1
|
Mora AM, Baker JM, Hyland C, Rodríguez-Zamora MG, Rojas-Valverde D, Winkler MS, Staudacher P, Palzes VA, Gutiérrez-Vargas R, Lindh C, Reiss AL, Eskenazi B, Fuhrimann S, Sagiv SK. Pesticide exposure and cortical brain activation among farmworkers in Costa Rica. Neurotoxicology 2022; 93:200-210. [PMID: 36228750 PMCID: PMC10014323 DOI: 10.1016/j.neuro.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous epidemiological studies have reported associations of pesticide exposure with poor cognitive function and behavioral problems. However, these findings have relied primarily on neuropsychological assessments. Questions remain about the neurobiological effects of pesticide exposure, specifically where in the brain pesticides exert their effects and whether compensatory mechanisms in the brain may have masked pesticide-related associations in studies that relied purely on neuropsychological measures. METHODS We conducted a functional neuroimaging study in 48 farmworkers from Zarcero County, Costa Rica, in 2016. We measured concentrations of 13 insecticide, fungicide, or herbicide metabolites or parent compounds in urine samples collected during two study visits (approximately 3-5 weeks apart). We assessed cortical brain activation in the prefrontal cortex during tasks of working memory, attention, and cognitive flexibility using functional near-infrared spectroscopy (fNIRS). We estimated associations of pesticide exposure with cortical brain activation using multivariable linear regression models adjusted for age and education level. RESULTS We found that higher concentrations of insecticide metabolites were associated with reduced activation in the prefrontal cortex during a working memory task. For example, 3,5,6-trichloro-2-pyridinol (TCPy; a metabolite of the organophosphate chlorpyrifos) was associated with reduced activation in the left dorsolateral prefrontal cortex (β = -2.3; 95% CI: -3.9, -0.7 per two-fold increase in TCPy). Similarly, 3-phenoxybenzoic acid (3-PBA; a metabolite of pyrethroid insecticides) was associated with bilateral reduced activation in the dorsolateral prefrontal cortices (β = -3.1; 95% CI: -5.0, -1.2 and -2.3; 95% CI: -4.5, -0.2 per two-fold increase in 3-PBA for left and right cortices, respectively). These associations were similar, though weaker, for the attention and cognitive flexibility tasks. We observed null associations of fungicide and herbicide biomarker concentrations with cortical brain activation during the three tasks that were administered. CONCLUSION Our findings suggest that organophosphate and pyrethroid insecticides may impact cortical brain activation in the prefrontal cortex - neural dynamics that could potentially underlie previously reported associations with cognitive and behavioral function. Furthermore, our study demonstrates the feasibility and utility of fNIRS in epidemiological field studies.
Collapse
Affiliation(s)
- Ana M Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA.
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Carly Hyland
- School of Public Health and Population Science, Boise State University, 1910 W University Dr, Boise, ID 83725, USA
| | - María G Rodríguez-Zamora
- Escuela de Ingeniería en Seguridad Laboral e Higiene Ambiental (EISLHA), Instituto Tecnológico de Costa Rica, Calle 15, Avenida 14, 1 km Sur de la Basílica de los Ángeles, Cartago 30101, Provincia de Cartago, Costa Rica
| | - Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Campus Benjamin Nuñez, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Mirko S Winkler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 55, 4051 Basel, Switzerland; University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Philipp Staudacher
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Vanessa A Palzes
- Drug and Alcohol Research Team at the Kaiser Permanente Northern California's Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Randall Gutiérrez-Vargas
- Centro de Investigación y Diagnóstico en Salud y Deporte, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Campus Benjamin Nuñez, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, Scheelevägen 2, 22363 Lund, Sweden
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA; Department of Radiology, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 55, 4051 Basel, Switzerland; University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Sharon K Sagiv
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Zheng Y, You T, Du R, Zhang J, Peng T, Liang J, Zhao B, Ou H, Jiang Y, Feng H, Yilifate A, Lin Q. The Effect of Non-immersive Virtual Reality Exergames Versus Band Stretching on Cardiovascular and Cerebral Hemodynamic Response: A Functional Near-Infrared Spectroscopy Study. Front Hum Neurosci 2022; 16:902757. [PMID: 35903784 PMCID: PMC9314640 DOI: 10.3389/fnhum.2022.902757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Exercise is one of the effective ways to improve cognition. Different forms of exercises, such as aerobic exercise, resistance exercise, and coordination exercise, have different effects on the improvement of cognitive impairment. In recent years, exergames based on Non-Immersive Virtual Reality (NIVR-Exergames) have been widely used in entertainment and have gradually been applied to clinical rehabilitation. However, the mechanism of NIVR-Exergames on improving motor cognition has not been clarified. Therefore, the aim of this study is to find whether NIVR-Exergames result in a better neural response mechanism to improve the area of the cerebral cortex related to motor cognition under functional near-infrared spectroscopy (fNIRS) dynamic monitoring in comparison with resistance exercise (resistance band stretching). Methods A cross-over study design was adopted in this study, and 15 healthy young subjects (18–24 years old) were randomly divided into group A (n = 8) and group B (n = 7) according to a computerized digital table method. Task 1 was an NIVR-Exergame task, and Task 2 was resistance band stretching. Group A first performed Task 1, rested for 30 min (i.e., a washout period), and then performed Task 2. Group B had the reverse order. The fNIRS test was synchronized in real time during exercise tasks, and heart rate measurements, blood pressure measurements, and 2-back task synchronization fNIRS tests were performed at baseline, Post-task 1, and Post-task 2. The primary outcomes were beta values from the general linear model (GLM) in different regions of interest (ROIs), and the secondary outcomes were heart rate, blood pressure, reaction time of 2-back, and accuracy rate of 2-back. Results The activation differences of Task 1 and Task 2 in the right premotor cortex (PMC) (P = 0.025) and the left PMC (P = 0.011) were statistically significant. There were statistically significant differences in the activation of the right supplementary motor area (SMA) (P = 0.007), left dorsolateral prefrontal cortex (DLPFC) (P = 0.031), left and right PMC (P = 0.005; P = 0.002) between baseline and Post-task 1. The differences in systolic pressure (SBP) between the two groups at three time points among women were statistically significant (P1 = 0.009, P2 < 0.001, P3 = 0.044). Conclusion In this study, we found that NIVR-Exergames combined with motor and challenging cognitive tasks can promote the activation of SMA, PMC and DLPFC in healthy young people compared with resistance exercise alone, providing compelling preliminary evidence of the power for the rehabilitation of motor and cognitive function in patients with central nervous system diseases.
Collapse
Affiliation(s)
- Yuxin Zheng
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
| | - Tingting You
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
| | - Rongwei Du
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
| | - Jiahui Zhang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
| | - Junjie Liang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
| | - Biyi Zhao
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
| | - Haining Ou
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
| | - Yongchun Jiang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
| | - Huiping Feng
- Department of Clinical Nutrition, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Huiping Feng,
| | - Anniwaer Yilifate
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
- Anniwaer Yilifate,
| | - Qiang Lin
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth College of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qiang Lin,
| |
Collapse
|