1
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
2
|
Paz-Rodríguez F, Chávez-Oliveros M, Bernal-Pérez A, Ochoa-Morales A, Martínez-Ruano L, Camacho-Molina A, Rodríguez-Agudelo Y. Neuropsychological performance and disease burden in individuals at risk of developing Huntington disease. Neurologia 2024; 39:127-134. [PMID: 38272259 DOI: 10.1016/j.nrleng.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Huntington disease (HD) is a hereditary neurodegenerative disorder. Thanks to predictive diagnosis, incipient clinical characteristics have been described in the prodromal phase. OBJECTIVE To compare performance in cognitive tasks of carriers (HDC) and non-carriers (non-HDC) of the huntingtin gene and to analyse the variability in performance as a function of disease burden and proximity to the manifest stage (age of symptom onset). METHOD A sample of 146 participants in a predictive diagnosis of HD programme were divided into the HDC (41.1%) and non-HDC groups (58.9%). Mathematical formulae were used to calculate disease burden and proximity to the manifest stage in the HDC group; these parameters were correlated with neuropsychological performance. RESULTS Significant differences were observed between groups in performance on the Mini-Mental State Examination (MMSE), Stroop-B, Symbol-Digit Modalities Test (SDMT), and phonological fluency. In the HDC group, correlations were observed between disease burden and performance on the MMSE, Stroop-B, and SDMT. The group of patients close to the manifest stage scored lowest on the MMSE, Stroop-B, Stroop-C, SDMT, and semantic verbal fluency. According to the multivariate analysis of covariance, the MMSE effect shows statistically significant differences in disease burden and proximity to onset of symptoms. CONCLUSIONS Members of the HDC group close to the manifest phase performed more poorly on tests assessing information processing speed and attention. Prefrontal cognitive dysfunction appears early, several years before the motor diagnosis of HD.
Collapse
Affiliation(s)
- F Paz-Rodríguez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - M Chávez-Oliveros
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - A Bernal-Pérez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - A Ochoa-Morales
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - L Martínez-Ruano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - A Camacho-Molina
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Y Rodríguez-Agudelo
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Nunes AS, Pawlik M, Mishra RK, Waddell E, Coffey M, Tarolli CG, Schneider RB, Dorsey ER, Vaziri A, Adams JL. Digital assessment of speech in Huntington disease. Front Neurol 2024; 15:1310548. [PMID: 38322583 PMCID: PMC10844459 DOI: 10.3389/fneur.2024.1310548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Background Speech changes are an early symptom of Huntington disease (HD) and may occur prior to other motor and cognitive symptoms. Assessment of HD commonly uses clinician-rated outcome measures, which can be limited by observer variability and episodic administration. Speech symptoms are well suited for evaluation by digital measures which can enable sensitive, frequent, passive, and remote administration. Methods We collected audio recordings using an external microphone of 36 (18 HD, 7 prodromal HD, and 11 control) participants completing passage reading, counting forward, and counting backwards speech tasks. Motor and cognitive assessments were also administered. Features including pausing, pitch, and accuracy were automatically extracted from recordings using the BioDigit Speech software and compared between the three groups. Speech features were also analyzed by the Unified Huntington Disease Rating Scale (UHDRS) dysarthria score. Random forest machine learning models were implemented to predict clinical status and clinical scores from speech features. Results Significant differences in pausing, intelligibility, and accuracy features were observed between HD, prodromal HD, and control groups for the passage reading task (e.g., p < 0.001 with Cohen'd = -2 between HD and control groups for pause ratio). A few parameters were significantly different between the HD and control groups for the counting forward and backwards speech tasks. A random forest classifier predicted clinical status from speech tasks with a balanced accuracy of 73% and an AUC of 0.92. Random forest regressors predicted clinical outcomes from speech features with mean absolute error ranging from 2.43-9.64 for UHDRS total functional capacity, motor and dysarthria scores, and explained variance ranging from 14 to 65%. Montreal Cognitive Assessment scores were predicted with mean absolute error of 2.3 and explained variance of 30%. Conclusion Speech data have the potential to be a valuable digital measure of HD progression, and can also enable remote, frequent disease assessment in prodromal HD and HD. Clinical status and disease severity were predicted from extracted speech features using random forest machine learning models. Speech measurements could be leveraged as sensitive marker of clinical onset and disease progression in future clinical trials.
Collapse
Affiliation(s)
| | - Meghan Pawlik
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Emma Waddell
- Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Madeleine Coffey
- Donald and Barbara Zucker School of Medicine, Uniondale, NY, United States
| | - Christopher G. Tarolli
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ruth B. Schneider
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - E. Ray Dorsey
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Jamie L. Adams
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
4
|
Rieux M, Alpaugh M, Salem S, Siddu A, Saint-Pierre M, Denis HL, Rohweder H, Herrmann F, Bazenet C, Lacroix S, Cicchetti F. Understanding the role of the hematopoietic niche in Huntington's disease's phenotypic expression: in vivo evidence using a parabiosis model. Neurobiol Dis 2023; 180:106091. [PMID: 36967065 DOI: 10.1016/j.nbd.2023.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
In a previous study, we have shown that parabiotic coupling of a knock-in mouse model (zQ175) of Huntington's disease (HD) to wild-type (WT) littermates resulted in a worsening of the normal phenotype as seen by detection of mutant huntingtin protein (mHTT) aggregates within peripheral organs and the cerebral cortex as well as vascular abnormalities in WT mice. In contrast, parabiosis improved disease features in the zQ175 mice such as reduction of mHTT aggregate number in the liver and cortex, decrease in blood-brain barrier (BBB) permeability and attenuation of mitochondrial impairments. While the shared circulation mediated these effects, no specific factor was identified. To better understand which blood elements were involved in the aforementioned changes, WT and zQ175 mice underwent parabiotic surgery prior to exposing one of the paired animals to irradiation. The irradiation procedure successfully eliminated the hematopoietic niche followed by repopulation with cells originating from the non-irradiated parabiont, as measured by the quantification of mHTT levels in peripheral blood mononuclear cells. Although irradiation of the WT parabiont, causing the loss of healthy hematopoietic cells, did lead to a few alterations in mitochondrial function in the muscle (TOM40 levels), and increased neuroinflammation in the striatum (GFAP levels), most of the changes observed were likely attributable to the irradiation procedure itself (e.g. mHTT aggregates in cortex and liver; cellular stress in peripheral organs). However, factors such as mHTT aggregation in the brain and periphery, and BBB leakage, which were improved in zQ175 mice when paired to WT littermates in the previous parabiosis experiment, were unaffected by perturbation of the hematopoietic niche. It would therefore appear that cells of the hematopoietic stem cell niche are largely uninvolved in the beneficial effects of parabiosis.
Collapse
Affiliation(s)
- Marie Rieux
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de médecine moléculaire, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Melanie Alpaugh
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de psychiatrie & neurosciences, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Shireen Salem
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de médecine moléculaire, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Alberto Siddu
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de psychiatrie & neurosciences, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Martine Saint-Pierre
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Hélèna L Denis
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de psychiatrie & neurosciences, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | | | | | | | - Steve Lacroix
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de médecine moléculaire, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Francesca Cicchetti
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de médecine moléculaire, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada; Département de psychiatrie & neurosciences, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
5
|
Rodríguez-Agudelo Y, Chávez-Oliveros M, Ochoa-Morales A, Martínez-Ruano L, Camacho-Molina A, Paz-Rodríguez F. Psychological discomfort in carriers and non-carriers of the Huntington disease mutation and its relationship with disease burden. Neurologia 2022:S2173-5808(22)00092-X. [PMID: 36058517 DOI: 10.1016/j.nrleng.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Huntington's disease (HD) is a neurodegenerative and hereditary disorder. Due to the predictive diagnosis, incipient clinical characteristics have been described in the prodromal phase. Several studies have reported an increase in psychiatric symptoms in carriers of the HD gene without motor symptoms. OBJECTIVE To identify psychological distress in carriers of the mutation that causes HD, without motor symptoms, utilizing the Symptom Checklist 90 (SCL-90), and to correlate with the burden and proximity of the disease. METHOD A sample of 175 participants in a HD Predictive Diagnostic Program (PDP-HD) was divided into HEP carriers (39.4%) and NPEH non-carriers (61.6%) of the HD-causing mutation. By means of mathematical formulas, the disease burden and proximity to the manifest stage in the PEH group were obtained and it was correlated with the results of the SCL-90-R. RESULTS Comparing the results obtained in the SCL-90-R of the PEH and NPEH, the difference is observed in the positive somatic male index, where the PEH obtains higher average scores. The correlations between disease burden and psychological distress occur in the domains; obsessions and compulsions, interpersonal sensitivity, hostility, global severity index and positive somatic distress index. A low correlation is observed between the burden of disease and the scores obtained in psychological discomfort. CONCLUSIONS In general, we found that the PEH group obtained a higher score in the dimensions evaluated with the SCL-90-R, showing a relationship with the burden and differences due to the proximity of the disease. Higher scores on the SCL-90-R dimensions in carriers of the HD gene may suggest an early finding of psychological symptoms in the disease.
Collapse
Affiliation(s)
- Y Rodríguez-Agudelo
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - M Chávez-Oliveros
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Ochoa-Morales
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - L Martínez-Ruano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Camacho-Molina
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - F Paz-Rodríguez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México.
| |
Collapse
|
6
|
Malestar psicológico en portadores y no portadores de la mutación causante de enfermedad de Huntington y su relación con la carga de la enfermedad. Neurologia 2022. [DOI: 10.1016/j.nrl.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Soares ES, Prediger RD, Brocardo PS, Cimarosti HI. SUMO-modifying Huntington's disease. IBRO Neurosci Rep 2022; 12:203-209. [PMID: 35746980 PMCID: PMC9210482 DOI: 10.1016/j.ibneur.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/06/2022] [Indexed: 12/25/2022] Open
Abstract
Small ubiquitin-like modifiers, SUMOs, are proteins that are conjugated to target substrates and regulate their functions in a post-translational modification called SUMOylation. In addition to its physiological roles, SUMOylation has been implicated in several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases (HD). HD is a neurodegenerative monogenetic autosomal dominant disorder caused by a mutation in the CAG repeat of the huntingtin (htt) gene, which expresses a mutant Htt protein more susceptible to aggregation and toxicity. Besides Htt, other SUMO ligases, enzymes, mitochondrial and autophagic components are also important for the progression of the disease. Here we review the main aspects of Htt SUMOylation and its role in cellular processes involved in the pathogenesis of HD.
Collapse
Affiliation(s)
- Ericks S. Soares
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Rui D. Prediger
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Patricia S. Brocardo
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Helena I. Cimarosti
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
8
|
Shedding a new light on Huntington's disease: how blood can both propagate and ameliorate disease pathology. Mol Psychiatry 2021; 26:5441-5463. [PMID: 32514103 DOI: 10.1038/s41380-020-0787-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.
Collapse
|
9
|
Paz-Rodríguez F, Chávez-Oliveros M, Bernal-Pérez A, Ochoa-Morales A, Martínez-Ruano L, Camacho-Molina A, Rodríguez-Agudelo Y. Neuropsychological performance and disease burden in individuals at risk of developing Huntington disease. Neurologia 2021; 39:S0213-4853(21)00087-6. [PMID: 34090718 DOI: 10.1016/j.nrl.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Huntington disease (HD) is a hereditary neurodegenerative disorder. Thanks to predictive diagnosis, incipient clinical characteristics have been described in the prodromal phase. OBJECTIVE To compare performance in cognitive tasks of carriers (HDC) and non-carriers (non-HDC) of the huntingtin gene and to analyse the variability in performance as a function of disease burden and proximity to the manifest stage (age of symptom onset). METHOD A sample of 146 participants in a predictive diagnosis of HD programme were divided into the HDC (41.1%) and non-HDC groups (58.9%). Mathematical formulae were used to calculate disease burden and proximity to the manifest stage in the HDC group; these parameters were correlated with neuropsychological performance. RESULTS Significant differences were observed between groups in performance on the Mini-Mental State Examination (MMSE), Stroop-B, Symbol-Digit Modalities Test (SDMT), and phonological fluency. In the HDC group, correlations were observed between disease burden and performance on the MMSE, Stroop-B, and SDMT. The group of patients close to the manifest stage scored lowest on the MMSE, Stroop-B, Stroop-C, SDMT, and semantic verbal fluency. According to the multivariate analysis of covariance, the MMSE effect shows statistically significant differences in disease burden and proximity to onset of symptoms. CONCLUSIONS Members of the HDC group close to the manifest phase performed more poorly on tests assessing information processing speed and attention. Prefrontal cognitive dysfunction appears early, several years before the motor diagnosis of HD.
Collapse
Affiliation(s)
- F Paz-Rodríguez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - M Chávez-Oliveros
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Bernal-Pérez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Ochoa-Morales
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - L Martínez-Ruano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Camacho-Molina
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - Y Rodríguez-Agudelo
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México.
| |
Collapse
|
10
|
The effect of impulsivity and inhibitory control deficits in the saccadic behavior of premanifest Huntington's disease individuals. Orphanet J Rare Dis 2019; 14:246. [PMID: 31703597 PMCID: PMC6839196 DOI: 10.1186/s13023-019-1218-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND This study aims to test response inhibition in premanifest Huntington's disease individuals (Pre-HD), in the context of a saccadic paradigm with working memory demands and fronto-executive load as a way to measure inhibitory control deficits and impulsive behavior in Huntington's disease (HD). METHODS The oculomotor function of 15 Pre-HD and 22 Control individuals was assessed using an experimental paradigm comprising four horizontal saccadic tasks: prosaccade (PS), antisaccade (AS), 1- or 2-back memory prosaccade (MPS), and 1- or 2-back memory antisaccade (MAS). Success rate, latency, directional and timing errors were calculated for each task. A comprehensive battery of neuropsychological tests was also used to assess the overall cognitive functioning of study participants. Statistical correlations between oculomotor, clinical and cognitive measures were computed for the Pre-HD group. RESULTS Pre-HD participants showed reduced success rate in the AS task, increased direction errors in the AS and MAS tasks and decreased latency in the MAS task when compared to Controls, despite presenting similar executive and memory scores in the conventional neuropsychological tests applied. Significant associations were identified between specific AS and MAS parameters and disease-related measures, cognitive skills and other oculomotor results of Pre-HD participants. CONCLUSIONS Our results show that oculomotor performance in premanifest Huntington's disease deteriorates once inhibitory control, working memory and/or fronto-executive load are added to the task. A more automatic pattern of performance, including a faster response time and directionally erroneous eye movements were detected in the oculomotor behavior of the Pre-HD group-these alterations were significantly correlated with disease stage and cognitive status. Our saccadic paradigm was able to capture impulsivity and inhibitory control deficits in a group of Pre-HD individuals on average far from symptom onset, thus holding the potential to identify the earliest disease-related changes.
Collapse
|
11
|
Lahr J, Minkova L, Tabrizi SJ, Stout JC, Klöppel S, Scheller E. Working Memory-Related Effective Connectivity in Huntington's Disease Patients. Front Neurol 2018; 9:370. [PMID: 29915555 PMCID: PMC5994408 DOI: 10.3389/fneur.2018.00370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease (HD) is a genetically caused neurodegenerative disorder characterized by heterogeneous motor, psychiatric, and cognitive symptoms. Although motor symptoms may be the most prominent presentation, cognitive symptoms such as memory deficits and executive dysfunction typically co-occur. We used functional magnetic resonance imaging (fMRI) and task fMRI-based dynamic causal modeling (DCM) to evaluate HD-related changes in the neural network underlying working memory (WM). Sixty-four pre-symptomatic HD mutation carriers (preHD), 20 patients with early manifest HD symptoms (earlyHD), and 83 healthy control subjects performed an n-back fMRI task with two levels of WM load. Effective connectivity was assessed in five predefined regions of interest, comprising bilateral inferior parietal cortex, left anterior cingulate cortex, and bilateral dorsolateral prefrontal cortex. HD mutation carriers performed less accurately and more slowly at high WM load compared with the control group. While between-group comparisons of brain activation did not reveal differential recruitment of the cortical WM network in mutation carriers, comparisons of brain connectivity as identified with DCM revealed a number of group differences across the whole WM network. Most strikingly, we observed decreasing connectivity from several regions toward right dorsolateral prefrontal cortex (rDLPFC) in preHD and even more so in earlyHD. The deterioration in rDLPFC connectivity complements results from previous studies and might mirror beginning cortical neural decline at premanifest and early manifest stages of HD. We were able to characterize effective connectivity in a WM network of HD mutation carriers yielding further insight into patterns of cognitive decline and accompanying neural deterioration.
Collapse
Affiliation(s)
- Jacob Lahr
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Lora Minkova
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Julie C Stout
- School of Psychological Sciences, Institute of Clinical and Cognitive Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Center for Geriatric Medicine and Gerontology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Elisa Scheller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Department of Psychology, Laboratory for Biological and Personality Psychology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
12
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Sousa M, Moreira F, Jesus-Ribeiro J, Marques I, Cunha F, Canário N, Freire A, Januário C. Apathy Profile in Parkinson’s and Huntington’s Disease: A Comparative Cross-Sectional Study. Eur Neurol 2017; 79:13-20. [DOI: 10.1159/000481981] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/04/2017] [Indexed: 11/19/2022]
|
14
|
Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci 2017; 74:4133-4157. [PMID: 28631008 PMCID: PMC5643215 DOI: 10.1007/s00018-017-2572-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
The protocadherins (Pcdhs), which make up the most diverse group within the cadherin superfamily, were first discovered in the early 1990s. Data implicating the Pcdhs, including ~60 proteins encoded by the tandem Pcdha, Pcdhb, and Pcdhg gene clusters and another ~10 non-clustered Pcdhs, in the regulation of neural development have continually accumulated, with a significant expansion of the field over the past decade. Here, we review the many roles played by clustered and non-clustered Pcdhs in multiple steps important for the formation and function of neural circuits, including dendrite arborization, axon outgrowth and targeting, synaptogenesis, and synapse elimination. We further discuss studies implicating mutation or epigenetic dysregulation of Pcdh genes in a variety of human neurodevelopmental and neurological disorders. With recent structural modeling of Pcdh proteins, the prospects for uncovering molecular mechanisms of Pcdh extracellular and intracellular interactions, and their role in normal and disrupted neural circuit formation, are bright.
Collapse
Affiliation(s)
- Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
15
|
Eddy CM, Shapiro K, Clouter A, Hansen PC, Rickards HE. Transcranial direct current stimulation can enhance working memory in Huntington's disease. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:75-82. [PMID: 28390970 DOI: 10.1016/j.pnpbp.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 11/28/2022]
Abstract
UNLABELLED Transcranial direct current stimulation (tDCS) combined with a cognitive task can enhance targeted aspects of cognitive functioning in clinical populations. The movement disorder Huntington's disease (HD) is associated with progressive cognitive impairment. Deficits in working memory (WM) can be apparent early in the disease and impact functional capacity. We investigated whether tDCS combined with cognitive training could improve WM in patients with HD, and if baseline clinical or cognitive measures may predict efficacy. Twenty participants with HD completed this crossover trial, undergoing 1.5mA anodal tDCS over left dorsolateral prefrontal cortex and sham stimulation on separate visits. Participants and assessor were blinded to condition order, which was randomised across participants. All participants completed baseline clinical and cognitive assessments. Pre- and post-stimulation tasks included digit reordering, computerised n-back tests and a Stroop task. During 15min of tDCS/sham stimulation, participants practiced 1- and 2-back WM tasks. Participants exhibited an increase in WM span on the digit re-ordering span task from pre- to post-stimulation after tDCS, but not after sham stimulation. Gains in WM were positively related to motor symptom ratings and negatively associated with verbal fluency scores. Patients with more severe motor symptoms showed greatest improvement, suggesting that motor symptom ratings may help identify patients who are most likely to benefit from tDCS. CONCLUSIONS Dorsolateral prefrontal tDCS appears well tolerated in HD and enhances WM span compared to sham stimulation. Our findings strongly encourage further investigation of the extent to which tDCS combined with cognitive training could enhance everyday function in HD. ClinicalTrials.gov; NCT02216474 Brain stimulation in Movement Disorders; https://clinicaltrials.gov/ct2/show/NCT02216474.
Collapse
Affiliation(s)
- Clare M Eddy
- National Centre for Mental Health, BSMHFT, Birmingham and College of Medical and Dental Sciences, University of Birmingham, UK.
| | - Kimron Shapiro
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, UK
| | - Andrew Clouter
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, UK
| | - Peter C Hansen
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, UK
| | - Hugh E Rickards
- National Centre for Mental Health, BSMHFT, Birmingham and College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|
16
|
Clemensson EKH, Clemensson LE, Riess O, Nguyen HP. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory. PLoS One 2017; 12:e0169051. [PMID: 28045968 PMCID: PMC5207398 DOI: 10.1371/journal.pone.0169051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/11/2016] [Indexed: 12/21/2022] Open
Abstract
The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.
Collapse
Affiliation(s)
- Erik Karl Håkan Clemensson
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Germany
| | - Laura Emily Clemensson
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Germany
- QPS Austria, Grambach, Austria
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Germany
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
17
|
Minkova L, Eickhoff SB, Abdulkadir A, Kaller CP, Peter J, Scheller E, Lahr J, Roos RA, Durr A, Leavitt BR, Tabrizi SJ, Klöppel S. Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance. Hum Brain Mapp 2016; 37:67-80. [PMID: 26453902 PMCID: PMC6867397 DOI: 10.1002/hbm.23014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/10/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that can be diagnosed with certainty decades before symptom onset. Studies using structural MRI have identified grey matter (GM) loss predominantly in the striatum, but also involving various cortical areas. So far, voxel-based morphometric studies have examined each brain region in isolation and are thus unable to assess the changes in the interrelation of brain regions. Here, we examined the structural covariance in GM volumes in pre-specified motor, working memory, cognitive flexibility, and social-affective networks in 99 patients with manifest HD (mHD), 106 presymptomatic gene mutation carriers (pre-HD), and 108 healthy controls (HC). After correction for global differences in brain volume, we found that increased GM volume in one region was associated with increased GM volume in another. When statistically comparing the groups, no differences between HC and pre-HD were observed, but increased positive correlations were evident for mHD, relative to pre-HD and HC. These findings could be explained by a HD-related neuronal loss heterogeneously affecting the examined network at the pre-HD stage, which starts to dominate structural covariance globally at the manifest stage. Follow-up analyses identified structural connections between frontoparietal motor regions to be linearly modified by disease burden score (DBS). Moderator effects of disease load burden became significant at a DBS level typically associated with the onset of unequivocal HD motor signs. Together with existing findings from functional connectivity analyses, our data indicates a critical role of these frontoparietal regions for the onset of HD motor signs.
Collapse
Affiliation(s)
- Lora Minkova
- Department of Psychiatry and PsychotherapyUniversity Medical Center FreiburgFreiburgGermany
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
- Department of PsychologyLaboratory for Biological and Personality Psychology, University of FreiburgFreiburgGermany
| | - Simon B. Eickhoff
- Department of Clinical Neuroscience and Medical PsychiatryHeinrich‐Heine UniversityDüsseldorfGermany
- Research Center Jülich, Institute of Neuroscience and Medicine (INM‐1), Department of Psychiatry, Psychotherapy and Psychosomatics, University HospitalJülichGermany
| | - Ahmed Abdulkadir
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
- Department of Computer ScienceUniversity of FreiburgFreiburgGermany
| | - Christoph P. Kaller
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
- Department of NeurologyUniversity Medical Center FreiburgFreiburgGermany
- BrainLinks‐BrainTools Cluster of Excellence, University of FreiburgFreiburgGermany
| | - Jessica Peter
- Department of Psychiatry and PsychotherapyUniversity Medical Center FreiburgFreiburgGermany
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
| | - Elisa Scheller
- Department of Psychiatry and PsychotherapyUniversity Medical Center FreiburgFreiburgGermany
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
| | - Jacob Lahr
- Department of Psychiatry and PsychotherapyUniversity Medical Center FreiburgFreiburgGermany
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
| | - Raymund A. Roos
- Department of NeurologyLeiden University Medical CentreLeidenNetherlands
| | - Alexandra Durr
- Department of Genetics and CytogeneticsPitié‐ Salpêtrière University HospitalParisFrance
| | - Blair R. Leavitt
- Department of Medical GeneticsCentre for Molecular Medicine and Therapeutics, University of British ColumbiaVancouverCanada
| | - Sarah J. Tabrizi
- Department of Neurodegenerative DiseaseUniversity College London, Institute of NeurologyLondonUnited Kingdom
| | - Stefan Klöppel
- Department of Psychiatry and PsychotherapyUniversity Medical Center FreiburgFreiburgGermany
- Freiburg Brain Imaging CenterUniversity Medical Center FreiburgFreiburgGermany
- Department of NeurologyUniversity Medical Center FreiburgFreiburgGermany
| | | |
Collapse
|
18
|
Kerkis I, Haddad MS, Valverde CW, Glosman S. Neural and mesenchymal stem cells in animal models of Huntington's disease: past experiences and future challenges. Stem Cell Res Ther 2015; 6:232. [PMID: 26667114 PMCID: PMC4678723 DOI: 10.1186/s13287-015-0248-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Huntington's disease (HD) is an inherited disease that causes progressive nerve cell degeneration. It is triggered by a mutation in the HTT gene that strongly influences functional abilities and usually results in movement, cognitive and psychiatric disorders. HD is incurable, although treatments are available to help manage symptoms and to delay the physical, mental and behavioral declines associated with the condition. Stem cells are the essential building blocks of life, and play a crucial role in the genesis and development of all higher organisms. Ablative surgical procedures and fetal tissue cell transplantation, which are still experimental, demonstrate low rates of recovery in HD patients. Due to neuronal cell death caused by accumulation of the mutated huntingtin (mHTT) protein, it is unlikely that such brain damage can be treated solely by drug-based therapies. Stem cell-based therapies are important in order to reconstruct damaged brain areas in HD patients. These therapies have a dual role: stem cell paracrine action, stimulating local cell survival, and brain tissue regeneration through the production of new neurons from the intrinsic and likely from donor stem cells. This review summarizes current knowledge on neural stem/progenitor cell and mesenchymal stem cell transplantation, which has been carried out in several animal models of HD, discussing cell distribution, survival and differentiation after transplantation, as well as functional recovery and anatomic improvements associated with these approaches. We also discuss the usefulness of this information for future preclinical and clinical studies in HD.
Collapse
Affiliation(s)
- Irina Kerkis
- Laboratório de Genética, Instituto Butantan, 1500 Av. Vital Brasil, São Paulo, 05503-900, Brazil.
| | - Monica Santoro Haddad
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Av. Dr. Arnaldao, São Paulo, 01246903, Brazil
| | | | - Sabina Glosman
- SoluBest Ltd, Weizmann Science Park, POB 4053 18 Einstein Street, Ness Ziona, 74140, Israel
| |
Collapse
|
19
|
Li W, Silva HB, Real J, Wang YM, Rial D, Li P, Payen MP, Zhou Y, Muller CE, Tomé AR, Cunha RA, Chen JF. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Neurobiol Dis 2015; 79:70-80. [PMID: 25892655 DOI: 10.1016/j.nbd.2015.03.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 01/23/2023] Open
Abstract
Cognitive impairments in Huntington's disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A(2A) receptors (A(2A)R), located at pre- and post-synaptic elements of the cortico-striatal pathways, modulate striatal neurotransmission and synaptic plasticity and cognitive behaviors. To critically evaluate the ability of A(2A)R inactivation to prevent cognitive deficits in early HD, we cross-bred A(2A)R knockout (KO) mice with two R6/2 transgenic lines of HD (CAG120 and CAG240) to generate two double transgenic R6/2-CAG120-A(2A)R KO and R6/2-CAG240-A(2A)R KO mice and their corresponding wild-type (WT) littermates. Genetic inactivation of A(2A)R prevented working memory deficits induced by R6/2-CAG120 at post-natal week 6 and by R6/2-CAG240 at post-natal month 2 and post-natal month 3, without modifying motor deficits. Similarly the A2(A)R antagonist KW6002 selectively reverted working memory deficits in R6/2-CAG240 mice at post-natal month 3. The search for possible mechanisms indicated that the genetic inactivation of A(2A)R did not affect ubiquitin-positive neuronal inclusions, astrogliosis or Thr-75 phosphorylation of DARPP-32 in the striatum. Importantly, A(2A)R blockade preferentially controlled long-term depression at cortico-striatal synapses in R6/2-CAG240 at post-natal week 6. The reported reversal of working memory deficits in R6/2 mice by the genetic and pharmacological inactivation of A(2A)R provides a proof-of-principle for A(2A)R as novel targets to reverse cognitive deficits in HD, likely by controlling LTD deregulation.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Joana Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Yu-Mei Wang
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ping Li
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Marie-Pierce Payen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yuanguo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Christa E Muller
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Portugal
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
20
|
Dogan I, Eickhoff CR, Fox PT, Laird AR, Schulz JB, Eickhoff SB, Reetz K. Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington's disease. NEUROIMAGE-CLINICAL 2015; 7:640-52. [PMID: 25844318 PMCID: PMC4375786 DOI: 10.1016/j.nicl.2015.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by a complex neuropsychiatric phenotype. In a recent meta-analysis we identified core regions of consistent neurodegeneration in premanifest HD in the striatum and middle occipital gyrus (MOG). For early manifest HD convergent evidence of atrophy was most prominent in the striatum, motor cortex (M1) and inferior frontal junction (IFJ). The aim of the present study was to functionally characterize this topography of brain atrophy and to investigate differential connectivity patterns formed by consistent cortico-striatal atrophy regions in HD. Using areas of striatal and cortical atrophy at different disease stages as seeds, we performed task-free resting-state and task-based meta-analytic connectivity modeling (MACM). MACM utilizes the large data source of the BrainMap database and identifies significant areas of above-chance co-activation with the seed-region via the activation-likelihood-estimation approach. In order to delineate functional networks formed by cortical as well as striatal atrophy regions we computed the conjunction between the co-activation profiles of striatal and cortical seeds in the premanifest and manifest stages of HD, respectively. Functional characterization of the seeds was obtained using the behavioral meta-data of BrainMap. Cortico-striatal atrophy seeds of the premanifest stage of HD showed common co-activation with a rather cognitive network including the striatum, anterior insula, lateral prefrontal, premotor, supplementary motor and parietal regions. A similar but more pronounced co-activation pattern, additionally including the medial prefrontal cortex and thalamic nuclei was found with striatal and IFJ seeds at the manifest HD stage. The striatum and M1 were functionally connected mainly to premotor and sensorimotor areas, posterior insula, putamen and thalamus. Behavioral characterization of the seeds confirmed that experiments activating the MOG or IFJ in conjunction with the striatum were associated with cognitive functions, while the network formed by M1 and the striatum was driven by motor-related tasks. Thus, based on morphological changes in HD, we identified functionally distinct cortico-striatal networks resembling a cognitive and motor loop, which may be prone to early disruptions in different stages of the disease and underlie HD-related cognitive and motor symptom profiles. Our findings provide an important link between morphometrically defined seed-regions and corresponding functional circuits highlighting the functional and ensuing clinical relevance of structural damage in HD. Pre-HD atrophy seeds showed common functional co-activation with a cognitive network. Modeling of manifest-HD seeds delineated a segregation of a cognitive and motor loop. Behavioral decoding of atrophy seeds confirmed functional segregation of networks. Based on morphometric changes in HD distinct corticostriatal networks were identified. Findings depict functional and ensuing clinical relevance of structural damage in HD.
Collapse
Affiliation(s)
- Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany ; Institute of Neuroscience and Medicine (INM-1, INM-4), Research Center Jülich GmbH, 52425 Jülich, Germany ; JARA - Translational Brain Medicine, Aachen, Jülich, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-4), Research Center Jülich GmbH, 52425 Jülich, Germany ; Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Peter T Fox
- Research Imaging Center, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284-7801, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Modesto A. Maidique Campus, CP 204, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany ; JARA - Translational Brain Medicine, Aachen, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-4), Research Center Jülich GmbH, 52425 Jülich, Germany ; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany ; Institute of Neuroscience and Medicine (INM-1, INM-4), Research Center Jülich GmbH, 52425 Jülich, Germany ; JARA - Translational Brain Medicine, Aachen, Jülich, Germany
| |
Collapse
|
21
|
Abnormal cerebellar volume and corticocerebellar dysfunction in early manifest Huntington’s disease. J Neurol 2015; 262:859-69. [DOI: 10.1007/s00415-015-7642-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/27/2022]
|
22
|
Abstract
The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made.
Collapse
Affiliation(s)
- Jose A Obeso
- Movement Disorders Laboratory, Department of Neurology and Neuroscience Area, Clínica Universitaria and Medical School, and CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación en Redes sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Maria C Rodriguez-Oroz
- Centro de Investigación en Redes sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Neurology, University Hospital Donostia and Neuroscience Unit BioDonostia Research Institute, San Sebastian, Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Maria Stamelou
- Movement Disorders Clinic, Second Department of Neurology, Attiko Hospital, University of Athens, Greece; Sobell Department of Motor Neurosciences and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Kailash P Bhatia
- Sobell Department of Motor Neurosciences and Movement Disorders, UCL Institute of Neurology, London, UK
| | - David J Burn
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Kalkhoven C, Sennef C, Peeters A, van den Bos R. Risk-taking and pathological gambling behavior in Huntington's disease. Front Behav Neurosci 2014; 8:103. [PMID: 24765067 PMCID: PMC3980094 DOI: 10.3389/fnbeh.2014.00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/12/2014] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a genetic, neurodegenerative disorder, which specifically affects striatal neurons of the indirect pathway, resulting in a progressive decline in muscle coordination and loss of emotional and cognitive control. Interestingly, predisposition to pathological gambling and other addictions involves disturbances in the same cortico-striatal circuits that are affected in HD, and display similar disinhibition-related symptoms, including changed sensitivity to punishments and rewards, impulsivity, and inability to consider long-term advantages over short-term rewards. Both HD patients and pathological gamblers also show similar performance deficits on risky decision-making tasks, such as the Iowa Gambling Task (IGT). These similarities suggest that HD patients are a likely risk group for gambling problems. However, such problems have only incidentally been observed in HD patients. In this review, we aim to characterize the risk of pathological gambling in HD, as well as the underlying neurobiological mechanisms. Especially with the current rise of easily accessible Internet gambling opportunities, it is important to understand these risks and provide appropriate patient support accordingly. Based on neuropathological and behavioral findings, we propose that HD patients may not have an increased tendency to seek risks and start gambling, but that they do have an increased chance of developing an addiction once they engage in gambling activities. Therefore, current and future developments of Internet gambling possibilities and related addictions should be regarded with care, especially for vulnerable groups like HD patients.
Collapse
Affiliation(s)
| | | | | | - Ruud van den Bos
- Department of Organismal Animal Physiology, Faculty of Science, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
24
|
Chen JF. Adenosine receptor control of cognition in normal and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:257-307. [PMID: 25175970 DOI: 10.1016/b978-0-12-801022-8.00012-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles, additional animal and human studies to better understand the mechanism underlying the AR-mediated control of cognition under normal and disease conditions will provide the required rationale to stimulate the necessary clinical investigation to rapidly translate adenosine and AR drug as a novel strategy to control memory impairment in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA; The Molecular Medicine Institute, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
25
|
Abstract
Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer's disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson's disease with and without dementia, dementia with Lewy bodies, Huntington's disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shannon L. Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
26
|
Transcranial magnetic stimulation as a tool for understanding neurophysiology in Huntington's disease: A review. Neurosci Biobehav Rev 2013; 37:1420-33. [DOI: 10.1016/j.neubiorev.2013.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/07/2013] [Accepted: 05/21/2013] [Indexed: 12/24/2022]
|
27
|
Wolf RC, Klöppel S. Clinical significance of frontal cortex abnormalities in Huntington's disease. Exp Neurol 2013; 247:39-44. [PMID: 23562669 DOI: 10.1016/j.expneurol.2013.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/03/2013] [Accepted: 03/25/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Robert Christian Wolf
- Center of Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | | |
Collapse
|
28
|
Papp KV, Snyder PJ, Mills JA, Duff K, Westervelt HJ, Long JD, Lourens S, Paulsen JS. Measuring executive dysfunction longitudinally and in relation to genetic burden, brain volumetrics, and depression in prodromal Huntington disease. Arch Clin Neuropsychol 2012; 28:156-68. [PMID: 23246934 DOI: 10.1093/arclin/acs105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Executive dysfunction (ED) is a characteristic of Huntington disease (HD), but its severity and progression is less understood in the prodromal phase, e.g., before gross motor abnormalities. We examined planning and problem-solving abilities using the Towers Task in HD mutation-positive individuals without motor symptoms (n = 781) and controls (n = 212). Participants with greater disease progression (determined using mutation size and current age) performed more slowly and with less accuracy on the Towers Task. Performance accuracy was negatively related to striatal volume while both accuracy and working memory were negatively related to frontal white matter volume. Disease progression at baseline was not associated with longitudinal performance over 4 years. Whereas the baseline findings indicate that ED becomes more prevalent with greater disease progression in prodromal HD and can be quantified using the Towers task, the absence of notable longitudinal findings indicates that the Towers Task exhibits limited sensitivity to cognitive decline in this population.
Collapse
Affiliation(s)
- Kathryn V Papp
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|