1
|
Zhang W, Yan Z, Dong J, Liu X, Zheng A, Liang H, Yan H. The nature of syntactic working memory during relative clause processing: fMRI evidence from multiple anatomic ROIs. Neuropsychologia 2025; 211:109107. [PMID: 40024326 DOI: 10.1016/j.neuropsychologia.2025.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Relative clauses (RC) are a common embedded structure in natural language. They can be classified as Subject-extracted RC (SRC) and object-extracted RC (ORC). Previous studies have suggested an ORC advantage in Chinese. This is consistent with the memory-based theories, which propose that more syntactic working memory (SWM) is needed during the Chinese SRC processing than the ORC processing. However, it is still unclear about the nature of the SWM (language-specific vs. domain-general). In the current study, participants were asked to read Chinese SRC and ORC sentences while undergoing functional magnetic resonance imaging (fMRI) scanning. Because of the important role of the inferior frontal gyrus (IFG) and superior temporal gyrus (STG) in SWM, these two brain regions were divided into sub-regions. Critically, LIFGorbital is more related to language-specific processing whereas LIFGopercular is more related to domain-general processing. Activation analyses and Granger causality (GC) analyses were both conducted. The results first provided more neurophysiological evidence of the ORC advantage in Chinese. More importantly, the results of activation analyses showed that LIFGoper was more activated in the contrast of SRC > ORC. In contrast, the results of GC analyses showed that LIFGorb was more involved in the SRC-specific connectivity. Altogether, these results suggest that the SWM induced by the contrast of SRC > ORC was related to both the language-specific and domain-general processing.
Collapse
Affiliation(s)
- Wenjia Zhang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
| | - Zhiqiang Yan
- Department of Neurosurgery, Xijing Hospital, The fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Jie Dong
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
| | - Xinyi Liu
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China; Graduate School, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
| | - Aoke Zheng
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China; School of English Studies, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
| | - Hong Liang
- Students' Affairs Division, Xi'an Technological University, 710021, Xi'an, Shaanxi, China
| | - Hao Yan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Yang M, Liu Y, Yue Z, Yang G, Jiang X, Cai Y, Zhang Y, Yang X, Li D, Chen L. Transcranial photobiomodulation on the left inferior frontal gyrus enhances Mandarin Chinese L1 and L2 complex sentence processing performances. BRAIN AND LANGUAGE 2024; 256:105458. [PMID: 39197357 DOI: 10.1016/j.bandl.2024.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
This study investigated the causal enhancing effect of transcranial photobiomodulation (tPBM) over the left inferior frontal gyrus (LIFG) on syntactically complex Mandarin Chinese first language (L1) and second language (L2) sentence processing performances. Two (L1 and L2) groups of participants (thirty per group) were recruited to receive the double-blind, sham-controlled tPBM intervention via LIFG, followed by the sentence processing, the verbal working memory (WM), and the visual WM tasks. Results revealed a consistent pattern for both groups: (a) tPBM enhanced sentence processing performance but not verbal WM for linear processing of unstructured sequences and visual WM performances; (b) Participants with lower sentence processing performances under sham tPBM benefited more from active tPBM. Taken together, the current study substantiated that tPBM enhanced L1 and L2 sentence processing, and would serve as a promising and cost-effective noninvasive brain stimulation (NIBS) tool for future applications on upregulating the human language faculty.
Collapse
Affiliation(s)
- Mingchuan Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Zhaoqian Yue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Guang Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Xu Jiang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yuqi Zhang
- School of Chinese as a Second Language, Peking University, Beijing 100871, China
| | - Xiujie Yang
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Educational System Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Wu J, Cheng Y, Qu X, Kang T, Cai Y, Wang P, Zaccarella E, Friederici AD, Hartwigsen G, Chen L. Continuous Theta-Burst Stimulation on the Left Posterior Inferior Frontal Gyrus Perturbs Complex Syntactic Processing Stability in Mandarin Chinese. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:608-627. [PMID: 38939729 PMCID: PMC11210936 DOI: 10.1162/nol_a_00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/12/2024] [Indexed: 06/29/2024]
Abstract
The structure of human language is inherently hierarchical. The left posterior inferior frontal gyrus (LpIFG) is proposed to be a core region for constructing syntactic hierarchies. However, it remains unclear whether LpIFG plays a causal role in syntactic processing in Mandarin Chinese and whether its contribution depends on syntactic complexity, working memory, or both. We addressed these questions by applying inhibitory continuous theta-burst stimulation (cTBS) over LpIFG. Thirty-two participants processed sentences containing embedded relative clauses (i.e., complex syntactic processing), syntactically simpler coordinated sentences (i.e., simple syntactic processing), and non-hierarchical word lists (i.e., word list processing) after receiving real or sham cTBS. We found that cTBS significantly increased the coefficient of variation, a representative index of processing stability, in complex syntactic processing (esp., when subject relative clause was embedded) but not in the other two conditions. No significant changes in d' and reaction time were detected in these conditions. The findings suggest that (a) inhibitory effect of cTBS on the LpIFG might be prominent in perturbing the complex syntactic processing stability but subtle in altering the processing quality; and (b) the causal role of the LpIFG seems to be specific for syntactic processing rather than working memory capacity, further evidencing their separability in LpIFG. Collectively, these results support the notion of the LpIFG as a core region for complex syntactic processing across languages.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Tianmin Kang
- Department of Psychology, Skidmore College, Saratoga Springs, NY, USA
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Peng Wang
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Huang C, Li A, Pang Y, Yang J, Zhang J, Wu X, Mei L. How the intrinsic functional connectivity patterns of the semantic network support semantic processing. Brain Imaging Behav 2024; 18:539-554. [PMID: 38261218 DOI: 10.1007/s11682-024-00849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Semantic processing, a core of language comprehension, involves the activation of brain regions dispersed extensively across the frontal, temporal, and parietal cortices that compose the semantic network. To comprehend the functional structure of this semantic network and how it prepares for semantic processing, we investigated its intrinsic functional connectivity (FC) and the relation between this pattern and semantic processing ability in a large sample from the Human Connectome Project (HCP) dataset. We first defined a well-studied brain network for semantic processing, and then we characterized the within-network connectivity (WNC) and the between-network connectivity (BNC) within this network using a voxel-based global brain connectivity (GBC) method based on resting-state functional magnetic resonance imaging (fMRI). The results showed that 97.73% of the voxels in the semantic network displayed considerably greater WNC than BNC, demonstrating that the semantic network is a fairly encapsulated network. Moreover, multiple connector hubs in the semantic network were identified after applying the criterion of WNC > 1 SD above the mean WNC of the semantic network. More importantly, three of these connector hubs (i.e., the left anterior temporal lobe, angular gyrus, and orbital part of the inferior frontal gyrus) were reliably associated with semantic processing ability. Our findings suggest that the three identified regions use WNC as the central mechanism for supporting semantic processing and that task-independent spontaneous connectivity in the semantic network is essential for semantic processing.
Collapse
Affiliation(s)
- Chengmei Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jiayi Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jingxian Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Wu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China.
| |
Collapse
|
5
|
Zhang Y, Taft M, Tang J, Li L. Neural correlates of semantic-driven syntactic parsing in sentence comprehension. Neuroimage 2024; 289:120543. [PMID: 38369168 DOI: 10.1016/j.neuroimage.2024.120543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024] Open
Abstract
For sentence comprehension, information carried by semantic relations between constituents must be combined with other information to decode the constituent structure of a sentence, due to atypical and noisy situations of language use. Neural correlates of decoding sentence structure by semantic information have remained largely unexplored. In this functional MRI study, we examine the neural basis of semantic-driven syntactic parsing during sentence reading and compare it with that of other types of syntactic parsing driven by word order and case marking. Chinese transitive sentences of various structures were investigated, differing in word order, case making, and agent-patient semantic relations (i.e., same vs. different in animacy). For the non-canonical unmarked sentences without usable case marking, a semantic-driven effect triggered by agent-patient ambiguity was found in the left inferior frontal gyrus opercularis (IFGoper) and left inferior parietal lobule, with the activity not being modulated by naturalness factors of the sentences. The comparison between each type of non-canonical sentences with canonical sentences revealed that the non-canonicity effect engaged the left posterior frontal and temporal regions, in line with previous studies. No extra neural activity was found responsive to case marking within the non-canonical sentences. A word order effect across all types of sentences was also found in the left IFGoper, suggesting a common neural substrate between different types of parsing. The semantic-driven effect was also observed for the non-canonical marked sentences but not for the canonical sentences, suggesting that semantic information is used in decoding sentence structure in addition to case marking. The current findings illustrate the neural correlates of syntactic parsing with semantics, and provide neural evidence of how semantics facilitates syntax together with other information.
Collapse
Affiliation(s)
- Yun Zhang
- Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China
| | - Marcus Taft
- Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China; School of Psychology, UNSW Sydney, Australia
| | - Jiaman Tang
- Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China
| | - Le Li
- Center for the Cognitive Science and Language, Beijing Language and Culture University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Mesulam MM, Coventry CA, Rader BM, Kuang A, Sridhar J, Martersteck A, Zhang H, Thompson CK, Weintraub S, Rogalski EJ. Modularity and granularity across the language network-A primary progressive aphasia perspective. Cortex 2021; 141:482-496. [PMID: 34153680 PMCID: PMC8319115 DOI: 10.1016/j.cortex.2021.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/22/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Tests of grammar, repetition and semantics were administered to 62 prospectively enrolled right-handed participants with primary progressive aphasia (PPA). Structural brain images were obtained at the time of testing. Regression analyses uncovered 3 clearly delineated non-overlapping left hemisphere clusters where cortical thinning (atrophy) was significantly correlated with impaired performance. A morphosyntactic cluster associated with the grammaticality of sentence construction was located predominantly within the middle and inferior frontal gyri; a phonolexical cluster associated with language repetition was located in the temporoparietal junction; a lexicosemantic cluster associated with object naming and single word comprehension was located within the middle and anterior parts of the temporal lobe and extended into insular, orbitofrontal, and mediotemporal cortices. Commonality analyses were undertaken to explore whether these three clusters were as modular as indicated by the regression analyses or whether some underlying functional granularity could be uncovered. Modularity was defined as the exclusive association of an anatomical cluster with a single type of language task whereas granularity was defined as the association of a single anatomical cluster with more than one type of language task. The commonality analyses revealed a predominantly modular organization with quantitatively minor instances of inter-cluster granularity. The results also reconfirmed previous work on PPA which had shown that Wernicke's area is not essential for word comprehension, that naming impairments can be based either on deficits of lexical retrieval or word comprehension, and that the essential substrates of word comprehension encompass much wider areas of the temporal lobe than the temporal pole. The anatomy of the language network has traditionally been explored through patients with focal cerebrovascular accidents and experiments based on functional activation. Investigations on PPA are showing that focal neurodegenerations can add new perspectives to existing models of the language network.
Collapse
Affiliation(s)
- M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Christina A Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Alan Kuang
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL, USA
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam Martersteck
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL, USA
| | - Cynthia K Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University School of Communication, Evanston, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL, USA
| | - Emily J Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL, USA
| |
Collapse
|
7
|
Xu K, Wu DH, Duann JR. Dynamic brain connectivity attuned to the complexity of relative clause sentences revealed by a single-trial analysis. Neuroimage 2020; 217:116920. [PMID: 32422404 DOI: 10.1016/j.neuroimage.2020.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022] Open
Abstract
To explore the issue of how the human brain processes sentences with different levels of complexity, we sought to compare the neural substrates underlying the processing of Chinese subject-extracted relative clause (SRC) and object-extracted relative clause (ORC) sentences in a trial-by-trial fashion. Previous neuroimaging studies have demonstrated that the involvement of the left inferior frontal gyrus (LIFG) and the left superior temporal gyrus (LSTG) is critical for the processing of relative clause (RC) sentences. In this study, we employed independent component analysis (ICA) to decompose brain activity into a set of independent components. Then, the independent component maps were spatially normalized using a surface-based approach in order to further spatially correlate and match the equivalent components from individual participants. The selected equivalent components indicated that the LIFG and the LSTG were consistently engaged in sentence processing among the participants. Subsequently, we observed alterations in the functional coupling between the LIFG and the LSTG in response to SRCs and ORCs using a Granger causality analysis. Specifically, comprehending Chinese ORCs with a canonical word order only involved a unidirectional connection from the LIFG to the LSTG for the integration of lexical-syntactic information. On the other hand, comprehending Chinese SRCs required bi-directional connectivity between the LIFG and the LSTG to fulfill increased integration demands in reconstructing the argument hierarchy due to a non-canonical word order. Furthermore, through a single-trial analysis, the strength of the connectivity from the LIFG to the LSTG was found to be significantly correlated with the complexity of the SRC sentences as quantified by eye-tracking measures. These findings indicated that the effective connectivity from the LIFG to the LSTG played an important role in the comprehension of complex sentences and that enhanced strength of this connectivity might reflect increased integration demands and restructuring attempts during sentence processing. Taken together, the results of the present study reveal that interregional interaction in the brain network for sentence processing can be dynamically engaged in response to different levels of complexity and also shed some light on the interpretation of neuroimaging and behavioral evidence when accounting for the nature of sentence complexity during reading.
Collapse
Affiliation(s)
- Kunyu Xu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan; Institute of Modern Languages and Linguistics, Fudan University, Shanghai, 200433, China
| | - Denise H Wu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan; Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093, USA; Institute of Education, National Chiao Tung University, Hsinchu, 30010, Taiwan.
| |
Collapse
|
8
|
Xu K, Duann JR. Brain connectivity in the left frontotemporal network dynamically modulated by processing difficulty: Evidence from Chinese relative clauses. PLoS One 2020; 15:e0230666. [PMID: 32271773 PMCID: PMC7144993 DOI: 10.1371/journal.pone.0230666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 03/05/2020] [Indexed: 11/18/2022] Open
Abstract
Although the connection between the left inferior frontal gyrus (LIFG) and the left superior temporal gyrus (LSTG) has been found to be essential for the comprehension of relative clause (RC) sentences, it remains unclear how the LIFG and the LSTG interact with each other, especially during the processing of Chinese RC sentences with different processing difficulty. This study thus conducted a 2 × 2 (modifying position × extraction position) factorial analyses to examine how these two factors influences regional brain activation. The results showed that, regardless of the modifying position, greater activation in the LIFG was consistently elicited in Chinese subject-extracted relative clauses (SRCs) with non-canonical word order than object-extracted relative clauses (ORCs) with canonical word order, implying that the LIFG subserving the ordering process primarily contributes to the processing of information with increased integration demands due to the non-canonical sequence. Moreover, the directional connection between the LIFG and the LSTG appeared to be modulated by different modifying positions. When the RC was at the subject-modifying position, the effective connectivity from the LIFG to the LSTG was dominantly activated for sentence comprehension; whereas when the RC was at the object-modifying position thus being more difficult, it might be the feedback mechanism from the LSTG back to the LIFG that took place in sentence processing. These findings reveal that brain activation in between the LIFG and the LSTG may be dynamically modulated by different processing difficulty and suggest the relative specialization but extensive collaboration involved in the LIFG and the LSTG for sentence comprehension.
Collapse
Affiliation(s)
- Kunyu Xu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Institute for Neural Computation, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|