1
|
Nordberg Å, Miniscalco C, Norrelgen F. Language ability in 5-12-year-old children with new-onset epilepsy. LOGOP PHONIATR VOCO 2024:1-9. [PMID: 39218004 DOI: 10.1080/14015439.2024.2379297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This clinically based study aimed to explore and describe language ability in 5-12-year-old children with new-onset epilepsy.Participants and methods: Twenty-one consecutively recruited children (eleven boys, ten girls) with new-onset epilepsy, were assessed using Clinical Evaluation of Language Fundamentals, fourth edition (CELF-4) and additional tests for verbal fluency/word retrieval and phonology. In addition, caregivers rated their child's speech, language, and communication in everyday context. Based on available tests and clinical observation, an overall evaluation of language ability was made to distinguish children with language disorders and children with language difficulties from those with language abilities within the normal range. Language disorder was diagnosed following the ICD-10 criteria. The cutoff for language difficulties was set at 1 standard deviation below the normative mean on the CELF-4 Core Language Score and additional indices. RESULTS Out of twenty-one children, ten (47.5%) met the criteria for a language disorder diagnosis according to ICD-10. Another five (24%) had language difficulties but did not meet the criteria for a language disorder diagnosis according to ICD-10. Hence a total of fifteen (71.5%) children had an impaired language ability affecting different domains of language, including receptive language, language memory, and semantic processing. The remaining six (28.5%) children had average language ability. CONCLUSION In this group of children with new-onset epilepsy, a large over-representation of co-existing language disorder and language difficulties was found. The findings suggest that specific language assessments for children with new-onset epilepsy are needed, to ensure that adequate interventions and support can be offered.
Collapse
Affiliation(s)
- Åsa Nordberg
- Institute of neuroscience and physiology, Department of health and rehabilitation, Speech-Pathology unit, Sahlgrenska academy, University of Gothenburg, Sweden
- Department of Pediatric Speech and Language Pathology, Queen Silvia Children's Hospital, Göteborg, Sweden
| | - Carmela Miniscalco
- Department of Pediatric Speech and Language Pathology, Queen Silvia Children's Hospital, Göteborg, Sweden
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Child Neuropsychiatry, Queen Silvia Children's Hospital Gothenburg, Gothenburg, Sweden
| | - Fritjof Norrelgen
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Speech and Language Pathology, Karolinska University Hospital, ME Logopedi, Solna, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Zhang XY, Sun M, Wang JY, Du FF, Liu XF, Wang LJ, Hou ZD, Cheng YY. Analysis of related factors for neuropsychiatric comorbidities in children with epilepsy. Eur J Med Res 2024; 29:168. [PMID: 38475859 PMCID: PMC10929131 DOI: 10.1186/s40001-024-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
OBJECTIVE To analyze the risk factors affecting psychiatric behavior and study the psychobehavioral conditions of children with epilepsy. METHOD We randomly selected and enrolled 294 children with epilepsy who visited and were hospitalized in the pediatric clinic of Hebei General Hospital between January 2017 and January 2022, as the study participants. We comprehensively assessed their cognitive functions using the Gesell development schedule or Wechsler Intelligence Scales. The participants were divided into the study group (n = 123) with cognitive impairment and the control group (n = 171) with normal cognitive functions, for analysis. RESULTS There were statistically significant differences between the two groups in disease course, frequency of epilepsy, status epilepticus, and the number of antiseizure medications (ASMs) used (P < 0.05), while there were no statistically significant differences in age, gender, age of onset, form of onset, interictal epileptiform discharge, history of febrile convulsion, and the time from onset to initial visit (P > 0.05). Based on multivariate logistic regression analysis, the course of disease, frequency of onset, status epilepticus and number of ASMs used were identified as high-risk factors for cognitive impairment in children with epilepsy. Similarly, early onset, long course of disease, known etiology, and combination of multiple drugs have a negative impact on behavioral problems, school education, and social adaptability. CONCLUSION The course of disease, the frequency of onset, status epilepticus, and the number of ASMs used are high-risk factors for cognitive impairment in children with epilepsy, which can be prevented and controlled early. When selecting ASMs, their advantages and disadvantages should be weighed. Moreover, the availability of alternative treatment options must be considered. With the help of genomic technology, the causes of epilepsy should be identified as early as possible, and precision medicine and gene therapy for children with epilepsy should be actively developed.
Collapse
Affiliation(s)
- Xin-Ying Zhang
- Department of Pediatrics, HeBei General Hospital, No.348 of Heping West Road, Xinhua District, Shijiazhuang, 050051, China
| | - Meng Sun
- Department of Pediatrics, HeBei General Hospital, No.348 of Heping West Road, Xinhua District, Shijiazhuang, 050051, China
| | - Jiang-Ya Wang
- Department of Pediatrics, HeBei General Hospital, No.348 of Heping West Road, Xinhua District, Shijiazhuang, 050051, China
| | - Fang-Fang Du
- Department of Pediatrics, HeBei General Hospital, No.348 of Heping West Road, Xinhua District, Shijiazhuang, 050051, China
| | - Xue-Fei Liu
- Department of Pediatrics, HeBei General Hospital, No.348 of Heping West Road, Xinhua District, Shijiazhuang, 050051, China
| | - Ling-Jun Wang
- Department of Pediatrics, HeBei General Hospital, No.348 of Heping West Road, Xinhua District, Shijiazhuang, 050051, China
| | - Zhen-De Hou
- Department of Pediatrics, HeBei General Hospital, No.348 of Heping West Road, Xinhua District, Shijiazhuang, 050051, China
| | - Ya-Ying Cheng
- Department of Pediatrics, HeBei General Hospital, No.348 of Heping West Road, Xinhua District, Shijiazhuang, 050051, China.
| |
Collapse
|
3
|
Deng J, Liu C, Hu M, Hu C, Lin J, Li Q, Xu X. Dynamic Regulation of brsk2 in the Social and Motor Development of Zebrafish: A Developmental Behavior Analysis. Int J Mol Sci 2023; 24:16506. [PMID: 38003696 PMCID: PMC10671324 DOI: 10.3390/ijms242216506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Both social and motor development play an essential role in an individual's physical, psychological, and social well-being. It is essential to conduct a dynamic analysis at multiple time points during the developmental process as it helps us better understand and evaluate the trajectory and changes in individual development. Recently, some studies found that mutations in the BRSK2 gene may contribute to motor impairments, delays in achieving motor milestones, and deficits in social behavior and communication skills in patients. However, little is known about the dynamic analysis of social and motor development at multiple time points during the development of the brsk2 gene. We generated a novel brsk2-deficient (brsk2ab-/-) zebrafish model through CRISPR/Cas9 editing and conducted comprehensive morphological and neurobehavioral evaluations, including that of locomotor behaviors, social behaviors, and anxiety behaviors from the larval to adult stages of development. Compared to wild-type zebrafish, brsk2ab-/- zebrafish exhibited a catch-up growth pattern of body length and gradually improved locomotor activities during the developmental process. In contrast, multimodal behavior tests showed that the brsk2ab-/- zebrafish displayed escalating social deficiency and anxiety-like behaviors over time. We reported for the first time that the brsk2 gene had dynamic regulatory effects on motor and social development. It helps us understand developmental trends, capture changes, facilitate early interventions, and provide personalized support and development opportunities for individuals.
Collapse
Affiliation(s)
- Jingxin Deng
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Chunxue Liu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Meixin Hu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Chunchun Hu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Jia Lin
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.L.); (Q.L.)
| | - Qiang Li
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.L.); (Q.L.)
| | - Xiu Xu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| |
Collapse
|
4
|
Faraji R, Ganji Z, Zamanpour SA, Nikparast F, Akbari-Lalimi H, Zare H. Impaired white matter integrity in infants and young children with autism spectrum disorder: What evidence does diffusion tensor imaging provide? Psychiatry Res Neuroimaging 2023; 335:111711. [PMID: 37741094 DOI: 10.1016/j.pscychresns.2023.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/26/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Abnormal functional connections are associated with impaired white matter tract integrity in the brain. Diffusion tensor imaging (DTI) is a promising method for evaluating white matter integrity in infants and young children. This work aims to shed light on the location and nature of the decrease in white matter integrity. METHODS Here, the results of 19 studies have been presented that investigated white matter integrity in infants and young children (6 months to 12 years) with autism using diffusion tensor imaging. RESULTS In most of the reviewed studies, an increase in Fractional Anisotropy (FA) and a decrease in Radial Diffusivity (RD) were reported in Corpus Callosum (CC), Uncinate Fasciculus (UF), Cingulum (Cg), Inferior Longitudinal Fasciculus (ILF), and Superior Longitudinal Fasciculus (SLF), and in the Inferior Fronto-Occipital Fasciculus (IFOF) tract, a decrease in FA and an increase in RD were reported. CONCLUSION In the reviewed articles, except for one study, the diffusion indices were different compared to the control group.
Collapse
Affiliation(s)
- Reyhane Faraji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Ganji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Zamanpour
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Nikparast
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Akbari-Lalimi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Zare
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Li P, Ji X, Shan M, Wang Y, Dai X, Yin M, Liu Y, Guan L, Ye L, Cheng H. Melatonin regulates microglial polarization to M2 cell via RhoA/ROCK signaling pathway in epilepsy. Immun Inflamm Dis 2023; 11:e900. [PMID: 37382264 PMCID: PMC10266134 DOI: 10.1002/iid3.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Melatonin (MEL), an endogenous hormone, has been widely investigated in neurological diseases. Microglia (MG), a resident immunocyte localizing in central nervous system is reported to play important functions in the animal model of temporal lobe epilepsy (TLE). Some evidence showed that MEL influenced activation of MG, but the detailed model of action that MEL plays in remains uncertain. METHODS In this study, we established a model of TLE in mice by stereotactic injection of kainic acid (KA). We treated the mice with MEL. Lipopolysaccharide, ROCK2-knockdown (ROCK-KD) and -overexpression (ROCK-OE) of lentivirus-treated cells were used in cell experiments to simulate an in vitro inflammatory model. RESULTS The results of electrophysiological tests showed that MEL reduced frequency and severity of seizure. The results of behavioral tests indicated MEL improved cognition, learning, and memory ability. Histological evidences demonstrated a significant reduction of neuronal death in the hippocampus. In vivo study showed that MEL changed the polarization status of MG from a proinflammatory M1 phenotype to an anti-inflammatory M2 phenotype by inversely regulating the RhoA/ROCK signaling pathway. In cytological study, we found that MEL had a significant protective effect in LPS-treated BV-2 cells and ROCK-KD cells, while the protective effect of MEL was significantly attenuated in ROCK-OE cells. CONCLUSION MEL played an antiepileptic role in the KA-induced TLE modeling mice both in behavioral and histological levels, and changed MG polarization status by regulating the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Pingping Li
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xuefei Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ming Shan
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yi Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xingliang Dai
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Mengyuan Yin
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yunlong Liu
- First Clinical Medical CollegeAnhui Medical UniversityHefeiChina
| | - Liao Guan
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Lei Ye
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hongwei Cheng
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
6
|
Executive Functioning and Social Skills in Children with Epileptic Seizures and Non-Epileptic Seizures. Epilepsy Res 2022; 188:107051. [DOI: 10.1016/j.eplepsyres.2022.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
7
|
Elizalde Acevedo B, Olano MA, Bendersky M, Kochen S, Agüero Vera V, Chambeaud N, Gargiulo M, Sabatte J, Gargiulo Á, Alba-Ferrara L. Brain mapping of emotional prosody in patients with drug-resistant temporal epilepsy: An indicator of plasticity. Cortex 2022; 153:97-109. [PMID: 35635861 DOI: 10.1016/j.cortex.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Emotional prosody, a suprasegmental component of language, is predominantly processed by right temporo-frontal areas of the cerebral cortex. In temporal lobe epilepsy (TLE), brain disturbances affecting prosody processing frequently occur. This research assesses compensatory brain mechanisms of prosody processing in refractory TLE using fMRI. METHODS Patients with focal unilateral epilepsy, right (RTLE) (N = 19), left (LTLE) (N = 19), and healthy controls (CTRL) (N = 20) were evaluated during a prosody decoding fMRI task. The stimuli consisted in spoken numbers with different tones of voice (joy, fear, anger, neutral and silent trials). Participants were instructed to label the emotion with a keypad. "Joy" was removed from the analysis due to a high degree of variability. A lateralization index (LI) was used to see individual differences in the interhemispheric activations of each participant. RESULTS Behaviorally, The LTLE and RTLE groups did not differ significantly from each other neither from CTRL. In Negative Emotions versus Baseline contrast, the whole sample analysis showed extensive activations in bilateral superior temporal gyrus, bilateral precentral and post-central gyrus, right putamen, and left cerebellar vermis. Compared to the LTLE and CTRL, RTLE activated similar areas, but to a lesser extent. The LI analysis revealed significant differences in hemispheric laterality of the temporal lobe and the parietal lobe between RTLE compared to LTLE and CTRL, being the RTLE group lateralized towards the left, unlike the other two groups. DISCUSSION The LI indicated that, since the CTRL and the LTLE groups recruited putative prosodic regions, the RTLE lateralized prosody processing towards the left, recruiting contralateral nodes, homotopic to the putative areas of the prosody. Considering that the groups did not differ in prosody task performance, the findings suggest that, in the RTLE group, alternative brain nodes were recruited for the task, demonstrating plasticity.
Collapse
Affiliation(s)
- Bautista Elizalde Acevedo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina; Departamento de Psicología, Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina; Unidad Ejecutora para el Estudio de las Neurociencias y Sistemas Complejos (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - María A Olano
- Departamento de Psicología, Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Mariana Bendersky
- Unidad Ejecutora para el Estudio de las Neurociencias y Sistemas Complejos (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Anatomía Viviente, 3ra Cátedra de Anatomía Normal, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Kochen
- Unidad Ejecutora para el Estudio de las Neurociencias y Sistemas Complejos (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valentina Agüero Vera
- Departamento de Psicología, Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Nahuel Chambeaud
- Universidad de Buenos Aires, Facultad de Psicología, Buenos Aires, Argentina
| | - Mercedes Gargiulo
- Centro Integral de Salud Mental Argentino (CISMA), Buenos Aires, Argentina
| | - Juliana Sabatte
- Centro Integral de Salud Mental Argentino (CISMA), Buenos Aires, Argentina
| | - Ángel Gargiulo
- Centro Integral de Salud Mental Argentino (CISMA), Buenos Aires, Argentina
| | - Lucía Alba-Ferrara
- Departamento de Psicología, Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina; Unidad Ejecutora para el Estudio de las Neurociencias y Sistemas Complejos (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Klotho alleviates NLRP3 inflammasome-mediated neuroinflammation in a temporal lobe epilepsy rat model by activating the Nrf2 signaling pathway. Epilepsy Behav 2022; 128:108509. [PMID: 35104732 DOI: 10.1016/j.yebeh.2021.108509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 12/28/2022]
Abstract
Neuroinflammation not only contributes to epileptogenesis and neurodegeneration, but is also associated with cognitive impairment. Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation is positively correlated with progression of temporal lobe epilepsy (TLE) and cognitive impairment. Recent studies have shown that the anti-aging protein, klotho, exerts anti-neuroinflammation effects and enhances cognition in neurodegenerative disorders. In the present study, we investigated the role and underlying mechanism of klotho action in NLRP3 inflammasome-mediated neuroinflammation in a TLE model. Specifically, we first injected an adeno-associated viral (AAV)-mediated overexpression of klotho (AAV-KL) into the bilateral hippocampus of rats. After 3 weeks, rats were intraperitoneally injected with lithium-chloride pilocarpine (LiCl-Pilo) to generate a TLE model. Results showed that klotho was significantly downregulated six weeks after TLE, while AAV-mediated klotho overexpression substantially attenuated TLE-induced hippocampal neuronal injury and cognitive impairment. Interestingly, klotho overexpression significantly alleviated expression of NLRP3, IL-1β, and caspase-1 proteins, but up-regulated activation of nuclear factor erythroid 2-related factor 2 (Nrf2). However, treatment with Nrf2 inhibitor ML385 significantly reversed klotho's beneficial effects, including alleviated neuroinflammation, attenuated neuronal injury, and improved cognitive function. Taken together, these results indicated that klotho alleviated NLRP3 inflammasome-mediated neuroinflammation by activating the Nrf2 signaling pathway in the TLE rat model, suggesting that this the anti-aging protein could be a novel and promising therapeutic agent for managing TLE-associated cognitive impairment.
Collapse
|
9
|
Samson S, Denos M. Neuropsychology of temporal lobe epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:519-529. [PMID: 35964990 DOI: 10.1016/b978-0-12-823493-8.00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter focuses on the neuropsychology of adults with temporal lobe epilepsy (TLE). First, a thorough description of the brain-behavior relationship characterizing focal TLE with and without hippocampal sclerosis is presented. Then, the aim and the specificity of the NPA in the care of epilepsy are described. Considering the high frequency of medically intractable TLE that can be treated by surgery, an assessment carried out in the context of pre- and postoperative evaluation is presented and discussed in light of insights from functional neuroimaging findings. Finally, we propose concluding remarks about the place of neuropsychology in the care of epilepsy in improving our understanding of the cognitive and emotional phenotypes associated with TLE.
Collapse
Affiliation(s)
- Séverine Samson
- Department of Psychology, University of Lille, Lille, France; Epilepsy Unit, Neurosciences Department, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | - Marisa Denos
- Rehabilitation Unit, Neurosciences Department, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
10
|
Beran RG. Discussing the risks related to epilepsy-An holistic approach. Seizure 2020; 78:134-135. [PMID: 32144033 DOI: 10.1016/j.seizure.2020.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Roy G Beran
- University of New South Wales, Australia; School of Medicine, Griffith University, Queensland, Australia; Sechenov, Moscow First State University, Russia.
| |
Collapse
|
11
|
Englot DJ, Morgan VL, Chang C. Impaired vigilance networks in temporal lobe epilepsy: Mechanisms and clinical implications. Epilepsia 2020; 61:189-202. [PMID: 31901182 DOI: 10.1111/epi.16423] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
Mesial temporal lobe epilepsy (mTLE) is a neurological disorder in which patients suffer from frequent consciousness-impairing seizures, broad neurocognitive deficits, and diminished quality of life. Although seizures in mTLE originate focally in the hippocampus or amygdala, mTLE patients demonstrate cognitive deficits that extend beyond temporal lobe function-such as decline in executive function, cognitive processing speed, and attention-as well as diffuse decreases in neocortical metabolism and functional connectivity. Given prior observations that mTLE patients exhibit impairments in vigilance, and that seizures may disrupt the activity and long-range connectivity of subcortical brain structures involved in vigilance regulation, we propose that subcortical activating networks underlying vigilance play a critical role in mediating the widespread neural and cognitive effects of focal mTLE. Here, we review evidence for impaired vigilance in mTLE, examine clinical implications and potential network underpinnings, and suggest neuroimaging strategies for determining the relationship between vigilance, brain connectivity, and neurocognition in patients and healthy controls.
Collapse
Affiliation(s)
- Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Victoria L Morgan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Catie Chang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|