1
|
Mitchnick KA, Labardo S, Rosenbaum RS. Dissociations in perceptual discrimination following selective damage to the dentate gyrus versus CA1 subfield of the hippocampus. Cortex 2024; 179:191-214. [PMID: 39197409 DOI: 10.1016/j.cortex.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/03/2023] [Accepted: 06/05/2024] [Indexed: 09/01/2024]
Abstract
The hippocampus (HPC) is well-known for its involvement in declarative (consciously accessible) memory, but there is evidence that it may also play a role in complex perceptual discrimination. Separate research has demonstrated separable contributions of HPC subregions to component memory processes, with the dentate gyrus (DG) required for mnemonic discrimination of similar inputs and the CA1 subfield required for retention and retrieval, but contributions of these subregions to perceptual processes is understudied. The current study examined the nature and extent of a double dissociation between the dentate gyrus (DG) to discrimination processes and CA1 subfield to retention/retrieval by testing two unique individuals with bilateral damage to the DG (case BL) and CA1 (case BR). We tested BL and BR on a wide range of standardized neuropsychological tests to assess information encoding and retention/retrieval and co-opted many measures to assess perceptual discrimination. Compared to normative data, BL exhibited performance below expectations on most measures requiring perceptual discrimination and on measures of encoding but demonstrated intact retention. Conversely, BR showed no difficulties with perceptual discrimination or verbal encoding but exhibited poor verbal retention, as well as poor encoding and retention of spatial/integrative tasks (e.g., object in a location). These results indicate that, despite its prominent role in memory, the DG is necessary for perceptual discrimination and encoding, whereas CA1 is necessary for retention/retrieval and encoding of spatial information. The pattern of results highlights the critical nature of individual case studies in the nuanced understanding of HPC subfield contributions to different memory processes, as well as the utility of repurposing neuropsychological measures to capture individual differences.
Collapse
Affiliation(s)
- Krista A Mitchnick
- Department of Psychology, York University, Toronto, ON, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, ON, Canada.
| | - Sabrina Labardo
- Department of Psychology, York University, Toronto, ON, Canada.
| | - R Shayna Rosenbaum
- Department of Psychology, York University, Toronto, ON, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, ON, Canada; Centre for Integrative and Applied Neuroscience, York University, Toronto, ON, Canada.
| |
Collapse
|
2
|
Chadani Y, Fujito R, Kimura N, Kawai R, Kashibayashi T, Takahashi R, Kanemoto H, Ishii K, Tagai K, Shinagawa S, Ikeda M, Kazui H. Neural basis of false recognition in Alzheimer's disease and dementia with lewy bodies. Sci Rep 2024; 14:21290. [PMID: 39266605 PMCID: PMC11392955 DOI: 10.1038/s41598-024-71440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
In Alzheimer's disease (AD), reports on the association between false recognition and brain structure have been inconsistent. In dementia with Lewy bodies (DLB), no such association has been reported. This study aimed to identify brain regions associated with false recognition in AD and DLB by analyzing regional gray matter volume (rGMV). We included 184 patients with AD and 60 patients with DLB. The number of false recognitions was assessed using the Alzheimer's Disease Assessment Scale' word recognition task. Brain regions associated with the number of false recognitions were examined by voxel-based morphometry analysis. The number of false recognitions significantly negatively correlated with rGMV in the bilateral hippocampus, left parahippocampal gyrus, bilateral amygdala, and bilateral entorhinal cortex in patients with AD (p < 0.05, family-wise error [FEW] corrected) and in the bilateral hippocampus, left parahippocampal gyrus, right inferior frontal gyrus, right middle frontal gyrus, right basal forebrain, right insula, left medial and lateral orbital gyri, and left fusiform in those with DLB (p < 0.05, FWE corrected). Bilateral hippocampus and left parahippocampal gyrus were associated with false recognition in both diseases. However, we found there were regions where the association between false recognition and rGMV differed from disease to disease.
Collapse
Affiliation(s)
- Yoshihiro Chadani
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Ryoko Fujito
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Naohiro Kimura
- Graduate School of Integrated Arts and Sciences, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku City, Kochi, 783-8505, Japan
- Department of Rehabilitation, Atago Hospital Branch, 6012-1, Nagahama, Kochi City, Kochi, 781-0270, Japan
| | - Ryo Kawai
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Tetsuo Kashibayashi
- Dementia-related Disease Medical Center, Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, 1-7-1, Kouto, Shingu-cho, Tatsuno City, Hyogo, 679-5165, Japan
| | - Ryuichi Takahashi
- Dementia-related Disease Medical Center, Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, 1-7-1, Kouto, Shingu-cho, Tatsuno City, Hyogo, 679-5165, Japan
| | - Hideki Kanemoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
- Health and Counseling Center, Osaka University, 1-17, Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Kazunari Ishii
- Department of Radiology, Kindai University, Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 589-8511, Japan
| | - Kenji Tagai
- Department of Psychiatry, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Shunichiro Shinagawa
- Department of Psychiatry, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Hiroaki Kazui
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku City, Kochi, 783-8505, Japan.
| |
Collapse
|
3
|
Basile BM, Waters SJ, Murray EA. What does preferential viewing tell us about the neurobiology of recognition memory? Trends Neurosci 2024; 47:326-337. [PMID: 38582659 PMCID: PMC11096050 DOI: 10.1016/j.tins.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The two tests most widely used in nonhuman primates to assess the neurobiology of recognition memory produce conflicting results. Preferential viewing tests (e.g., visual paired comparison) produce robust impairments following hippocampal lesions, whereas matching tests (e.g., delayed nonmatching-to-sample) often show complete sparing. Here, we review the data, the proposed explanations for this discrepancy, and then critically evaluate those explanations. The most likely explanation is that preferential viewing tests are not a process-pure assessment of recognition memory, but also test elements of novelty-seeking, habituation, and motivation. These confounds likely explain the conflicting results. Thus, we propose that memory researchers should prefer explicit matching tests and readers interested in the neural substrates of recognition memory should give explicit matching tests greater interpretive weight.
Collapse
Affiliation(s)
| | - Spencer J Waters
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA; Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA
| | - Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Read J, Delhaye E, Sougné J. Computational models can distinguish the contribution from different mechanisms to familiarity recognition. Hippocampus 2024; 34:36-50. [PMID: 37985213 DOI: 10.1002/hipo.23588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Familiarity is the strange feeling of knowing that something has already been seen in our past. Over the past decades, several attempts have been made to model familiarity using artificial neural networks. Recently, two learning algorithms successfully reproduced the functioning of the perirhinal cortex, a key structure involved during familiarity: Hebbian and anti-Hebbian learning. However, performance of these learning rules is very different from one to another thus raising the question of their complementarity. In this work, we designed two distinct computational models that combined Deep Learning and a Hebbian learning rule to reproduce familiarity on natural images, the Hebbian model and the anti-Hebbian model, respectively. We compared the performance of both models during different simulations to highlight the inner functioning of both learning rules. We showed that the anti-Hebbian model fits human behavioral data whereas the Hebbian model fails to fit the data under large training set sizes. Besides, we observed that only our Hebbian model is highly sensitive to homogeneity between images. Taken together, we interpreted these results considering the distinction between absolute and relative familiarity. With our framework, we proposed a novel way to distinguish the contribution of these familiarity mechanisms to the overall feeling of familiarity. By viewing them as complementary, our two models allow us to make new testable predictions that could be of interest to shed light on the familiarity phenomenon.
Collapse
Affiliation(s)
- John Read
- GIGA Centre de Recherche du Cyclotron In Vivo Imaging, University of Liège, Liège, Belgium
| | - Emma Delhaye
- GIGA Centre de Recherche du Cyclotron In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Jacques Sougné
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
- UDI-FPLSE, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Basile BM, Costa VD, Schafroth JL, Karaskiewicz CL, Lucas DR, Murray EA. The amygdala is not necessary for the familiarity aspect of recognition memory. Nat Commun 2023; 14:8109. [PMID: 38062014 PMCID: PMC10703781 DOI: 10.1038/s41467-023-43906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Dual-process accounts of item recognition posit two memory processes: slow but detailed recollection, and quick but vague familiarity. It has been proposed, based on prior rodent work, that the amygdala is critical for the familiarity aspect of item recognition. Here, we evaluated this proposal in male rhesus monkeys (Macaca mulatta) with selective bilateral excitotoxic amygdala damage. We used four established visual memory tests designed to assess different aspects of familiarity, all administered on touchscreen computers. Specifically, we assessed monkeys' tendencies to make low-latency false alarms, to make false alarms to recently seen lures, to produce curvilinear ROC curves, and to discriminate stimuli based on repetition across days. Three of the four tests showed no familiarity impairment and the fourth was explained by a deficit in reward processing. Consistent with this, amygdala damage did produce an anticipated deficit in reward processing in a three-arm-bandit gambling task, verifying the effectiveness of the lesions. Together, these results contradict prior rodent work and suggest that the amygdala is not critical for the familiarity aspect of item recognition.
Collapse
Affiliation(s)
- Benjamin M Basile
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Psychology, Dickinson College, Carlisle, PA, USA.
| | - Vincent D Costa
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Jamie L Schafroth
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- School of Anthropology, University of Arizona, Tucson, AZ, USA
| | - Chloe L Karaskiewicz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Psychology, UC Davis, Davis, CA, USA
| | - Daniel R Lucas
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elisabeth A Murray
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Atak S, Boye A, Peciña S, Liu ZX. High-Fat-Sugar Diet is Associated with Impaired Hippocampus-Dependent Memory in Humans. Physiol Behav 2023; 268:114225. [PMID: 37150429 DOI: 10.1016/j.physbeh.2023.114225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Overconsumption of high-fat and high-sugar (HFS) diet may affect the hippocampus, and consequently, memory functions. Yet, converging evidence is needed to demonstrate that the type of memory affected by HFS diet consumption is indeed hippocampus dependent. Moreover, the extent to which HFS diet can also affect executive functioning, and indirectly affect memory requires further examination. In this online study, we asked 349 young adults to report their HFS diet consumption and complete a word memory task, the Everyday Memory Questionnaire, and importantly two memory tasks that have been shown to robustly engage the hippocampus, i.e., the Pattern Separation and Associative Memory Tasks. Participants also completed two executive functioning tasks, the Trail Making Task (TMT) and the Stroop Task. These measures assess attention/cognitive flexibility and the ability to inhibit cognitive interference, respectively. After controlling for confounding variables, we found that participants who reported higher level consumption of a HFS diet performed worse on the Pattern Separation Task and that higher HFS intake was significantly associated with poorer TMT task performance and longer Stroop average reaction time (RT). TMT and Stroop RT scores indicative of reduced executive function also partially mediated the relationship between HFS diet and memory performance on the pattern separation task. Taken together, our results provide converging evidence that HFS diet may impair hippocampus-dependent memory. HFS diet may also affect executive functioning and indirectly impair memory function. The findings are consistent with human subject and animal studies and call for further investigations on the psychological and neural mechanisms underlying the dietary effects on cognitive processes.
Collapse
Affiliation(s)
- Selen Atak
- Department of Behavioral Sciences, The University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Alyssa Boye
- Department of Behavioral Sciences, The University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Susana Peciña
- Department of Behavioral Sciences, The University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, The University of Michigan-Dearborn, Dearborn, Michigan, USA.
| |
Collapse
|
8
|
Kotikalapudi R, Moser DA, Dricu M, Spisak T, Aue T. Predictive modeling of optimism bias using gray matter cortical thickness. Sci Rep 2023; 13:302. [PMID: 36609577 PMCID: PMC9822990 DOI: 10.1038/s41598-022-26550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
People have been shown to be optimistically biased when their future outcome expectancies are assessed. In fact, we display optimism bias (OB) toward our own success when compared to a rival individual's (personal OB [POB]). Similarly, success expectancies for social groups we like reliably exceed those we mention for a rival group (social OB [SOB]). Recent findings suggest the existence of neural underpinnings for OB. Mostly using structural/functional MRI, these findings rely on voxel-based mass-univariate analyses. While these results remain associative in nature, an open question abides whether MRI information can accurately predict OB. In this study, we hence used predictive modelling to forecast the two OBs. The biases were quantified using a validated soccer paradigm, where personal (self versus rival) and social (in-group versus out-group) forms of OB were extracted at the participant level. Later, using gray matter cortical thickness, we predicted POB and SOB via machine-learning. Our model explained 17% variance (R2 = 0.17) in individual variability for POB (but not SOB). Key predictors involved the rostral-caudal anterior cingulate cortex, pars orbitalis and entorhinal cortex-areas that have been associated with OB before. We need such predictive models on a larger scale, to help us better understand positive psychology and individual well-being.
Collapse
Affiliation(s)
- Raviteja Kotikalapudi
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland. .,Department of Neurology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Dominik A. Moser
- grid.5734.50000 0001 0726 5157Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Mihai Dricu
- grid.5734.50000 0001 0726 5157Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Tamas Spisak
- grid.410718.b0000 0001 0262 7331Department of Neurology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Tatjana Aue
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
| |
Collapse
|
9
|
Subjective distinguishability of seizure and non-seizure Déjà Vu: A case report, brief literature review, and research prospects. Epilepsy Behav 2021; 125:108373. [PMID: 34735965 PMCID: PMC8639800 DOI: 10.1016/j.yebeh.2021.108373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Roughly two-thirds of all people report having experienced déjà vu-the odd feeling that a current experience is both novel and a repeat or replay of a previous, unrecalled experience. Reports of an association between déjà vu and seizure aura symptomatology have accumulated for over a century, and frequent déjà vu is also now known to be associated with focal seizures, particularly those of a medial temporal lobe (MTL) origin. A longstanding question is whether seizure-related déjà vu has the same basis and is the same subjective experience as non-seizure déjà vu. Survey research suggests that people who experience both seizure-related and non-seizure déjà vu can often subjectively distinguish between the two. We present a case of a person with a history of focal MTL seizures who reports having experienced both seizure-related and non-seizure common déjà vu, though the non-seizure type was more frequent during this person's youth than it is currently. The patient was studied with a virtual tour paradigm that has previously been shown to elicit déjà vu among non-clinical, young adult participants. The patient reported experiencing déjà vu of the common non-seizure type during the virtual tour paradigm, without associated abnormalities of the intracranial EEG. We situate this work in the context of broader ongoing projects examining the subjective correlates of seizures. The importance for memory research of virtual scenes, spatial tasks, virtual reality (VR), and this paradigm for isolating familiarity in the context of recall failure are discussed.
Collapse
|
10
|
Kazanovich Y, Borisyuk R. A computational model of familiarity detection for natural pictures, abstract images, and random patterns: Combination of deep learning and anti-Hebbian training. Neural Netw 2021; 143:628-637. [PMID: 34343776 DOI: 10.1016/j.neunet.2021.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022]
Abstract
We present a neural network model for familiarity recognition of different types of images in the perirhinal cortex (the FaRe model). The model is designed as a two-stage system. At the first stage, the parameters of an image are extracted by a pretrained deep learning convolutional neural network. At the second stage, a two-layer feed forward neural network with anti-Hebbian learning is used to make the decision about the familiarity of the image. FaRe model simulations demonstrate high capacity of familiarity recognition memory for natural pictures and low capacity for both abstract images and random patterns. These findings are in agreement with psychological experiments.
Collapse
Affiliation(s)
- Yakov Kazanovich
- Institute of Mathematical Problems of Biology, the Branch of M.V. Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| | - Roman Borisyuk
- Institute of Mathematical Problems of Biology, the Branch of M.V. Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia; University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter, UK.
| |
Collapse
|
11
|
Hakobyan O, Cheng S. Recognition Receiver Operating Characteristic Curves: The Complex Influence of Input Statistics, Memory, and Decision-making. J Cogn Neurosci 2021; 33:1032-1055. [PMID: 33656399 DOI: 10.1162/jocn_a_01697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Receiver operating characteristic (ROC) analysis is the standard tool for studying recognition memory. In particular, the curvilinearity and the y-offset of recognition ROC curves have been interpreted as indicative of either memory strength (single-process models) or different memory processes (dual-process model). The distinction between familiarity and recollection has been widely studied in cognitive neuroscience in a variety of conditions, including lesions of different brain regions. We develop a computational model that explicitly shows how performance in recognition memory is affected by a complex and, as yet, underappreciated interplay of various factors, such as stimulus statistics, memory processing, and decision-making. We demonstrate that (1) the factors in the model affect recognition ROC curves in unexpected ways, (2) fitting R and F parameters according to the dual-process model is not particularly useful for understanding the underlying processes, and (3) the variability of recognition ROC curves and the controversies they have caused might be due to the uncontrolled variability in the contributing factors. Although our model is abstract, its functional components can be mapped onto brain regions, which are involved in corresponding functions. This enables us to reproduce and interpret in a coherent framework the diverse effects on recognition memory that have been reported in patients with frontal and hippocampal lesions. To conclude, our work highlights the importance of the rich interplay of a variety of factors in driving recognition memory performance, which has to be taken into account when interpreting recognition ROC curves.
Collapse
|
12
|
Anderson ND, Beana E, Yang H, Köhler S. Deficits in recent but not lifetime familiarity in amnestic mild cognitive impairment. Neuropsychologia 2020; 151:107735. [PMID: 33359882 DOI: 10.1016/j.neuropsychologia.2020.107735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 11/30/2022]
Abstract
People with amnestic mild cognitive impairment (aMCI) repeat questions, seemingly without any sense of familiarity (i.e., recognition of prior occurrence without recollection of episodic context). Accumulation of neurofibrillary tau in preclinical Alzheimer's disease begins in perirhinal cortex, a medial temporal lobe region linked to familiarity. Both observations would predict impaired familiarity assessment in aMCI; however, the extant evidence is mixed. To reveal familiarity impairments, it may be necessary to minimize the influence of recollection. In the current study, older adults with aMCI and healthy controls were administered two tasks on which a well-characterized patient (NB) with selective familiarity impairments due to surgical left temporal lobe excision sparing the hippocampus showed abnormal performance: frequency judgments for words exposed to in a recent study phase and judgments of cumulative lifetime familiarity for object concepts denoted by words. We also administered a process dissociation procedure (PDP) task that previously revealed spared familiarity in aMCI. We predicted that familiarity would be spared in aMCI on the PDP task, but impaired when assessed by frequency judgments for recent laboratory exposures and lifetime familiarity judgments. Familiarity was spared on the PDP task, but was impaired when probed with frequency judgments for recently exposed words in aMCI. Lifetime familiarity was also not impaired in aMCI. These results highlight the benefits of studying familiarity under conditions that minimize recollection and the value of frequency judgments in revealing familiarity deficits, and suggest that perirhinal cortex may not be necessary for accessing familiarity accumulated over a lifetime of experience.
Collapse
Affiliation(s)
- Nicole D Anderson
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Elsa Beana
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Haopei Yang
- Brain & Mind Institute and Department of Psychology, Western University, Ontario, Canada
| | - Stefan Köhler
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada; Brain & Mind Institute and Department of Psychology, Western University, Ontario, Canada
| |
Collapse
|
13
|
Abhishek P, Nizamie SH, Jahan M, Kumar D, Goyal N, Pachori H, Katshu MZUH. Impaired recollection-based episodic memory as a cognitive endophenotype in schizophrenia. J Clin Exp Neuropsychol 2020; 42:759-770. [PMID: 32907466 DOI: 10.1080/13803395.2020.1801598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Patients with schizophrenia show impaired recollection but largely preserved familiarity-based episodic memory. This study was done to clarify the endophenotypic nature of recollection and familiarity-based episodic memory in schizophrenia and the role of emotional valence of memoranda and degree of recall confidence in it. METHOD Twenty-five patients with schizophrenia, one unaffected sibling of each patient, and twenty-three healthy controls completed two tasks assessing recollection and familiarity-based processes in episodic memory. In the first task, participants were asked to remember positive, negative, and neutral emotional valence words in a remember-know paradigm. In the second task, in addition to recollection and familiarity-based responses, participants were asked to make confidence judgments about their responses. RESULTS Patients with schizophrenia and their first-degree relatives (FDRs) performed poorly on recollection but not familiarity-based responses, compared to healthy controls; performance of first-degree relatives was in between and significantly different from that of both patients and controls. The differences in recollection and familiarity-based responses across the three groups were not moderated by recall confidence judgments or emotional valence of memoranda. Furthermore, there was no correlation between recollection-based memory impairments and duration or severity of illness or current medication exposure. CONCLUSIONS Impaired recollection-based memory constitutes a potential cognitive endophenotype in schizophrenia. Furthermore, selective impairment of recollection-based, but sparing of familiarity-based, memory in patients and their FDRs supports the distinct nature of recollection and familiarity-based episodic memories.
Collapse
Affiliation(s)
| | - S Haque Nizamie
- K. S. Mani Centre for Cognitive Neurosciences, Central Institute of Psychiatry , Ranchi, India
| | - Masroor Jahan
- Department of Clinical Psychology, Ranchi Institute of Neuro-Psychiatry & Allied Sciences , Ranchi, India
| | - Devvarta Kumar
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences , Bangalore, India
| | - Nishant Goyal
- K. S. Mani Centre for Cognitive Neurosciences, Central Institute of Psychiatry , Ranchi, India
| | - Hariom Pachori
- Computer Department-Statistical Section, Central Institute of Psychiatry , Ranchi, India
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, University of Nottingham , Nottingham, UK.,Nottinghamshire Healthcare NHS Foundation Trust , Nottingham, UK
| |
Collapse
|
14
|
Familiarity for entities as a sensitive marker of antero-lateral entorhinal atrophy in amnestic mild cognitive impairment. Cortex 2020; 128:61-72. [DOI: 10.1016/j.cortex.2020.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/05/2019] [Accepted: 02/22/2020] [Indexed: 11/19/2022]
|
15
|
Familiarity impairments after anterior temporal-lobe resection with hippocampal sparing: Lessons learned from case NB. Neuropsychologia 2020; 138:107339. [PMID: 31930957 DOI: 10.1016/j.neuropsychologia.2020.107339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/29/2019] [Accepted: 01/09/2020] [Indexed: 01/27/2023]
Abstract
We review evidence from an extensive single case study in an individual (NB) who underwent a rare left-sided anterior temporal-lobe resection with sparing of the hippocampus. Our study aimed to determine whether memory functions of perirhinal cortex, which was largely removed in the resection, can be impaired against a background of preserved hippocampus-dependent memory processing. This research was guided by the proposal that item-based familiarity assessment relies on contributions of perirhinal cortex, and that the hippocampus plays a unique role in the relational binding of items to episodic contexts, which is critical for recollection. Seven sets of findings have emerged from our research on NB (synthesized from five primary research articles), and from follow-up work in other patients: (i) Familiarity impairments can be selective and be revealed with multiple methods; (ii) selective familiarity and selective recollection impairments can be double dissociated; (iii) selective familiarity impairments show material specificity; (iv) selective familiarity impairments extend to assessment of cumulative lifetime experience; (v) selective familiarity impairments are sensitive to degree of feature overlap between object concepts; (vi) selective familiarity impairments are associated with preserved task-related fMRI signals in the hippocampus; (vii) selective familiarity impairments can be observed in other lesion cases. Despite our main focus on the dual-process framework, we also discuss implications for the functional organization of the medial temporal lobes in broader terms. We argue that our findings shed light on this organization even if the functional specialization of different medial temporal structures is ultimately not fully captured with reference to the cognitive distinction between familiarity and recollection.
Collapse
|
16
|
Lad M, Mullally SL, Houston AL, Kelly T, Griffiths TD. Characterizing memory loss in patients with autoimmune limbic encephalitis hippocampal lesions. Hippocampus 2019; 29:1114-1120. [PMID: 31472008 PMCID: PMC6852518 DOI: 10.1002/hipo.23150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/29/2022]
Abstract
Since the publication of Scoville and Milner's (1957) seminal paper, the precise functional role played by the hippocampus in support of human memory has been fiercely debated. For instance, the single question of whether the hippocampus plays a time-limited or an indelible role in the recollection of personal memories led to a deep and tenacious schism within the field. Similar polarizations arose between those who debated the precise nature of the role played by the hippocampus in support of semantic relative to episodic memories and in recall/recollection relative to familiarity-based recognition. At the epicenter of these divisions lies conflicting neuropsychological findings. These differences likely arise due to the consistent use of heterogeneous patient populations to adjudicate between these positions. Here we utilized traditional neuropsychological measures in a homogenous patient population with a highly discrete hippocampal lesion (i.e., VGKCC-Ab related autoimmune limbic encephalitis patients). We observed consistent impairment of recent episodic memories, a present but less striking impairment of remote episodic memories, preservation of personal semantic memory, and recall but not recognition memory deficits. We conclude that this increasingly well-characterized patient group may represent an important homogeneous population in which the functional role played by the hippocampus may be more precisely delineated.
Collapse
Affiliation(s)
- Meher Lad
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Sinéad L. Mullally
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | | | - Tom Kelly
- The Neuropsychology DepartmentRoyal Victoria InfirmaryNewcastle upon TyneUnited Kingdom
| | - Timothy D. Griffiths
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Wellcome Trust Centre for NeuroimagingUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
17
|
Curot J, Pariente J, Hupé JM, Lotterie JA, Mirabel H, Barbeau EJ. Déjà vu and prescience in a case of severe episodic amnesia following bilateral hippocampal lesions. Memory 2019; 29:843-858. [PMID: 31587614 DOI: 10.1080/09658211.2019.1673426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several studies pertaining to déjà vu have consistently made a connection with the perirhinal region, a region located below the hippocampus. This idea is strengthened by the fact that déjà vu is an erroneous sense of familiarity and that familiarity appears to largely depend on the perirhinal region in healthy subjects. In this context, the role of the hippocampus is particularly unclear as it is unknown whether or not it plays a role in the genesis of déjà vu. We report on the case of OHVR, an epileptic patient who suffers from severe episodic amnesia related to massive isolated bilateral damage to the hippocampus. In contrast, the perirhinal region is intact structurally and functionally. This patient reports frequent déjà vu but also another experiential phenomenon with a prominent feeling of prescience, which shows some of the characteristics of déjà vécu. She clearly distinguishes both. She also developed a form of synaesthesia by attributing affective valence to numbers. This study shows that déjà vu can occur in cases of amnesia with massively damaged hippocampi and confirms that the perirhinal region is a core region for déjà vu, using a different approach from previous reports. It also provides clues about a potential influence of hippocampal alterations in déjà vécu.
Collapse
Affiliation(s)
- Jonathan Curot
- Neurologie, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier Toulouse, Toulouse, France.,CerCo, UMR 5549, Centre National de la Recherche Scientifique, Toulouse Mind and Brain Institute, Toulouse, France
| | - Jérémie Pariente
- Neurologie, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, Toulouse, France
| | - Jean Michel Hupé
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier Toulouse, Toulouse, France.,CerCo, UMR 5549, Centre National de la Recherche Scientifique, Toulouse Mind and Brain Institute, Toulouse, France
| | - Jean-Albert Lotterie
- INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, Toulouse, France.,Radiochirurgie stéréotaxique, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Hélène Mirabel
- Neurologie, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuel J Barbeau
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier Toulouse, Toulouse, France.,CerCo, UMR 5549, Centre National de la Recherche Scientifique, Toulouse Mind and Brain Institute, Toulouse, France
| |
Collapse
|
18
|
Martin CB, Mirsattari SM, Pruessner JC, Burneo JG, Hayman-Abello B, Köhler S. Relationship between déjà vu experiences and recognition-memory impairments in temporal-lobe epilepsy. Memory 2019; 29:884-894. [DOI: 10.1080/09658211.2019.1643891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chris B. Martin
- The Brain and Mind Institute and Department of Psychology, University of Western Ontario, London, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Seyed M. Mirsattari
- Epilepsy Program, Department of Clinical Neurological Sciences, London Health Sciences Centre and University of Western Ontario, London, Canada
| | | | - Jorge G. Burneo
- Epilepsy Program, Department of Clinical Neurological Sciences, London Health Sciences Centre and University of Western Ontario, London, Canada
| | - Brent Hayman-Abello
- Epilepsy Program, Department of Clinical Neurological Sciences, London Health Sciences Centre and University of Western Ontario, London, Canada
| | - Stefan Köhler
- The Brain and Mind Institute and Department of Psychology, University of Western Ontario, London, Canada
- Rotman Research Institute, Baycrest Centre, Toronto, Canada
| |
Collapse
|
19
|
Abstract
The present research explored the role of the medial temporal lobes in object memory in the unique patient MR, who has a selective lesion to her left lateral entorhinal cortex. Two experiments explored recognition memory for object identity and object location in MR and matched controls. The results showed that MR had intact performance in an object location task [MR=0.70, controls=0.69, t(6)=0.06, P>0.05], but was impaired in an object identity task [MR=0.62, controls=0.84, t(6)=-4.12, P<0.05]. No differences in correct recollection or familiarity emerged. These results suggest a differential role of the entorhinal cortex in object recognition memory. The current research is therefore the first patient study to show the role of the lateral entorhinal cortex in object identity recognition and suggests that current medial temporal lobe theoretical models on both object and recognition memory require a theoretical re-think to account for the contributions of the entorhinal cortex in these processes.
Collapse
|
20
|
Das T, Hwang JJ, Poston KL. Episodic recognition memory and the hippocampus in Parkinson's disease: A review. Cortex 2018; 113:191-209. [PMID: 30660957 DOI: 10.1016/j.cortex.2018.11.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder of aging. The hallmark pathophysiology includes the development of neuronal Lewy bodies in the substantia nigra of the midbrain with subsequent loss of dopaminergic neurons. These neuronal losses lead to the characteristic motor symptoms of bradykinesia, rigidity, and rest tremor. In addition to these cardinal motor symptoms patients with PD experience a wide range of non-motor symptoms, the most important being cognitive impairments that in many circumstances lead to dementia. People with PD experience a wide range of cognitive impairments; in this review we will focus on memory impairment in PD and specifically episodic memory, which are memories of day-to-day events of life. Importantly, these memory impairments severely impact the lives of patients and caregivers alike. Traditionally episodic memory is considered to be markedly dependent on the hippocampus; therefore, it is important to understand the exact nature of PD episodic memory deficits in relation to hippocampal function and dysfunction. In this review, we discuss an aspect of episodic memory called recognition memory and its subcomponents called recollection and familiarity. Recognition memory is believed to be impaired in PD; thus, we discuss what aspects of the hippocampus are expected to be deficient in function as they relate to these recognition memory impairments. In addition to the hippocampus as a whole, we will discuss the role of hippocampal subfields in recognition memory impairments.
Collapse
Affiliation(s)
- Tanusree Das
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jaclyn J Hwang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neuroscience, University of Pittsburgh, USA.
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Brandt KR, Conway MA, James A, von Oertzen TJ. Déjà vu and the entorhinal cortex: dissociating recollective from familiarity disruptions in a single case patient. Memory 2018; 29:859-868. [DOI: 10.1080/09658211.2018.1543436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | - Adele James
- Department of Psychology, Whitelands College, University of Roehampton, London, UK
| | - Tim J. von Oertzen
- Atkinson Morley Neuroscience Centre, St. George’s Hospital, London, UK
- Department of Neurology 1, Neuromed Campus, Kepler Universitaetsklinikum, Linz, Austria
| |
Collapse
|
22
|
Aksentijevic A, Brandt KR, Tsakanikos E, Thorpe MJA. It takes me back: The mnemonic time-travel effect. Cognition 2018; 182:242-250. [PMID: 30368065 DOI: 10.1016/j.cognition.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/15/2022]
Abstract
Given the links between motion and temporal thinking, it is surprising that no studies have examined the possibility that transporting participants back mentally towards the time of encoding could improve memory. Six experiments investigated whether backward motion would promote recall relative to forward motion or no-motion conditions. Participants saw a video of a staged crime (Experiments 1, 3 and 5), a word list (Experiments 2 and 4) or a set of pictures (Experiment 6). Then, they walked forward or backwards (Experiments 1 and 2), watched a forward- or backward-directed optic flow-inducing video (Experiments 3 and 4) or imagined walking forward or backwards (Experiments 5 and 6). Finally, they answered questions about the video or recalled words or pictures. The results demonstrated for the first time that motion-induced past-directed mental time travel improved mnemonic performance for different types of information. We briefly discuss theoretical and practical implications of this "mnemonic time-travel effect".
Collapse
Affiliation(s)
- Aleksandar Aksentijevic
- Department of Psychology, University of Roehampton, United Kingdom; Birkbeck, University of London, United Kingdom.
| | - Kaz R Brandt
- Department of Psychology, University of Roehampton, United Kingdom
| | - Elias Tsakanikos
- Department of Psychology, University of Roehampton, United Kingdom
| | | |
Collapse
|
23
|
Familiarity and recollection vs representational models of medial temporal lobe structures: A single-case study. Neuropsychologia 2017; 104:76-91. [DOI: 10.1016/j.neuropsychologia.2017.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/20/2022]
|
24
|
Danet L, Pariente J, Eustache P, Raposo N, Sibon I, Albucher JF, Bonneville F, Péran P, Barbeau EJ. Medial thalamic stroke and its impact on familiarity and recollection. eLife 2017; 6:28141. [PMID: 28837019 PMCID: PMC5595429 DOI: 10.7554/elife.28141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Models of recognition memory have postulated that the mammillo-thalamic tract (MTT)/anterior thalamic nucleus (AN) complex would be critical for recollection while the Mediodorsal nucleus (MD) of the thalamus would support familiarity and indirectly also be involved in recollection (Aggleton et al., 2011). 12 patients with left thalamic stroke underwent a neuropsychological assessment, three verbal recognition memory tasks assessing familiarity and recollection each using different procedures and a high-resolution structural MRI. Patients showed poor recollection on all three tasks. In contrast, familiarity was spared in each task. No patient had significant AN lesions. Critically, a subset of 5 patients had lesions of the MD without lesions of the MTT. They also showed impaired recollection but preserved familiarity. Recollection is therefore impaired following MD damage, but familiarity is not. This suggests that models of familiarity, which assign a critical role to the MD, should be reappraised.
Collapse
Affiliation(s)
- Lola Danet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Brain and Cognition Research Centre, CNRS, University of Toulouse Paul Sabatier, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Pierre Eustache
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France
| | - Nicolas Raposo
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Igor Sibon
- Department of Diagnostic and Therapeutic Neuroimaging, University of Bordeaux, Bordeaux University Hospital, Bordeaux, France
| | - Jean-François Albucher
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Fabrice Bonneville
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France
| | - Emmanuel J Barbeau
- Brain and Cognition Research Centre, CNRS, University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
25
|
The role of the hippocampus in recognition memory. Cortex 2017; 93:155-165. [DOI: 10.1016/j.cortex.2017.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/20/2016] [Accepted: 05/12/2017] [Indexed: 11/20/2022]
|
26
|
Kafkas A, Migo EM, Morris RG, Kopelman MD, Montaldi D, Mayes AR. Material Specificity Drives Medial Temporal Lobe Familiarity But Not Hippocampal Recollection. Hippocampus 2016; 27:194-209. [PMID: 27859925 PMCID: PMC5299537 DOI: 10.1002/hipo.22683] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/04/2022]
Abstract
The specific role of the perirhinal (PRC), entorhinal (ERC) and parahippocampal cortices (PHC) in supporting familiarity‐based recognition remains unknown. An fMRI study explored whether these medial temporal lobe (MTL) structures responded in the same way or differentially to familiarity as a function of stimulus type at recognition. A secondary aim was to explore whether the hippocampus responds in the same way to equally strong familiarity and recollection and whether this is influenced by the kind of stimulus involved. Univariate and multivariate analyses revealed that familiarity responses in the PRC, ERC, PHC and the amygdala are material‐specific. Specifically, the PRC and ERC selectively responded to object familiarity, while the PHC responded to both object and scene familiarity. The amygdala only responded to familiarity memory for faces. The hippocampus did not respond to stimulus familiarity for any of the three types of stimuli, but it did respond to recollection for all three types of stimuli. This was true even when recollection was contrasted to equally accurate familiarity. Overall, the findings suggest that the role of the MTL neocortices and the amygdala in familiarity‐based recognition depends on the kind of stimulus in memory, whereas the role of the hippocampus in recollection is independent of the type of cuing stimulus. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alex Kafkas
- Memory Research Unit, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, United Kingdom
| | - Ellen M Migo
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Robin G Morris
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Michael D Kopelman
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Daniela Montaldi
- Memory Research Unit, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, United Kingdom
| | - Andrew R Mayes
- Memory Research Unit, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, United Kingdom
| |
Collapse
|
27
|
Bowles B, Duke D, Rosenbaum RS, McRae K, Köhler S. Impaired assessment of cumulative lifetime familiarity for object concepts after left anterior temporal-lobe resection that includes perirhinal cortex but spares the hippocampus. Neuropsychologia 2016; 90:170-9. [DOI: 10.1016/j.neuropsychologia.2016.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 05/16/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023]
|