1
|
Duville MM, Alonso-Valerdi LM, Ibarra-Zarate DI. Improved emotion differentiation under reduced acoustic variability of speech in autism. BMC Med 2024; 22:121. [PMID: 38486293 PMCID: PMC10941423 DOI: 10.1186/s12916-024-03341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Socio-emotional impairments are among the diagnostic criteria for autism spectrum disorder (ASD), but the actual knowledge has substantiated both altered and intact emotional prosodies recognition. Here, a Bayesian framework of perception is considered suggesting that the oversampling of sensory evidence would impair perception within highly variable environments. However, reliable hierarchical structures for spectral and temporal cues would foster emotion discrimination by autistics. METHODS Event-related spectral perturbations (ERSP) extracted from electroencephalographic (EEG) data indexed the perception of anger, disgust, fear, happiness, neutral, and sadness prosodies while listening to speech uttered by (a) human or (b) synthesized voices characterized by reduced volatility and variability of acoustic environments. The assessment of mechanisms for perception was extended to the visual domain by analyzing the behavioral accuracy within a non-social task in which dynamics of precision weighting between bottom-up evidence and top-down inferences were emphasized. Eighty children (mean 9.7 years old; standard deviation 1.8) volunteered including 40 autistics. The symptomatology was assessed at the time of the study via the Autism Diagnostic Observation Schedule, Second Edition, and parents' responses on the Autism Spectrum Rating Scales. A mixed within-between analysis of variance was conducted to assess the effects of group (autism versus typical development), voice, emotions, and interaction between factors. A Bayesian analysis was implemented to quantify the evidence in favor of the null hypothesis in case of non-significance. Post hoc comparisons were corrected for multiple testing. RESULTS Autistic children presented impaired emotion differentiation while listening to speech uttered by human voices, which was improved when the acoustic volatility and variability of voices were reduced. Divergent neural patterns were observed from neurotypicals to autistics, emphasizing different mechanisms for perception. Accordingly, behavioral measurements on the visual task were consistent with the over-precision ascribed to the environmental variability (sensory processing) that weakened performance. Unlike autistic children, neurotypicals could differentiate emotions induced by all voices. CONCLUSIONS This study outlines behavioral and neurophysiological mechanisms that underpin responses to sensory variability. Neurobiological insights into the processing of emotional prosodies emphasized the potential of acoustically modified emotional prosodies to improve emotion differentiation by autistics. TRIAL REGISTRATION BioMed Central ISRCTN Registry, ISRCTN18117434. Registered on September 20, 2020.
Collapse
Affiliation(s)
- Mathilde Marie Duville
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, N.L, 64700, México.
| | - Luz María Alonso-Valerdi
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, N.L, 64700, México
| | - David I Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, N.L, 64700, México
| |
Collapse
|
2
|
Xi Y, Lan Z, Chen Y, Zhang Q, Wu Z, Li G. Patients with epilepsy without cognitive impairment show altered brain networks in multiple frequency bands in an audiovisual integration task. Neurophysiol Clin 2023; 53:102888. [PMID: 37660635 DOI: 10.1016/j.neucli.2023.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVES Comorbid cognitive and behavioral deficits are often observed in patients with epilepsy. It is not clear whether the brain networks of patients with epilepsy without cognitive decline differs from that of healthy controls in different frequency bands in the task-state. The purpose of our study was to explore whether epilepsy affects the structure of brain networks associated with cognitive processing, even when patients with epilepsy do not have cognitive impairment. METHODS We designed an audiovisual discrimination task and recorded electroencephalogram (EEG) data from healthy controls and patients with epilepsy. We established constructed time-varying brain networks across the delta, theta, alpha, and beta bands on the task-state EEG data during audiovisual integration processing. RESULTS The results showed changes in the structure of the brain networks in the theta, alpha, and beta bands in patients with epilepsy who had no cognitive deficit. No significant difference in the connectivity strength, clustering coefficient, characteristic path length, or global efficiency was noted between patients and healthy controls. Moreover, the structure of brain networks in patients showed no correlation with the behavioral performance. CONCLUSION The repeated abnormal firing of neurons in the brain of patients with epilepsy may inhibit it from optimizing networks into more efficient structures. Epilepsy might affect decision-making ability by damaging the neural activity in the beta band and preventing its correlation with decision-making behaviors.
Collapse
Affiliation(s)
- Yang Xi
- School of Computer Science, Northeast Electric Power University, Jilin 132012, P.R. China.
| | - Zhu Lan
- School of Computer Science, Northeast Electric Power University, Jilin 132012, P.R. China
| | - Ying Chen
- School of Computer Science, Northeast Electric Power University, Jilin 132012, P.R. China
| | - Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, Jilin 132012, P.R. China
| | - Zhenyu Wu
- Department of Orthopedics of Affiliated Hospital of Beihua University, Beihua University, Jilin 132012, P.R. China
| | - Guangjian Li
- Department of Neurology of First Affiliated Hospital of Jilin University, Jilin University, Changchun 130022, P.R. China
| |
Collapse
|
3
|
Akimoto Y, Miyake K. Examination of distraction and discomfort caused by using glare monitors: a simultaneous electroencephalography and eye-tracking study. PeerJ 2023; 11:e15992. [PMID: 37727695 PMCID: PMC10506577 DOI: 10.7717/peerj.15992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Background Since the COVID-19 pandemic started, remote work and education and digital display use have become more prevalent. However, compared with printed material, digital displays cause more eye fatigue and may decrease task performance. For instance, the reflections on the monitor can cause discomfort or distraction, particularly when glare monitors are used with black backgrounds. Methods This study simultaneously uses electroencephalography (EEG) and an eye-tracker to measure the possible negative effects of using a glare monitor on the illegibility of sentences. Results The experiment results showed no difference in reading time and subjective illegibility rating between glare and non-glare monitors. However, with glare monitors, eye fixation when reading lasted longer. Further, EEG beta (15-20 Hz) power variations suggested that the participants were less engaged in the reading task when a glare monitor was used with a black background. Conclusions These results indicate that the negative effects of using a glare monitor are subtle but certainly present. They also show that physiological measures such as EEG and eye tracking can assess the subtle effects in an objective manner, even if behavioral measures such as subjective illegibility ratings or reading time may not show the differences.
Collapse
Affiliation(s)
- Yoritaka Akimoto
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Keito Miyake
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
4
|
Avantaggiato F, Farokhniaee A, Bandini A, Palmisano C, Hanafi I, Pezzoli G, Mazzoni A, Isaias IU. Intelligibility of speech in Parkinson's disease relies on anatomically segregated subthalamic beta oscillations. Neurobiol Dis 2023; 185:106239. [PMID: 37499882 DOI: 10.1016/j.nbd.2023.106239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Speech impairment is commonly reported in Parkinson's disease and is not consistently improved by available therapies - including deep brain stimulation of the subthalamic nucleus (STN-DBS), which can worsen communication performance in some patients. Improving the outcome of STN-DBS on speech is difficult due to our incomplete understanding of the contribution of the STN to fluent speaking. OBJECTIVE To assess the relationship between subthalamic neural activity and speech production and intelligibility. METHODS We investigated bilateral STN local field potentials (LFPs) in nine parkinsonian patients chronically implanted with DBS during overt reading. LFP spectral features were correlated with clinical scores and measures of speech intelligibility. RESULTS Overt reading was associated with increased beta-low ([1220) Hz) power in the left STN, whereas speech intelligibility correlated positively with beta-high ([2030) Hz) power in the right STN. CONCLUSION We identified separate contributions from frequency and brain lateralization of the STN in the execution of an overt reading motor task and its intelligibility. This subcortical organization could be exploited for new adaptive stimulation strategies capable of identifying the occurrence of speaking behavior and facilitating its functional execution.
Collapse
Affiliation(s)
- Federica Avantaggiato
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - AmirAli Farokhniaee
- Fondazione Grigioni per il Morbo di Parkinson, Via Gianfranco Zuretti 35, 20125 Milano, Italy.
| | - Andrea Bandini
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggo 34, Pontedera, Pisa, Italy; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggo 34, Pontedera, Pisa, Italy.
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany; Parkinson Institute Milan, ASST G. Pini-CTO, via Bignami 1, 20126 Milano, Italy.
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Via Gianfranco Zuretti 35, 20125 Milano, Italy; Parkinson Institute Milan, ASST G. Pini-CTO, via Bignami 1, 20126 Milano, Italy.
| | - Alberto Mazzoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggo 34, Pontedera, Pisa, Italy.
| | - Ioannis U Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany; Parkinson Institute Milan, ASST G. Pini-CTO, via Bignami 1, 20126 Milano, Italy.
| |
Collapse
|
5
|
Momotenko D. Executive function during typing on computer. СОВРЕМЕННАЯ ЗАРУБЕЖНАЯ ПСИХОЛОГИЯ 2022. [DOI: 10.17759/jmfp.2022110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent decades, computer typing has become one of the fundamental tools for personal communication in everyday life. Typing is a multi-level hierarchical process that involves a large number of cognitive and physiological functions. Executive functions (EF), such as working memory and executive control, actively influence the inhibitory and activation processes during typing. Using the example of the work of the IF, one can observe the hierarchical organization of the central and peripheral parts of the nervous system during typing. However, there are not so many studies aimed at studying the neurophysiology of typing, and there were no works devoted to the study of EF in typing. In this regard, this article discusses the potential possibilities of studying EF by typing on a computer and provides examples of experiments and models that can be used in such studies. The article also describes the main psychophysiological studies in which typing was involved and a review of methods for studying and analyzing typing was conducted.
Collapse
Affiliation(s)
- D.A. Momotenko
- Sirius University of Science and Technology, Federal territory "Sirius", Russia
| |
Collapse
|
6
|
Hollenstein N, Renggli C, Glaus B, Barrett M, Troendle M, Langer N, Zhang C. Decoding EEG Brain Activity for Multi-Modal Natural Language Processing. Front Hum Neurosci 2021; 15:659410. [PMID: 34326723 PMCID: PMC8314009 DOI: 10.3389/fnhum.2021.659410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Until recently, human behavioral data from reading has mainly been of interest to researchers to understand human cognition. However, these human language processing signals can also be beneficial in machine learning-based natural language processing tasks. Using EEG brain activity for this purpose is largely unexplored as of yet. In this paper, we present the first large-scale study of systematically analyzing the potential of EEG brain activity data for improving natural language processing tasks, with a special focus on which features of the signal are most beneficial. We present a multi-modal machine learning architecture that learns jointly from textual input as well as from EEG features. We find that filtering the EEG signals into frequency bands is more beneficial than using the broadband signal. Moreover, for a range of word embedding types, EEG data improves binary and ternary sentiment classification and outperforms multiple baselines. For more complex tasks such as relation detection, only the contextualized BERT embeddings outperform the baselines in our experiments, which raises the need for further research. Finally, EEG data shows to be particularly promising when limited training data is available.
Collapse
Affiliation(s)
- Nora Hollenstein
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark
| | - Cedric Renggli
- Department of Computer Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Benjamin Glaus
- Department of Computer Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Maria Barrett
- Department of Computer Science, IT University of Copenhagen, Copenhagen, Denmark
| | - Marius Troendle
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Nicolas Langer
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Ce Zhang
- Department of Computer Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Adamczyk P, Jáni M, Ligeza TS, Płonka O, Błądziński P, Wyczesany M. On the Role of Bilateral Brain Hypofunction and Abnormal Lateralization of Cortical Information Flow as Neural Underpinnings of Conventional Metaphor Processing Impairment in Schizophrenia: An fMRI and EEG Study. Brain Topogr 2021; 34:537-554. [PMID: 33973137 PMCID: PMC8195899 DOI: 10.1007/s10548-021-00849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/05/2021] [Indexed: 01/05/2023]
Abstract
Figurative language processing (e.g. metaphors) is commonly impaired in schizophrenia. In the present study, we investigated the neural activity and propagation of information within neural circuits related to the figurative speech, as a neural substrate of impaired conventional metaphor processing in schizophrenia. The study included 30 schizophrenia outpatients and 30 healthy controls, all of whom were assessed with a functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG) punchline-based metaphor comprehension task including literal (neutral), figurative (metaphorical) and nonsense (absurd) endings. The blood oxygenation level-dependent signal was recorded with 3T MRI scanner and direction and strength of cortical information flow in the time course of task processing was estimated with a 64-channel EEG input for directed transfer function. The presented results revealed that the behavioral manifestation of impaired figurative language in schizophrenia is related to the hypofunction in the bilateral fronto-temporo-parietal brain regions (fMRI) and various differences in effective connectivity in the fronto-temporo-parietal circuit (EEG). Schizophrenia outpatients showed an abnormal pattern of connectivity during metaphor processing which was related to bilateral (but more pronounced at the left hemisphere) hypoactivation of the brain. Moreover, we found reversed lateralization patterns, i.e. a rightward-shifted pattern during metaphor processing in schizophrenia compared to the control group. In conclusion, the presented findings revealed that the impairment of the conventional metaphor processing in schizophrenia is related to the bilateral brain hypofunction, which supports the evidence on reversed lateralization of the language neural network and the existence of compensatory recruitment of alternative neural circuits in schizophrenia.
Collapse
Affiliation(s)
- Przemysław Adamczyk
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland.
| | - Martin Jáni
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland.,Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Tomasz S Ligeza
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland
| | - Olga Płonka
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland
| | - Piotr Błądziński
- Community Psychiatry and Psychosis Research Center, Chair of Psychiatry, Medical College, Jagiellonian University, Kraków, Poland
| | - Miroslaw Wyczesany
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland
| |
Collapse
|
8
|
Duprez J, Stokkermans M, Drijvers L, Cohen MX. Synchronization between Keyboard Typing and Neural Oscillations. J Cogn Neurosci 2021; 33:887-901. [PMID: 33571075 DOI: 10.1162/jocn_a_01692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Rhythmic neural activity synchronizes with certain rhythmic behaviors, such as breathing, sniffing, saccades, and speech. The extent to which neural oscillations synchronize with higher-level and more complex behaviors is largely unknown. Here, we investigated electrophysiological synchronization with keyboard typing, which is an omnipresent behavior daily engaged by an uncountably large number of people. Keyboard typing is rhythmic, with frequency characteristics roughly the same as neural oscillatory dynamics associated with cognitive control, notably through midfrontal theta (4-7 Hz) oscillations. We tested the hypothesis that synchronization occurs between typing and midfrontal theta and breaks down when errors are committed. Thirty healthy participants typed words and sentences on a keyboard without visual feedback, while EEG was recorded. Typing rhythmicity was investigated by interkeystroke interval analyses and by a kernel density estimation method. We used a multivariate spatial filtering technique to investigate frequency-specific synchronization between typing and neuronal oscillations. Our results demonstrate theta rhythmicity in typing (around 6.5 Hz) through the two different behavioral analyses. Synchronization between typing and neuronal oscillations occurred at frequencies ranging from 4 to 15 Hz, but to a larger extent for lower frequencies. However, peak synchronization frequency was idiosyncratic across participants, therefore not specific to theta nor to midfrontal regions, and correlated somewhat with peak typing frequency. Errors and trials associated with stronger cognitive control were not associated with changes in synchronization at any frequency. As a whole, this study shows that brain-behavior synchronization does occur during keyboard typing but is not specific to midfrontal theta.
Collapse
Affiliation(s)
- Joan Duprez
- University Rennes, France.,Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Linda Drijvers
- Radboud University, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Michael X Cohen
- Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Characterizing the Time-Varying Brain Networks of Audiovisual Integration across Frequency Bands. Cognit Comput 2020. [DOI: 10.1007/s12559-020-09783-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Mousavi N, Nazari MA, Babapour J, Jahan A. Electroencephalographic characteristics of word finding during phonological and semantic verbal fluency tasks. Neuropsychopharmacol Rep 2020; 40:254-261. [PMID: 32757253 PMCID: PMC7722674 DOI: 10.1002/npr2.12129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aims Verbal Fluency is sensitive to brain damage and is employed to assess language abilities like the size of vocabulary and the semantic‐lexical networks’ integrity and executive functioning abilities particularly inhibition, working memory, and self‐monitoring. Various studies revealed oscillatory changes related to word retrieval during different tasks. However, there are not enough studies on electroencephalographic characteristics of word retrieval routes (phonological or semantic pathway) during free recall. The purpose of our study was to investigate electroencephalography power relationship with semantic and phonological word finding routes during verbal fluency. Methods In this within‐subject study, the electroencephalography of 20 healthy participants was recorded during written category and letter fluency tasks and compared with the rest state. Absolute power of the signals in delta (1‐3.5 Hz), theta (4‐7.5 Hz), alpha (8‐12 Hz), and beta (12.5‐30 Hz) was calculated in three lobes (frontal, parietal, and temporal). Results A repeated measures ANOVA showed significant interaction of condition × lobe × frequency × side (P < .001). Post hoc test for each lobe showed significant changes in the absolute power of delta, theta and beta for frontal, delta and theta for parietal, and theta and beta for temporal lobes (P‐values < .05). Conclusion Searching the words by phonological entries is associated with decreased beta and increased theta in left frontal lobe. These changes are not necessary for semantic word retrieval strategy. Word retrieval either by phonological entries or semantic categories is accompanied by increased delta in frontal and parietal lobes. Decreased beta and increased theta bands in the left frontal lobe are associated with phonological word retrieval strategy while during semantic word finding, increased beta was observed in the left temporal lobe.![]()
Collapse
Affiliation(s)
- Najva Mousavi
- Division of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran
| | | | - Jalil Babapour
- Psychology Department, University of Tabriz, Tabriz, Iran
| | - Ali Jahan
- Department of Speech Therapy, Faculty of Rehabilitation Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|