1
|
Bioenergetic and vascular predictors of potential super-ager and cognitive decline trajectories-a UK Biobank Random Forest classification study. GeroScience 2022; 45:491-505. [PMID: 36104610 PMCID: PMC9886787 DOI: 10.1007/s11357-022-00657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Aging has often been characterized by progressive cognitive decline in memory and especially executive function. Yet some adults, aged 80 years or older, are "super-agers" that exhibit cognitive performance like younger adults. It is unknown if there are adults in mid-life with similar superior cognitive performance ("positive-aging") versus cognitive decline over time and if there are blood biomarkers that can distinguish between these groups. Among 1303 participants in UK Biobank, latent growth curve models classified participants into different cognitive groups based on longitudinal fluid intelligence (FI) scores over 7-9 years. Random Forest (RF) classification was then used to predict cognitive trajectory types using longitudinal predictors including demographic, vascular, bioenergetic, and immune factors. Feature ranking importance and performance metrics of the model were reported. Despite model complexity, we achieved a precision of 77% when determining who would be in the "positive-aging" group (n = 563) vs. cognitive decline group (n = 380). Among the top fifteen features, an equal number were related to either vascular health or cellular bioenergetics but not demographics like age, sex, or socioeconomic status. Sensitivity analyses showed worse model results when combining a cognitive maintainer group (n = 360) with the positive-aging or cognitive decline group. Our results suggest that optimal cognitive aging may not be related to age per se but biological factors that may be amenable to lifestyle or pharmacological changes.
Collapse
|
2
|
Sumich A, Heym N, Lenzoni S, Hunter K. Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Ke P, Zheng C, Liu F, Wu L, Tang Y, Wu Y, Lv D, Chen H, Qian L, Wu X, Zeng K. Relationship between circadian genes and memory impairment caused by sleep deprivation. PeerJ 2022; 10:e13165. [PMID: 35341046 PMCID: PMC8944342 DOI: 10.7717/peerj.13165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/04/2022] [Indexed: 01/12/2023] Open
Abstract
Background Sleep deprivation (SD)-induced cognitive impairment is highly prevalent worldwide and has attracted widespread attention. The temporal and spatial oscillations of circadian genes are severely disturbed after SD, leading to a progressive loss of their physiological rhythms, which in turn affects memory function. However, there is a lack of research on the role of circadian genes and memory function after SD. Therefore, the present study aims to investigate the relationship between circadian genes and memory function and provide potential therapeutic insights into the mechanism of SD-induced memory impairment. Methods Gene expression profiles of GSE33302 and GSE9442 from the Gene Expression Omnibus (GEO) were applied to identify differentially expressed genes (DEGs). Subsequently, both datasets were subjected to Gene Set Enrichment Analysis (GSEA) to determine the overall gene changes in the hippocampus and brain after SD. A Gene Oncology (GO) analysis and Protein-Protein Interaction (PPI) analysis were employed to explore the genes related to circadian rhythm, with their relationship and importance determined through a correlation analysis and a receiver operating characteristic curve (ROC), respectively. The water maze experiments detected behavioral changes related to memory function in SD rats. The expression of circadian genes in several critical organs such as the brain, heart, liver, and lungs and their correlation with memory function was investigated using several microarrays. Finally, changes in the hippocampal immune environment after SD were analyzed using the CIBERSORT in R software. Results The quality of the two datasets was very good. After SD, changes were seen primarily in genes related to memory impairment and immune function. Genes related to circadian rhythm were highly correlated with engagement in muscle structure development and circadian rhythm. Seven circadian genes showed their potential therapeutic value in SD. Water maze experiments confirmed that SD exacerbates memory impairment-related behaviors, including prolonged escape latencies and reduced numbers of rats crossing the platform. The expression of circadian genes was verified, while some genes were also significant in the heart, liver, and lungs. All seven circadian genes were also associated with memory markers in SD. The contents of four immune cells in the hippocampal immune environment changed after SD. Seven circadian genes were related to multiple immune cells. Conclusions In the present study, we found that SD leads to memory impairment accompanied by changes in circadian rhythm-related genes. Seven circadian genes play crucial roles in memory impairment after SD. Naïve B cells and follicular helper T cells are closely related to SD. These findings provide new insights into the treatment of memory impairment caused by SD.
Collapse
Affiliation(s)
- Peng Ke
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China,Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengjie Zheng
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Feng Liu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - LinJie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yijie Tang
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanqin Wu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Dongdong Lv
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Huangli Chen
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Lin Qian
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaodan Wu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Kai Zeng
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Wang GY, Taylor T, Sumich A, Krägeloh C, Lee CQ, Siegert RJ. Cognitive Effect Following a Blended (Face to Face and Videoconference-Delivered) Format Mindfulness Training. Front Psychol 2021; 12:701459. [PMID: 34393937 PMCID: PMC8360837 DOI: 10.3389/fpsyg.2021.701459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
While evidence supports the feasibility of online mindfulness training (MT), the effect of this approach on cognition remains unclear. The present study investigated changes in cognition following a newly developed 6-week videoconference-delivered MT program on cognitive function in two groups. The first group (n = 17) had two baseline assessments prior to MT [3 weeks after group two (n = 15)] to allow for evaluation of practice and learning effects. Four participants from each group were excluded from the final analysis due to missing data. Following MT, there was an improvement in switching of attention, working memory, executive function, and social cognition, but some of these effects were not easily accounted for by learning or practice effects. No significant changes were found on tasks measuring sustained attention, cognitive flexibility and inhibition, information processing, and sensory-motor function. Our findings suggest that domain-specific cognition might be enhanced by a brief videoconference-delivered MT, and larger, controlled studies to delineate the effects of online MT on subdomains of cognition are needed.
Collapse
Affiliation(s)
- Grace Y Wang
- Department of Psychology and Neuroscience, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Tamasin Taylor
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alexander Sumich
- Department of Psychology and Neuroscience, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand.,Division of Psychology, School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Chris Krägeloh
- Department of Psychology and Neuroscience, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Carol Qinglian Lee
- Department of Psychology and Neuroscience, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Richard J Siegert
- Department of Psychology and Neuroscience, School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
5
|
Pan P, Ma Z, Zhang Z, Ling Z, Wang Y, Liu Q, Lin X, Xu P, Yang D, Zhi H, Wang R, Zhang X. Acupuncture Can Regulate the Peripheral Immune Cell Spectrum and Inflammatory Environment of the Vascular Dementia Rat, and Improve the Cognitive Dysfunction of the Rats. Front Aging Neurosci 2021; 13:706834. [PMID: 34349636 PMCID: PMC8328226 DOI: 10.3389/fnagi.2021.706834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
Objective The aim of this study is to analyze the effects of acupuncture on peripheral immune function, inflammation, and cognitive impairment in vascular dementia (VD) rats. Methods In this study, 2-month-old healthy male Wistar rats (260-280 g) were assigned to the groups as follows: normal group (Gn, n = 10), sham-operated group (Gs, n = 10), and operated group (Go, n = 45). The Go group was established by permanent, bilateral common carotid artery occlusion (BCCAO). Two months after operation, the operated rats were screened by hidden platform trial and the rats with cognitive dysfunction were further randomly divided into impaired group (Gi), acupoint group (Ga), and non-acupoint group (Gna) with 10 rats in each group. The Ga group was given acupuncture treatment for 14 days with a rest for every 7 days. After treatment, the Morris water maze (MWM) test was performed to evaluate the spatial learning and memory abilities of rats. The lymphocyte subsets in peripheral blood and spleen of rats were measured by flow cytometry. The levels of cytokines [i.e., interleukin (IL)-1β, IL-2, IL-4, IL-10, tumor necrosis factor-α (TNF-α), and interferon-γ (INF-γ)], chemokines (i.e., macrophage inflammatory protein-2 (MIP-2)), and other inflammatory mediators (i.e., cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS)) in peripheral blood and hippocampus were measured by enzyme linked immunosorbent assay (ELISA). Results Compared with the Gn group, the Gi rats presented long escape latencies to find the platform. After acupuncture treatment, the escape latencies of the Ga group were rescued markedly when compared with the Gi group (P < 0.05). The proportion of CD4 + T lymphocytes in both spleen and peripheral blood in the Ga group increased (P < 0.05) in comparison with the Gi group. There is an obvious reduction in IL-1β (P < 0.05), IL-2 (P < 0.05), TNF-α (P < 0.01), INF-γ (P < 0.01), MIP-2 (P < 0.05), and iNOS (P < 0.01), coming along with the increased levels of IL-4 and IL-10 (P < 0.01) in the Ga group when compared with the Gi group. In addition, the hippocampus proinflammatory factors IL-1β (P < 0.01), IL-2 (P < 0.01), TNF-α (P < 0.05), INF-γ (P < 0.05), MIP-2 (P < 0.05), iNOS (P < 0.01), and COX-2 decreased in the Ga group, whereas the anti-inflammatory factors IL-4 and IL-10 (P < 0.01) increased. Conclusion There are abnormal immune function and peripheral inflammation in VD rats. Acupuncture can regulate the peripheral immune function and inflammation of the VD rats and can improve the cognitive dysfunction of the rats.
Collapse
Affiliation(s)
- Pan Pan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhinan Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhen Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Weifang Traditional Chinese Hospital, Weifang, China
| | - Zhenzhen Ling
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qiuping Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaolin Lin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Pan Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dan Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hui Zhi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Runmin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
6
|
Gamma Visual Stimulation Induces a Neuroimmune Signaling Profile Distinct from Acute Neuroinflammation. J Neurosci 2019; 40:1211-1225. [PMID: 31871276 PMCID: PMC7002142 DOI: 10.1523/jneurosci.1511-19.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Many neurodegenerative and neurological diseases are rooted in dysfunction of the neuroimmune system; therefore, manipulating this system has strong therapeutic potential. Prior work has shown that exposing mice to flickering lights at 40 Hz drives gamma frequency (∼40 Hz) neural activity and recruits microglia, the primary immune cells of the brain, revealing a novel method to manipulate the neuroimmune system. Many neurodegenerative and neurological diseases are rooted in dysfunction of the neuroimmune system; therefore, manipulating this system has strong therapeutic potential. Prior work has shown that exposing mice to flickering lights at 40 Hz drives gamma frequency (∼40 Hz) neural activity and recruits microglia, the primary immune cells of the brain, revealing a novel method to manipulate the neuroimmune system. However, the biochemical signaling mechanisms between 40 Hz neural activity and immune recruitment remain unknown. Here, we exposed wild-type male mice to 5–60 min of 40 Hz or control flicker and assessed cytokine and phosphoprotein networks known to play a role in immune function. We found that 40 Hz flicker leads to increases in the expression of cytokines which promote microglial phagocytic states, such as IL-6 and IL-4, and increased expression of microglial chemokines, such as macrophage-colony-stimulating factor and monokine induced by interferon-γ. Interestingly, cytokine effects differed as a function of stimulation frequency, revealing a range of neuroimmune effects of stimulation. To identify possible mechanisms underlying cytokine expression, we quantified the effect of the flicker on intracellular signaling pathways known to regulate cytokine levels. We found that a 40 Hz flicker upregulates phospho-signaling within the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. While cytokine expression increased after 1 h of 40 Hz flicker stimulation, protein phosphorylation in the NF-κB pathway was upregulated within minutes. Importantly, the cytokine expression profile induced by 40 Hz flicker was different from cytokine changes in response to acute neuroinflammation induced by lipopolysaccharides. These results are the first, to our knowledge, to show how visual stimulation rapidly induces critical neuroimmune signaling in healthy animals. SIGNIFICANCE STATEMENT Prior work has shown that exposing mice to lights flickering at 40 Hz induces neural spiking activity at 40 Hz (within the gamma frequency) and recruits microglia, the primary immune cells of the brain. However, the immediate effect of 40 Hz flicker on neuroimmune biochemical signaling was unknown. We found that 40 Hz flicker leads to significant increases in the expression of cytokines, key immune signals known to recruit microglia. Furthermore, we found that 40 Hz flicker rapidly changes the phosphorylation of proteins in the NF-κB and MAPK pathways, both known to regulate cytokine expression. Our findings are the first to delineate a specific rapid immune signaling response following 40 Hz visual stimulation, highlighting both the unique nature and therapeutic potential of this treatment.
Collapse
|
7
|
Klinedinst BS, Pappas C, Le S, Yu S, Wang Q, Wang L, Allenspach-Jorn K, Mochel JP, Willette AA. Aging-related changes in fluid intelligence, muscle and adipose mass, and sex-specific immunologic mediation: A longitudinal UK Biobank study. Brain Behav Immun 2019; 82:396-405. [PMID: 31513875 PMCID: PMC7755032 DOI: 10.1016/j.bbi.2019.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Obesity in midlife and early late-life is associated with worse normal cognitive aging. Dual-energy X-ray absorptiometry (DEXA) suggests that visceral adipose mass (VAM) plays a predominant role, whereas non-visceral adipose mass (NVAM) and lean muscle mass (LMM) have shown conflicting relationships. It is unknown how longitudinal, cognitive changes in age-sensitive domains like fluid intelligence (FI) correspond to VAM, NVAM, and LMM in women and men. Furthermore, changes over time in blood leukocyte sub-populations may partially or fully account for sex-specific associations. METHODS Data on 4431 late middle-aged, cognitively unimpaired adults (mean = 64.5 y) was obtained from the UK Biobank prospective cohort across 22 centers. FI scores, blood leukocyte counts, and covariates (age, social class, education) were measured at three 2-year intervals over 6 years. DEXA collection overlapped with these intervals. Sex-stratified growth curves, structural equations, and Preacher-Hayes mediation were used to estimate direct and indirect effects. β-weights were standardized. RESULTS More LMM predicted gains in FI scores among women (β = 0.130, p < .001) and men (β = 0.089, p < .001). Conversely, more VAM and NVAM independently predicted FI decline equally among sexes (e.g., NVAM: women: β = -0.082, p < .001; men: β = -0.076, p < .001). Among women, FI associations were fully mediated by higher eosinophil counts via VAM (λ = 30.8%, p = .028) and lower lymphocyte counts via LMM (λ = 69.2%, p = .021). Among men, FI associations were partially mediated by lower basophils counts via LMM (λ = 4.5%, p = .042) and higher counts via VAM (λ = 50%, p = .037). CONCLUSION The proportion of LMM and VAM equally influenced male FI changes over 6 years, whereas higher LMM among women appeared to more strongly influence. FI changes. Leukocyte counts strongly mediated VAM- and LMM-related FI changes in a sex-specific manner, but not for NVAM. For clinical translation, exercise studies in older adults may benefit from assessing sex-specific values of DEXA-based tissue mass, FI, and leukocyte sub-populations to gauge potential cognitive benefits of less VAM and more LMM.
Collapse
Affiliation(s)
- Brandon S. Klinedinst
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA,Neuroscience Graduate Program, Iowa State University, Ames, IA, USA
| | - Colleen Pappas
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Scott Le
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA,Interdisciplinary Graduate Studies Program, Iowa State University, Ames, IA, USA
| | - Shan Yu
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Qian Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA,Neuroscience Graduate Program, Iowa State University, Ames, IA, USA
| | - Li Wang
- Department of Statistics, Iowa State University, Ames, IA, USA
| | | | | | - Auriel A. Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA,Neuroscience Graduate Program, Iowa State University, Ames, IA, USA,Interdisciplinary Graduate Studies Program, Iowa State University, Ames, IA, USA,Department of Biomedical Sciences, Iowa State University, Ames, IA, USA,Department of Neurology, University of Iowa, Iowa City, USA,Send Correspondence to: Auriel A. Willette, 1109 HNSB, 2302 Osborn Drive, Ames, IA 50011-1078, Phone: (515) 294-3110,
| |
Collapse
|
8
|
Lykhmus O, Kalashnyk O, Koval L, Voytenko L, Uspenska K, Komisarenko S, Deryabina O, Shuvalova N, Kordium V, Ustymenko A, Kyryk V, Skok M. Mesenchymal Stem Cells or Interleukin-6 Improve Episodic Memory of Mice Lacking α7 Nicotinic Acetylcholine Receptors. Neuroscience 2019; 413:31-44. [DOI: 10.1016/j.neuroscience.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
|
9
|
Arnoriaga Rodríguez M, Blasco G, Coll C, Biarnés C, Contreras-Rodríguez O, Garre-Olmo J, Puig J, Gich J, Ricart W, Ramió-Torrentà L, Fernández-Real JM. Glycated Hemoglobin, but not Insulin Sensitivity, is Associated with Memory in Subjects with Obesity. Obesity (Silver Spring) 2019; 27:932-942. [PMID: 30985999 DOI: 10.1002/oby.22457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/24/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Obesity has been related to later-life dementia. Serum glucose levels and insulin resistance are known to influence cognition in individuals with diabetes. This study aimed to evaluate memory function in middle-aged individuals with obesity in association with glucose metabolism and brain iron content. METHODS This was a cross-sectional case-control study including 121 participants aged 27.2 to 66.6 years (56 without obesity, 65 with obesity) stratified according to sex and menopausal status. Insulin sensitivity, body composition, brain iron content, and memory function were evaluated by euglycemic hyperinsulinemic clamp, dual-energy x-ray absorptiometry, magnetic resonance relaxometry (R2*), and California Verbal Learning Test, respectively. RESULTS Women with obesity, but not men, had lower scores in some California Verbal Learning Tests in association with metabolic parameters and increased brain iron content compared with controls. Fasting plasma glucose, glycated hemoglobin (HbA1c; within normal range), and R2* were negatively associated with memory scores, whereas insulin sensitivity showed positive associations. Remarkably, only HbA1c levels and R2* in the right inferior fronto-orbital region remained significant after controlling for age, sex, education, and BMI. CONCLUSIONS Impairments in memory function in middle-aged women with obesity are associated with HbA1c levels and brain iron content independently of insulin sensitivity. These results may have implications in the design of therapeutic strategies in women with obesity.
Collapse
Affiliation(s)
- María Arnoriaga Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Dr. Josep Trueta University Hospital, Center for Physiopathology of Obesity and Nutrition, Girona, Spain
- Faculty of Medicine, Department of Medical Sciences, University of Girona, Girona, Spain
| | - Gerard Blasco
- Institute of Diagnostic Imaging-Research Unit, Parc Sanitari Pere Virgili, Barcelona, Spain
- Department of Medical Imaging, Girona Biomedical Research Institute, Girona, Spain
| | - Clàudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Carles Biarnés
- Department of Medical Imaging, Girona Biomedical Research Institute, Girona, Spain
| | - Oren Contreras-Rodríguez
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) and Biomedical Research Networking Center for Mental Health (CIBERSAM), L'Hospitalet de Llobregat, Spain
| | - Josep Garre-Olmo
- Faculty of Medicine, Department of Medical Sciences, University of Girona, Girona, Spain
- Research Group on Aging, Health and Disability, Girona Biomedical Research Institute, Health Assistance Institute, Girona, Spain
| | - Josep Puig
- Faculty of Medicine, Department of Medical Sciences, University of Girona, Girona, Spain
- Institute of Diagnostic Imaging-Research Unit, Parc Sanitari Pere Virgili, Barcelona, Spain
- Department of Medical Imaging, Girona Biomedical Research Institute, Girona, Spain
| | - Jordi Gich
- Faculty of Medicine, Department of Medical Sciences, University of Girona, Girona, Spain
- Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute, Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Dr. Josep Trueta University Hospital, Center for Physiopathology of Obesity and Nutrition, Girona, Spain
- Faculty of Medicine, Department of Medical Sciences, University of Girona, Girona, Spain
| | - Lluís Ramió-Torrentà
- Faculty of Medicine, Department of Medical Sciences, University of Girona, Girona, Spain
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
- Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute, Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Dr. Josep Trueta University Hospital, Center for Physiopathology of Obesity and Nutrition, Girona, Spain
- Faculty of Medicine, Department of Medical Sciences, University of Girona, Girona, Spain
| |
Collapse
|
10
|
Heym N, Heasman BC, Hunter K, Blanco SR, Wang GY, Siegert R, Cleare A, Gibson GR, Kumari V, Sumich AL. The role of microbiota and inflammation in self-judgement and empathy: implications for understanding the brain-gut-microbiome axis in depression. Psychopharmacology (Berl) 2019; 236:1459-1470. [PMID: 30955108 PMCID: PMC6598942 DOI: 10.1007/s00213-019-05230-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/18/2019] [Indexed: 12/31/2022]
Abstract
RATIONALE The gut-brain axis includes bidirectional communication between intestinal microbiota and the central nervous system. Bifidobacterium and Lactobacillus spp. have been implicated in psychological health, such as depression, through various pathways (e.g. inflammation). Research needs a better understanding of direct and indirect effects through examination of psychological factors that make people susceptible to, or offer protection against, depression. OBJECTIVE This study investigated the relationships between gut microbiota, inflammation and psychological risk and resilience factors for depression. METHODS Forty participants (13 m/27 f) recruited from the general population completed self-report questionnaires for depression, self-judgement, over-identification and affective and cognitive empathy. Faecal and blood samples were taken to assay microbiota (Bifidobacterium; Lactobacillus spp.) and pro-inflammatory molecules (C-reactive protein, CRP and interleukin-6, IL-6), respectively. RESULTS Hierarchical regression analyses (controlling for sex, age and the shared variance of risk and resilience factors) showed that (i) cognitive depression was significantly predicted by negative self-judgement and reduced cognitive empathy; (ii) abundance of Lactobacillus spp. was directly related to positive self-judgement but only indirectly to cognitive depression and lower affective empathy (both through self-judgement); and (iii) CRP was the strongest predictor of reduced cognitive empathy, with suppression effects seen for age (negative) and IL-6 (positive) after controlling for CRP. CONCLUSIONS Findings suggest that lactobacilli and inflammation may be differentially associated with mood disorder via brain mechanisms underpinning self-judgement and cognitive empathy, respectively. Further trials investigating interventions to increase Lactobacillus spp. in depression would benefit from direct measures of self-judgement and affective empathic distress, whilst those that aim to reduce inflammation should investigate cognitive empathy.
Collapse
Affiliation(s)
- N Heym
- Division of Psychology, Nottingham Trent University, Nottingham, NG1 4FQ, UK.
| | - B C Heasman
- Division of Psychology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - K Hunter
- Division of Sports Science, Nottingham Trent University, Nottingham, UK
| | - S R Blanco
- Division of Psychology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - G Y Wang
- Department of Psychology, Auckland University of Technology, Auckland, New Zealand
| | - R Siegert
- Department of Psychology, Auckland University of Technology, Auckland, New Zealand
| | - A Cleare
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - G R Gibson
- Food and Nutritional Sciences, University of Reading, Reading, UK
| | - V Kumari
- Centre for Cognitive Neuroscience, Brunel University London, Uxbridge, UK
| | - A L Sumich
- Division of Psychology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
- Department of Psychology, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|