Necker cube pairs depend on working memory resources by manipulating cognitive load while recording event-related potentials (ERPs). The ERPs showed early enhancements of negativity, which were obtained in response to the first cube approximately 500 ms before perceived reversals. We found that working memory load influenced reversal-related brain responses in response to the second cube over occipital areas at the 150-300 ms post-stimulus and over central areas at P3 time window (300-500 ms), suggesting that it modulates intermediate visual processes. Interestingly, reversal rates remained unchanged by the working memory load. We propose that perceptual reversals in discontinuous presentation of ambiguous stimuli are governed by an early (well preceding pending reversals) mechanism, while the effects of load on the reversal related ERPs may reflect general top-down influences on visual processing, possibly mediated by the prefrontal cortex.
Collapse
Affiliation(s)
- Monika Intaitė
- Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga De Santa Comba, Celas, 3000-548 Coimbra, Portugal.
| | - Mika Koivisto
- Centre for Cognitive Neuroscience, University of Turku, 20014 Turku, Finland; Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Miguel Castelo-Branco
- Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga De Santa Comba, Celas, 3000-548 Coimbra, Portugal
| |
Collapse
|
16
|
Intaitė M, Koivisto M, Revonsuo A. Perceptual reversals of Necker stimuli during intermittent presentation with limited attentional resources. Psychophysiology 2012; 50:82-96. [PMID: 23215774 DOI: 10.1111/j.1469-8986.2012.01486.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 09/13/2012] [Indexed: 11/29/2022]
Abstract
During prolonged viewing of ambiguous stimuli, such as Necker cubes, sudden perceptual reversals occur from one perceptual interpretation to another. The role of attention in such reversals is not clear. We tested whether perceptual reversals depend on attentional resources by manipulating perceptual load and recording event-related potentials (ERPs) during intermittent presentation of Necker stimuli. The results did not reveal any influence for perceptual load on the frequency of reversals. The ERPs showed that perceptual load influenced electrophysiological activity over parieto-central areas in the P1 time window (110-140 ms), but load did not modify the early enhancements of positivity (30-140 ms), which correlated with perceptual reversals at occipito-temporal sites. We conclude that disambiguation of ambiguous figures is based on early mechanisms that can work efficiently with only a minimal amount of attentional resources.
Collapse
Affiliation(s)
- Monika Intaitė
- Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | | | | |
Collapse
|
17
|
Kornmeier J, Bach M. Ambiguous figures - what happens in the brain when perception changes but not the stimulus. Front Hum Neurosci 2012; 6:51. [PMID: 22461773 PMCID: PMC3309967 DOI: 10.3389/fnhum.2012.00051] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 02/26/2012] [Indexed: 12/05/2022] Open
Abstract
During observation of ambiguous figures our perception reverses spontaneously although the visual information stays unchanged. Research on this phenomenon so far suffered from the difficulty to determine the instant of the endogenous reversals with sufficient temporal precision. A novel experimental paradigm with discontinuous stimulus presentation improved on previous temporal estimates of the reversal event by a factor of three. It revealed that disambiguation of ambiguous visual information takes roughly 50 ms or two loops of recurrent neural activity. Further, the decision about the perceptual outcome has taken place at least 340 ms before the observer is able to indicate the consciously perceived reversal manually. We provide a short review about physiological studies on multistable perception with a focus on electrophysiological data. We further present a new perspective on multistable perception that can easily integrate previous apparently contradicting explanatory approaches. Finally we propose possible extensions toward other research fields where ambiguous figure perception may be useful as an investigative tool.
Collapse
Affiliation(s)
- Jürgen Kornmeier
- Institute for Frontier Areas of Psychology and Mental Health Freiburg, Germany
| | | |
Collapse
|
18
|
Pitts MA, Britz J. Insights from intermittent binocular rivalry and EEG. Front Hum Neurosci 2011; 5:107. [PMID: 22046158 PMCID: PMC3202229 DOI: 10.3389/fnhum.2011.00107] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/11/2011] [Indexed: 11/29/2022] Open
Abstract
Novel stimulation and analytical approaches employed in EEG studies of ambiguous figures have recently been applied to binocular rivalry. The combination of intermittent stimulus presentation and EEG source imaging has begun to shed new light on the neural underpinnings of binocular rivalry. Here, we review the basics of the intermittent paradigm and highlight methodological issues important for interpreting previous results and designing future experiments. We then outline current analytical approaches, including EEG microstates, event-related potentials, and statistically based source estimation, and propose a neural model of the sequence of brain events that may underlie different aspects of binocular rivalry. Finally, we discuss the advantages and limitations of using binocular rivalry as a tool to investigate the neural basis of perceptual awareness.
Collapse
|
19
|
Tracking the processes behind conscious perception: A review of event-related potential correlates of visual consciousness. Conscious Cogn 2011; 20:972-83. [DOI: 10.1016/j.concog.2011.03.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/01/2011] [Accepted: 03/18/2011] [Indexed: 11/21/2022]
|