1
|
Crasta JE, Jacoby EC. The Effect of Attention on Auditory Processing in Adults on the Autism Spectrum. J Autism Dev Disord 2024; 54:3197-3210. [PMID: 37349596 DOI: 10.1007/s10803-023-06040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
This study examined the effect of attention on auditory processing in autistic individuals. Electroencephalography data were recorded during two attention conditions (passive and active) from 24 autistic adults and 24 neurotypical controls, ages 17-30 years. The passive condition involved only listening to the clicks and the active condition involved a button press following single clicks in a modified paired-click paradigm. Participants completed the Adolescent/Adult Sensory Profile and the Social Responsiveness Scale 2. The autistic group showed delayed N1 latencies and reduced evoked and phase-locked gamma power compared to neurotypical peers across both clicks and conditions. Longer N1 latencies and reduced gamma synchronization predicted greater social and sensory symptoms. Directing attention to auditory stimuli may be associated with more typical neural auditory processing in autism.
Collapse
Affiliation(s)
- Jewel E Crasta
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, 80523, USA.
- Occupational Therapy, The Ohio State University, 453 W 10th Ave, Columbus, OH, 43210, USA.
| | - Erica C Jacoby
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, 80523, USA
- , Miamisburg, USA
| |
Collapse
|
2
|
Day TC, Malik I, Boateng S, Hauschild KM, Lerner MD. Vocal Emotion Recognition in Autism: Behavioral Performance and Event-Related Potential (ERP) Response. J Autism Dev Disord 2024; 54:1235-1248. [PMID: 36694007 DOI: 10.1007/s10803-023-05898-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Autistic youth display difficulties in emotion recognition, yet little research has examined behavioral and neural indices of vocal emotion recognition (VER). The current study examines behavioral and event-related potential (N100, P200, Late Positive Potential [LPP]) indices of VER in autistic and non-autistic youth. Participants (N = 164) completed an emotion recognition task, the Diagnostic Analyses of Nonverbal Accuracy (DANVA-2) which included VER, during EEG recording. The LPP amplitude was larger in response to high intensity VER, and social cognition predicted VER errors. Verbal IQ, not autism, was related to VER errors. An interaction between VER intensity and social communication impairments revealed these impairments were related to larger LPP amplitudes during low intensity VER. Taken together, differences in VER may be due to higher order cognitive processes, not basic, early perception (N100, P200), and verbal cognitive abilities may underlie behavioral, yet occlude neural, differences in VER processing.
Collapse
Affiliation(s)
- Talena C Day
- Psychology Department, Stony Brook University, Stony Brook, Psychology B-354, Stony Brook, NY, 11794-2500, USA
| | - Isha Malik
- Psychology Department, Stony Brook University, Stony Brook, Psychology B-354, Stony Brook, NY, 11794-2500, USA
| | - Sydney Boateng
- Psychology Department, Stony Brook University, Stony Brook, Psychology B-354, Stony Brook, NY, 11794-2500, USA
| | | | - Matthew D Lerner
- Psychology Department, Stony Brook University, Stony Brook, Psychology B-354, Stony Brook, NY, 11794-2500, USA.
| |
Collapse
|
3
|
Cary E, Pacheco D, Kaplan-Kahn E, McKernan E, Matsuba E, Prieve B, Russo N. Brain Signatures of Early and Late Neural Measures of Auditory Habituation and Discrimination in Autism and Their Relationship to Autistic Traits and Sensory Overresponsivity. J Autism Dev Disord 2024; 54:1344-1360. [PMID: 36626009 DOI: 10.1007/s10803-022-05866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
Sensory differences are included in the DSM-5 criteria of autism for the first time, yet it is unclear how they relate to neural indicators of perception. We studied early brain signatures of perception and examined their relationship to sensory behaviors and autistic traits. Thirteen autistic children and 13 Typically Developing (TD) children matched on age and nonverbal IQ participated in a passive oddball task, during which P1 habituation and P1 and MMN discrimination were evoked by pure tones. Autistic children had less neural habituation than the TD comparison group, and the MMN, but not P1, mapped on to sensory overresponsivity. Findings highlight the significance of temporal and contextual factors in neural information processing as it relates to autistic traits and sensory behaviors.
Collapse
Affiliation(s)
- Emily Cary
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Devon Pacheco
- Department of Communication Sciences and Disorders, Syracuse University, 621 Skytop Rd. Suite 1200, 13244, Syracuse, NY, USA
| | - Elizabeth Kaplan-Kahn
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Elizabeth McKernan
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Erin Matsuba
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Beth Prieve
- Department of Communication Sciences and Disorders, Syracuse University, 621 Skytop Rd. Suite 1200, 13244, Syracuse, NY, USA
| | - Natalie Russo
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA.
| |
Collapse
|
4
|
Cotter M, Reisli S, Francisco AA, Wakim KM, Oakes L, Crosse MJ, Foxe JJ, Molholm S. Neurophysiological measures of auditory sensory processing are associated with adaptive behavior in children with Autism Spectrum Disorder. J Neurodev Disord 2023; 15:11. [PMID: 37005597 PMCID: PMC10068141 DOI: 10.1186/s11689-023-09480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/27/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Atypical auditory cortical processing is consistently found in scalp electrophysiological and magnetoencephalographic studies of Autism Spectrum Disorder (ASD), and may provide a marker of neuropathological brain development. However, the relationship between atypical cortical processing of auditory information and adaptive behavior in ASD is not yet well understood. METHODS We sought to test the hypothesis that early (100-175 ms) auditory processing in ASD is related to everyday adaptive behavior through the examination of auditory event-related potentials (AEPs) in response to simple tones and Vineland Adaptive Behavior Scales in a large cohort of children with ASD (N = 84), aged 6-17, and in age- and IQ- matched neurotypically (NT) developing controls (N = 132). RESULTS Statistical analyses revealed significant group differences in early AEPs over temporal scalp regions (150-175 ms), and the expected rightward lateralization of the AEP (100-125 ms and 150-175 ms) to tonal stimuli in both groups. Lateralization of the AEP (150-175 ms) was significantly associated with adaptive functioning in the socialization domain. CONCLUSIONS These results lend support to the hypothesis that atypical processing of sensory information is related to everyday adaptive behavior in autism.
Collapse
Affiliation(s)
- Mairin Cotter
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Psychology, Fordham University, Bronx, NY, 10458, USA
| | - Seydanur Reisli
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana Alves Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Kathryn-Mary Wakim
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Leona Oakes
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Michael J Crosse
- Segotia, Galway, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Chen Y, Tang E, Ding H, Zhang Y. Auditory Pitch Perception in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:4866-4886. [PMID: 36450443 DOI: 10.1044/2022_jslhr-22-00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
PURPOSE Pitch plays an important role in auditory perception of music and language. This study provides a systematic review with meta-analysis to investigate whether individuals with autism spectrum disorder (ASD) have enhanced pitch processing ability and to identify the potential factors associated with processing differences between ASD and neurotypicals. METHOD We conducted a systematic search through six major electronic databases focusing on the studies that used nonspeech stimuli to provide a qualitative and quantitative assessment across existing studies on pitch perception in autism. We identified potential participant- and methodology-related moderators and conducted metaregression analyses using mixed-effects models. RESULTS On the basis of 22 studies with a total of 464 participants with ASD, we obtained a small-to-medium positive effect size (g = 0.26) in support of enhanced pitch perception in ASD. Moreover, the mean age and nonverbal IQ of participants were found to significantly moderate the between-studies heterogeneity. CONCLUSIONS Our study provides the first meta-analysis on auditory pitch perception in ASD and demonstrates the existence of different developmental trajectories between autistic individuals and neurotypicals. In addition to age, nonverbal ability is found to be a significant contributor to the lower level/local processing bias in ASD. We highlight the need for further investigation of pitch perception in ASD under challenging listening conditions. Future neurophysiological and brain imaging studies with a longitudinal design are also needed to better understand the underlying neural mechanisms of atypical pitch processing in ASD and to help guide auditory-based interventions for improving language and social functioning. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21614271.
Collapse
Affiliation(s)
- Yu Chen
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
| | - Enze Tang
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
| | - Hongwei Ding
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences and Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis
| |
Collapse
|